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Abstract: Oriented object detection in optical remote sensing images (ORSIs) is a challenging task
since the targets in ORSIs are displayed in an arbitrarily oriented manner and on small scales, and are
densely packed. Current state-of-the-art oriented object detection models used in ORSIs primarily
evolved from anchor-based and direct regression-based detection paradigms. Nevertheless, they
still encounter a design difficulty from handcrafted anchor definitions and learning complexities in
direct localization regression. To tackle these issues, in this paper, we proposed a novel multi-sector
oriented object detection framework called MSO2-Det, which quantizes the scales and orientation
prediction of targets in ORSIs via an anchor-free classification-to-regression approach. Specifically,
we first represented the arbitrarily oriented bounding box as four scale offsets and angles in four
quadrant sectors of the corresponding Cartesian coordinate system. Then, we divided the scales and
angle space into multiple discrete sectors and obtained more accurate localization information by
a coarse-granularity classification to fine-grained regression strategy. In addition, to decrease the
angular-sector classification loss and accelerate the network’s convergence, we designed a smooth
angular-sector label (SASL) that smoothly distributes label values with a definite tolerance radius.
Finally, we proposed a localization-aided detection score (LADS) to better represent the confidence
of a detected box by combining the category-classification score and the sector-selection score. The
proposed MSO2-Det achieves state-of-the-art results on three widely used benchmarks, including the
DOTA, HRSC2016, and UCAS-AOD data sets.

Keywords: oriented object detection; optical remote sensing images; multi-sector; anchor-free;
classification-to-regression

1. Introduction

With the development of aerospace technology and sensor technology, remote sensing
technology is entering a new stage that can quickly and accurately provide a variety of
massive Earth observation data and facilitate widely applied research. Moreover, the
demands of people for high-resolution optical remote sensing images (ORSIs) continue
to increase. As a key task of remote sensing data information extraction, object detection
in ORSIs plays an important role in many remote sensing applications, such as traffic
supervision, resource exploration, military investigation, land management, and smart
city construction. In recent years, although the related research on object detection has
already made significant progress, ORSI implementations remain a challenging task due
to the unique morphological characteristics of ORSI targets, such as varying scales, dense
arrangement, arbitrary direction, and complex backgrounds.

In recent years, deep learning methods, especially the deep convolutional neural
network (DCNN), have made great progress in the field of object detection (e.g., Faster-
RCNN [1], YOLO [2], SSD [3], and RetinaNet [4]). Although the DCNN-based object
detection approaches have achieved promising results in natural scene images, there are
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two fatal defects that arise in migrating this to ORSI object detection. On the one hand,
the target representations of natural scene object detection generally adopt axis-aligned
bounding boxes (AABBs) that detect the targets without regard to the orientation property,
thereby omitting important angle information and limiting the scope of application and
fields. Meanwhile, as shown in Figure 1, due to the bird’s-eye view of the ORSI shooting
method, it is more accurate to describe the rotating and densely packed ORSI targets with
arbitrarily oriented bounding boxes (AOBBs) with abundant angle information instead of
the AABB representation with more noisy information of complex backgrounds. One the
other hand, DCNN-based natural object detectors are generally based on an anchor mecha-
nism. However, there are several drawbacks when directly applying anchor mechanisms to
ORSI object detection models. First, in order to represent the bulk of a target with varying
scales, aspect ratios, and orientation, more complex anchors need to be designed for dense
prediction. However, the network needs to predict the locations and categories of all the
anchors, which introduces an extra computation cost for redundant anchors. Furthermore,
anchor-based detectors are parameter-sensitive models. When parameter-sensitive detec-
tors encounter unsuitable anchor definitions, the performance will deteriorate dramatically.
In addition, limited anchor designs, such as a (3 scales × 3 aspect ratios × 12 orientations)
collocation strategy for the anchor, are not enough to meet the need of the large shape
variation in ORSI targets. To tackle the above-mentioned problems of handcrafted anchor
definitions, many scholars proposed a simple, but effective anchor-free pipeline via directly
or indirectly regressing the scales and angle parameters of ORSI targets. For example, the
VCSOP detector [5] transforms the vehicle detection task into a multi-task learning problem
via an anchor-free one-stage fully convolution network. Yi et al. [6] represented the objects
in remote sensing via the center keypoints and regressed the box boundary-aware vectors
(BBAVectors) to locate the AOBB targets. O2-DNet [7] detected the oriented targets in
remote sensing images by predicting a pair of middle lines inside each bounding box. To
the best of our knowledge, the above anchor-free oriented object detectors can be simpli-
fied into two typical models: (1) directly or indirectly regress the coordinates of the four
vertices {Vi = (xi, yi)|i = 1, 2, 3, 4} of AOBB; (2) directly or indirectly regress the center
coordinate (xc, yc), the scale of the AOBB, such as the lengths of the long and short sides
(w, h), and the orientation θ of the target. However, they all fail to address the inherent
order ambiguity and loss discontinuity in regressing the corresponding parameters due to
the angular periodicity and boundary discontinuity problems [8], which make it difficult
for training to converge. To eliminate the ambiguity of the direct regression-based methods,
WPSGA-Net [9] represented AOBB as a CenterMap OBB and proposed to treat the AOBB
problem as a pixel-level classification issue. Yang et al. [10] proposed a circular smooth
label (CSL) to transform the angle regression into a sparse classification problem within
the range of error tolerance. Nevertheless, these two methods rely on a single regression
network for predicting the accurate location of the ORSI targets in the unbounded space,
which is considered to be challenging for the network to learn.

Figure 1. Detection results of AABB (left) and AOBB (right) generated with our method on the
DOTA data set.
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In this article, we designed an anchor-free multi-sector oriented object detector (MSO2-
Det) that adopts the partitioning idea and multi-sector mechanisms to quantize the regres-
sion space of scales and the orientation of ORSI objects. Our multi-sector mechanisms
are threefold. First, as depicted in Figure 2b, we divided the coordinate space into four
quadrant sectors and represented the AOBB as four scale and angle parameters in the
Cartesian coordinate system. Based on this quadrant-sector mechanism, we represented
the targets by ((x, y), Op, θp, (p = 1, 2, 3, 4)). Specifically, targets are described by an in-box
point, four scale diameters that are offset from the in-box point to the four boundaries,
and four angles between the four scale diameters and the reference x-axis. By dividing the
coordinate system into four sectors, each quadrant sector will be responsible for regressing
the respective scale offset and angle to build an entire bounding box, which enhances the
convergence performance of the network and addresses the order ambiguity problem of the
angle and boundary. Second, instead of directly regressing the scales of the four diameters,
we divided the scale space into multiple scale sectors and then employed a classification-
to-regression strategy to obtain a more accurate location of the targets. Specifically, we first
adopted a coarse-granularity classification approach to determine to which sector the scale
range belongs. Then, the corresponding regression network refines the coarse localization
with the selected sector scale by a fine-grained regression strategy. Compared with the
direct regression method, the network of the combined regression and classification is
easier to train and converge while obtaining a more accurate boundary box scale. Third, we
designed a smooth angular-sector label (SASL) to smoothly distribute the label value and
improve the missed rate and detection accuracy. In addition, we adopted a localization-
aided detection score (LADS) that better represents the confidence of a detected box by
combining the category-classification and sector-selection score, in contrast to the previous
category-based confidence decision method. This localization-aided method dramatically
improves the performance of detection.
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Figure 2. (a) Representation of a target by the center point (x, y), scale (w, h), and angle θ. (b) Repre-
sentation of the target used in our method.

The contributions of this article are summarized as follows:

1. We proposed an innovative representation, i.e., quadrant sectors, for AOBBs in ORSIs.
The proposed representation of AOBBs addresses the ambiguity problem of the
boundary and the angle well, while enhancing the convergence performance of
the network;

2. We proposed a classification-to-regression strategy to obtain the accurate localization
of the ORSI targets with discrete scale and angular sectors. This strategy makes it
easier for the network to learn the scale and orientation information of the AOBB;

3. We designed a smooth angular-sector label (SASL) that smoothly distributes label
values with a definite tolerance radius. With this label, the missed rate and detection
accuracy are dramatically improved;



Remote Sens. 2021, 13, 1921 4 of 26

4. To obtain a more accurate confidence of the detected boxes, we proposed the fusion
of classification and localization information and thus achieved promising results on
the DOTA, HRSC2016, and UCAS-AOD data sets.

The remainder of this article is organized as follows. The related work is concisely
reviewed in Section 2. The details of the proposed method are introduced in Section 3. In
Section 4, the experiments result are analyzed in detail. Finally, the conclusions of this
article are presented in Section 5.

2. Related Works

According to the geometric characteristics of the bounding box, most of the existing
object detectors in ORSIs can be roughly classified into two types: axis-aligned object
detection and arbitrarily oriented object detection methods. In this section, the related
works of axis-aligned object detection and arbitrarily oriented object detection models are
briefly reviewed.

2.1. Axis-Aligned Object Detection in ORSIs

Studies on real-time, precise target detection algorithms of a target have been a re-
search hotspot in the field of machine vision and are also a difficult research area. In recent
years, as a significant and tough research branch of computer vision, object detection in
ORSIs has developed rapidly. Traditional object detection algorithms are based on the
excellent texture description ability of handcrafted features (e.g., the histogram of oriented
gradients [11], the scale-invariant feature transform [12], and deformable part-based mod-
els [13]) and follow the paradigm of sliding windows. Gradually, the performance of
manual feature selection techniques became saturated. Due to the robust learning ability
and the high-level feature representation capability of deep convolutional neural networks
(DCNNs) for images, a large number of DCNN-based object detectors have been proposed
in natural image object detection and ORSI object detection. These detectors are used to
detect axis-aligned bounding box targets and can be categorized into two main branches:
multi-stage and one-stage object detection.

2.1.1. Multi-Stage Object Detection Method

The DCNN-based multi-stage object detectors divide the detection process of AABB
into several core computational steps, and higher accuracy is achieved. As the originator
of the multi-stage detection method, the R-CNN [14] first extracts the target proposals by
selective search and then utilizes the CNN to determine the category and refine the location
of the object proposal. Fast R-CNN [15] inputs the whole image to extract the features by
the CNN and then generates the features of each region proposal by RoI pooling for the
subsequent classifiers and fine regressors. Faster R-CNN [1] implements a CNN-based
region proposal network (RPN) to generate the feature information of the region proposal,
and the end-to-end detection is realized. Based on the Faster R-CNN framework, the
Cascade R-CNN [16] cascades multiple R-CNN networks based on different IoU thresholds
to continuously optimize the resulting proposals and obtain more accurate detection results.
Aimed at the characteristics of ORSI targets, some recent works have applied the multi-stage
detection methods to the ORSI object detection field. For example, Deconv R-CNN [17]
utilizes a network with a deconvolution layer after the last convolution layer of the Faster R-
CNN backbone network for ORSI small target detection. Yang et al. [18] purposed a cluster
proposal network (CPN) that addresses the target clustering and scale adjustment issues of
aerial image targets. To boost multi-class and multi-scale detection capabilities, FRPNet [19]
is designed with a feature-reflowing pyramid structure to generate high-quality features
representations for each scale by fusing fine-grained features from the lower adjacent
layer. Chen et al. [20] introduced a multi-scale spatial and channelwise attention (MSCA)
mechanism to eliminate the interference of complex background. Lu et al. [21] designed a
gated axis-concentrated localization network (GACL-Net) to improve the performance of
small-scale detection in ORSIs.
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2.1.2. One-Stage Object Detection Methods

One-stage object detection methods (e.g., YOLO [2], SSD [3], and RetinaNet [4]), which
abandon the region proposal stage, directly generate the category probability and position
coordinate value of the object. With a single feedforward CNN baseline, the final detection
result can be obtained directly. Therefore, these types of methods are considered to be
faster, slicker, and simpler in the design stage. In the field of ORSIs, one-stage detectors
are becoming increasingly popular. For example, MRFF-YOLO [22] introduced a multi-
receptive field model to enhance the performance of small-scale target extraction. Based
on the SSD paradigm, AF-SSD [23] improves the performance of ORSI object detection by
designing exquisite enhancement modules such as the encoding–decoding module and
spatial and channel attention modules. Sun et al. [24] proposed an adaptive saliency-biased
loss (ASBL) to train the RetinaNet and dramatically improved the performance of detection
in the ORSIs. In addition, the work in [25,26] proposed the advanced object detection
architecture that involves both spatial and temporal domain information in the decision.
However, these axis-aligned bounding box object detectors are still confronted with the
challenge of arbitrary orientations in ORSIs. More auxiliary network structures are required
for arbitrarily oriented objects in the ORSIs.

2.2. Arbitrarily Oriented Object Detection in ORSIs

Given the orientation characteristic of remote sensing objects, a good alternative
is the use of an arbitrarily oriented bounding box to describe the ORSI targets. These
arbitrarily oriented object detectors for ORSIs can be roughly divided into two categories:
anchor-based and direct regression-based object detection methods.

2.2.1. Anchor-Based Object Detection Method

For an optical remote sensing image, anchor-based detectors first make use of many
fixed anchors as a referee and then either regress the localization offset of the bounding
box or generate the region proposals on the basis of anchors and decide whether the
corresponding proposal belongs to a certain category. Liu et al. [27] transformed the
original region-of-internet (RoI) pooling layer and AABB regression representation into a
rotated RoI and AOBB regression model for the ship detection task in ORSIs. The work
in [28] introduced the feature pyramid network (FPN) and the cascade image to obtain
abundant semantic information for regressing the offsets between the AOBB and the AABB.
RoI Transformer [29] upgrades the horizontal RoI to an oriented RoI by a supervised
RoI learner design. To effectively detect ships, the R2PN [30] proposed a rotated region
proposal network (R2PN) and a rotated RoI layer to generate oriented proposals and
extract features from inclined regions, respectively. Based on the FPN structure and a novel
spatial and scale-aware attention mechanism, CAD-Net [31] introduced a global and local
context network to collect the scene and object-level contextual information for accurate
and efficient AOBB object detection in ORSIs.

2.2.2. Anchor-Free Object Detection Method

While anchor-based detection strategies have demonstrated promising results in
ORSIs, they are unable to escape the inefficient and inflexible manual designs of multi-scale,
multi-orientation anchors. Recently, the ORSI target detection field has seen an upsurge
of numerous anchor-free approaches. Typically, these methods are classified into two
categories: keypoint-based and intensive predictive-based detectors. In regard to keypoint-
based methods, CornerNet [32] utilizes the upper left and lower right corners of the
AABB to locate the objects. CenterNet [33] proposes a center-based paradigm to represent
the target and then regresses the offsets of the center and the corresponding distances
among four boundaries and the center. Combining with CornerNet [8] and CenterNet [20],
Chen et al. [34] utilized an end-to-end FCN to identify the ship AOBBs according to the
predicted corners, center, and corresponding angle of the ship. The OPLD [35] transforms
an accurate localization task from a regression problem to a keypoint estimation problem
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and then combines the endpoint scores with the classification score to improve the final
detection quality. Shi et al. [5] decomposed the vehicle detection problem in the ORSIs
into one central point classification and three parameter regression subtasks to predict
the central point, scales, orientation, and offsets of the vehicle central point. HRPNet [36]
introduced polar coordinates and transformed the detection task of the arbitrarily oriented
bounding box into the regression of one polar angle and four polar radii. GRS-Det [37]
employs an anchor-free ship detection algorithm based on the unique U-shape network and
rotation Gaussian-mask. For intensive predictive-based methods, DenseBox [38] utilizes a
fully convolutional network (FCN) to obtain the pixel-level prediction of confidence and
the location of AABBs. FCOS [39] follows the FCN structure and implements center-ness to
suppress the low-quality detected boxes. For ORSIs targets, IENet [40] modifies the FCOS
structure with an oriented regression branch enhanced by a self-attention mechanism.
Similarly, TOSO [41] designed a robust Student’s T distribution-aided one-stage orientation
detector to address orientation target detection in ORSIs. Xiao et al. [42] proposed to detect
the arbitrarily oriented objects in ORSIs by predicting the axis of the object at the pixel
level of feature maps. Different from the aforementioned method that directly regresses
the scales or the angle of the AOBB, our proposed MSO2-Det quantizes the boundless
regression spaces by a classification-to-regression multi-sector strategy, which accelerates
the convergence of the network and obtains more accurate localization of AOBBs in ORSIs.

2.3. Localization-Guided Detection Confidence

There are many works that have verified that the combination of the localization qual-
ity score and classification score can be instrumental in identifying high-quality detection
results. Many works are committed to correcting the final detection confidence by the
localization score. The work in [43] proposed to transform the task of the intersection of
union (IoU) prediction between the predicted box and ground truth as a classification task
and then used the predicted IoU to optimize the final detection confidence. IoU-Net [44]
corrects the detected bounding box score by an IoU regression branch. The work in [45]
combined the IoU score that was predicted by a fused scoring network with the classifi-
cation score for the final detection confidence. Wu et al. [46] predicted the IoU for each
detected box and utilized the product of the predicted IoU and the classification score to
compute the final detection confidence, which effectively boosted the localization accuracy.
OPLD [35] uses the class-agnostic keypoint-estimation score to guide the detection score of
the AOBB in ORSIs. Therefore, inspired by these methods, our MSO2-Det combines the
category-classification score with the localization sector-selection score, which provides a
more reasonable final detection confidence.

3. Methodology

The pipeline of the proposed multi-sector oriented object detector (MSO2-Det) is
illustrated in Figure 3. It mainly includes two modules: the multi-level feature extrac-
tion backbone network and the multi-level prediction head for object classification and
localization. Given an input image, the backbone network generates a multi-level feature
map by a feature pyramid network (FPN), which is used for the subsequent multi-level
prediction head. Note that each level of the FPN will extend a prediction head to detect
targets with different scales. For each position on the feature map of different levels, the
classification branch of the prediction head is responsible for the prediction of the category
confidence score. Meanwhile, in order to predict the accurate localization of objects, we
designed a sector-based localization branch to pinpoint the ORSI targets. Specifically, the
localization branch of the prediction head is composed of the scale-sector classification,
scale-sector regression, angular-sector regression, and angular-sector classification predic-
tion sub-branches. Combining the scale-sector classification and regression, we can obtain
an accurate scale of the targets. The angular-sector classification and regression subbranch
is in charge of precise angle prediction. In addition, to obtain more accurate localization
confidence, we adopted a localization-guided detection confidence strategy that combines
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the category-classification score with the sector-selection score and dramatically improves
the localization quality.
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Figure 3. Architecture of the proposed MSO2-Det, where C3, C4, and C5 represent the feature maps of the backbone network
that are generated by deformable convnets v2 (DCN-v2). P3 to P7 denote the feature levels of the feature pyramid network
(FPN) used for the subsequent prediction head. W, H, and C indicate the height, weight, and channel, respectively. The 2×
downsampling and 2× upsampling adopt 2-stride convolution and deconvolution, respectively.

3.1. Multi-Level Feature Extraction Network

As shown in Figure 3, a 101-layer residual network (ResNet-101) [47] backbone was
deployed to extract features from the input training or testing images, followed by a feature
pyramid network (FPN) [48], which was implemented to detect objects with different sizes
on multi-level feature maps. The output feature maps of ResNet-101 were down-sampled
32 times by five stages, and we only utilized three levels of the multi-scale feature pyramid,
following the design of FCOS. We defined C3, C4, and C5 as the feature maps in Stages
3, 4, and 5 of the ResNet-101 backbone. In addition, to enhance the ability of modeling
geometric transformation, we replaced the 3 × 3 convolution in C3, C4, and C5 with DCN-
v2 (modulated deformable convolution). Meanwhile, Pi represents the feature maps of
different levels used for final classification and localization prediction that are obtained by
the FPN. In our method, five levels of feature maps {P3, P4, P5, P6, P7} were utilized, where
P3, P4, and P5 were generated by the backbone network’s feature maps C3, C4, and C5,
followed by a 1 × 1 convolutional unit layer with top-down connections. P6 and P7 were
obtained by employing a two-stride size convolutional layer on P5 and P6, respectively.
Finally, the prediction heads were obtained from feature maps at different levels. Let
Fl ∈ RH×W×C be the feature maps with size (H, W) at layer l ∈ {3, 4, 5, 6, 7} of the network,
s = 2l be the total stride until the l-th layer, and C represent the number of ORSI target
categories. For each localization (x, y) on the feature map, which can be mapped back onto
the corresponding position (x · s + b s

2c, y · s + b s
2c) of the input image, it is considered a

positive sample if it has to be within a distance d = 1.25× s to the center point (xc, yc) of a
ground truth AOBB belonging to category label c, and the range of the scale sector lies in
the regression range of the l-th layer. We defined the regression range for the FPN level
from 3 to 7 as (0, 64], (64, 128], (128, 256], (256, 512], and (512, ∞), respectively. Otherwise,
it can be considered a negative sample with c = 0, which denotes the background.

3.2. Classification Branch of the Prediction Head

Figure 3 illustrates the network details of the prediction heads. For the classification
branch, a four-layer convolution stack with 3× 3 kernels and 256 channels was employed to
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extract the features f i
cls ∈ RH×W×256, i = 3, 4, 5, 6, 7 from the i-th level of the FPN. The final

feature map for predicting object multi-category probability scores can be calculated as:

Fi
cls = Conv1× 1{σ(GN( f i

cls))} (1)

where Fi
cls ∈ RH×W×C denotes the final category-classification prediction map, Conv1× 1

indicates the convolutional operation with 1 × 1 kernels and C channels (i.e., the total
category number), GN represents the group normalization, and σ denotes the ReLU
activation function. At the inference stage, the final layer of the classification branch
network predicts a C-dimensional vector of classification labels at the localization (x, y).

3.3. Localization Branch of the Prediction Head
3.3.1. Multi-Sector Design

As shown in Figure 4, in order to obtain the accurate localization of the AOBB target,
we represented the target by a multi-sector model. For each in-box point in the ORSI target,
we represented it by ((x, y), Op, θp, (p = 1, 2, 3, 4)), where (x, y) indicates the coordinate
of the in-box point, ρp, p = 1, 2, 3, 4 denotes the vertical distance scale from in-box point
(x, y) to the four boundaries and θp, (p = 1, 2, 3, 4) represents the angles between the
four scale diameters and the reference x-axis. For convenience, we only took the angle
θ ∈ [0, 90) in the first quadrant to represent the AOBB target, and the angles of the 2nd,
3rd, and 4th quadrant can be calculated as θ + 90, θ + 180, and θ + 270, respectively. Note
that the detailed descriptions of the scale offsets and SASL can be found in Appendix A
Algorithms A1 and A2. Meanwhile, for the localization branch of the prediction head in
Figure 3, we also first deployed a four-layer convolution stack with 3 × 3 kernels and 256
channels to extract the features f i

loc ∈ RH×W×256, i = {3, 4, 5, 6, 7} from the i-th level of the
FPN. Then, similar to (1), we employed a ReLU + GN + Conv1× 1 operation to obtain
the feature maps Fi

ss−reg ∈ RH×W×4N for scale-sector regression, Fi
ss−cls ∈ RH×W×4N for

scale-sector classification, Fi
as−reg ∈ RH×W×1 for angular-sector regression, and Fi

as−cls ∈
RH×W×M for angular-sector classification. The motivation of this multi-sector design can
be summed up in two points. One is divide-and-conquer. The Cartesian coordinate system
will be divided into four independent quadrant sectors, and then, the regression tasks
of each sector can be more definite, which effectively eliminates the ambiguity of the
regression parameter definition. The other is coarse-to-fine. By discretizing the regression
range into multiple coarse-scale sectors and angular sectors in four quadrant sectors, we
can shrink the regression range and then perform fine-tuning in the smaller regression
interval adapting to the object size, which will be instrumental in detecting the remote
sensing objects with various resolutions. The core mechanisms of the multi-sector model
for our method are detailed as follows.

3.3.2. Quadrant Sector

As described in [10], if we adopted the representation in Figure 2a, the regression
parameters, such as w and h, of the target AOBB will be measured in one fixed rotating
coordinate, which will result in the inherent ambiguity problem in the regression parameter
definition and make it hard for the network to converge. Therefore, we took the in-box
point as the origin and split the AOBB of the ORSI target with the corresponding x-axis
and y-axis. As shown in Figure 4, the Cartesian coordinate system will be divided into four
quadrant sectors, namely, Q1, Q2, Q3, Q4, and then, the network will regress the respective
diameter belonging to the corresponding quadrant sector. This representation of the AOBB
will be more distinct and enhance the convergence performance of the network.
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Figure 4. Detail of the multi-sector design of our method. {(Qi)|i ∈ {1, 2, 3, 4}} represent the four-quadrant sector.
{(Si)|i ∈ {1, 2, 3, 4, 5}} indicate the scale sector that divides the scale space into 5 parts. {(Ai)|i ∈ {1, 2, · · ·, 180}} represent
the angular sector of the 1stquadrant. {(ei)|i ∈ {1, 2, 3, 4}} represent the 4 endpoints of the corresponding four middle
supporting lines (i.e., O∗1 , O∗2 , O∗3 , O∗4 ).

3.3.3. Scale Sector

As shown in Figure 2b, we reconstructed the AOBB of the object by calculating the
scale offset between the regression point and four AOBB boundaries in four quadrants
Q1, Q2, Q3, Q4. Formally, if location (xr, yr) is associated with a bounding box Bin, the train-
ing regression targets (i.e., scale offset) {O∗1 , O∗2 , O∗3 , O∗4} for the location can be calculated
by Algorithm A1. Instead of directly regressing the scale offsets, we adopted a classification-
to-regression strategy to obtain the values of the scale offsets. Specifically, as illustrated in
Figure 4, we divided the scale regression space into N scale sectors, where N = 5 in our
method. We defined the range for the N sector as (0, 32], (32, 64], (64, 128], (128, 256], and
(256, ∞). If the scale offset falls into a certain scale sector {(Sn)|n ∈ 0, 1, 2, 3, 4}, it will be
assigned a scale regression parameter Sn = 32 · 2n. We used a one-hot label for scale-sector
selection prediction. We defined sj,n as the predicted scale-sector classification score for
the quadrant j ∈ {1, 2, 3, 4} within the n-th scale sector, and the final predicted confidence
score pj,n was formulated as:

pj,n =
esj,n

∑N
k=1 esj,k

(2)

We regressed the scale offsets O1, O2, O3, O4 by a classification-to-regression strategy.
In particular, we identified which scale-sector the scale offsets belong to as follows:

nj = argmax(pj,n), j ∈ {1, 2, 3, 4} (3)

where nj denotes that the scale offset falls into the j-th sector. Then, the regression of the
scale sector was formulated as:

tj = Oj/Snj = Oj/(32 · 2nj),

t∗j = O∗j /Sn∗j
= O∗j /(32 · 2n∗j ).

(4)

where Oj and O∗j are the scale offsets of the predicted bounding box and ground truth
bounding box in the j-th quadrant (likewise for Snj and nj), respectively. As illustrated in
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Figure 4, the scale-sector classification performs N classifications for sector selection in four
quadrants. The scale-sector regression performs scale predictions for the selected sector
from the scale-sector classification branch.

3.3.4. Angular Sector

For the arbitrarily oriented objects in ORSIs, the direction of the AOBB has a great
impact on the detection performance. The IoU between the predicted box and ground truth
may decrease considerably even with a small angle bias. To obtain more accurate angle
information, we also employed a classification-to-regression method to predict the angle
θ ∈ [0◦, 90◦) in the first quadrant. To be more concrete, we split the angle θ ∈ [0◦, 90◦)
into M angular sectors, where M was set to 90 and each sector had an interval Iθ = 1◦.
Therefore, we divided the angular space as {(0◦, 1◦], (1◦, 2◦], · · ·, (89◦, 90◦]}. If the angle θ
falls into a certain angular sector Am, the network will regress the angle bias as follows:

tθ = (θ −m · Iθ) · π/180,

t∗θ = (θ∗ −m∗ · Iθ) · π/180.
(5)

where θ and θ∗ denote the predicted result and ground truth of the first quadrant angle,
respectively. Meanwhile, m denotes that the ground truth angle θ belongs to the m-th
angular sector. We defined pθ,l , {l ∈ {1, 2 · ··, M− 1, M}} as the predicted angular-sector
classification score within the m-th angular sector and m∗ = argmax(pθ,l) as the parameter
for angle bias regression. Moreover, we designed a smooth angular-sector label (SASL) to
smoothly assign the label value with a certain tolerance R and obtain robust angular-sector
prediction. The procedure of SASL generation is summarized in Algorithm A2. Instead
of taking the one-to-one mapping paradigm of the one-hot label for angular selection
prediction, this smooth label smoothly maps the ground truth angular sector into multiple
sectors and alleviates the effect of classification error. By assigning this SASL to each
angular sector, the prediction results close to the ground truth will obtain more angle
tolerance and be allowed within a weak angle deviation, resulting in missed rate and
detection accuracy improvements.

3.4. Localization-Aided Detection Score

To obtain more accurate detection confidence, we designed a localization-aided detec-
tion score. Most of detectors only use classification scores as the standard of the detected
box quality. Nevertheless, a high-quality detection result represents not only precise cate-
gory classification, but also accurate localization. Therefore, it is inaccurate to evaluate the
quality of detection results only by classification scores. To tackle this issue, we proposed
to combine the classification score with a localization confidence score (i.e., scale-sector
and angular-sector selection confidence score), which is formulated as:

Ploc = (
4

∑
j=1

P̂j + Pθ)/5,

Pf in = Pα
cls · Ploc

1−α.

(6)

where P̂j = max
n

(pj,n), j ∈ {1, 2, 3, 4} represents the maximum confidence of angular-sector

classification in four quadrants and Pθ = max
l

(pθ,l), l ∈ {1, 2, · · ·, M− 1, M} denotes the

maximum probability of the angular-sector selection score. Pcls and Ploc are the prediction
results in the classification and localization branches, respectively. In our experiment,
the parameter α ∈ [0, 1] was introduced to fuse the contribution of the classification and
localization score into the final detection score. Taking localization quality into account,
the detection result can better represent the confidence of detected bounding boxes. For
each location, we chose the final confidence score p f in that was higher than 0.05 as a
definite prediction.
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3.5. Loss Function

Our MSO2-Det is an end-to-end framework, and the multi-task training loss function
was formulated as follows:

L = Lcls + 1{cx,y=1}(Lsc + λLsr) (7)

where 1{·} represents an indicator function that returns one if c = 1 (i.e., positive sample)
and otherwise returns zero. Lcls represents the feature point category-classification loss. Lsc
and Lsr indicate the sector classification and regression loss, respectively. In our method,
we set the loss weights λ to 0.5.

3.5.1. Classification Loss

The category classification loss Lcls is calculated by the focal loss [4] function as follows:

Lcls = −
1

Npos
∑
x,y

{
α(1− px,y)γ log(px,y), cx,y = 1
(1− α)(px,y)γ log(1− px,y), otherwise

(8)

where Npos indicates the number of positive targets in the ground truth. px,y and cx,y
represent the predicted probability score and ground truth of the category, respectively. In
our experiment, we set α and γ to 2 and 0.25, respectively.

3.5.2. Sector Classification Loss

The sector-classification loss Lsc of the scale sector and angular sector is calculated
as follows:

Lsc =
1

Npos
∑
x,y

(
1
4
(

4

∑
i=1

N

∑
n=1

SCE(pj,n, p∗j,n)) +
M

∑
m=1

CE(pθ,m, Lm)) (9)

where pj,n and p∗j,n are the predicted scale-sector classification score and ground truth
label of each feature point, respectively. pθ,m and Lm are the predicted angular-sector
probability distribution and smooth angular-sector label of the ground truth θ in each
feature point (x, y), respectively. SCE and CE represents the sigmoid cross-entropy loss
and cross-entropy loss, respectively. Note that we omitted the mark (x, y) for simplicity

3.5.3. Sector Regression Loss

The scale-sector and angular-sector regression loss were formulated via the smooth L1
regression loss function. The formula is defined as follows:

Lsr =
1

Npos
∑
x,y
· ∑

j={1,2,3,4,θ}
smoothL1(tj, t∗j ) (10)

smoothL1(x) =
{

0.5x2, i f |x| < 1
|x| − 0.5, else

(11)

where tj, j ∈ {1, 2, 3, 4, θ} represents the regression targets of scale-sector and angular-sector
offsets of the positive samples, which are defined in (4) and (5), respectively.

4. Experiments and Results Analysis

In this section, we first introduce three public optical remote sensing image data
sets and evaluation metrics and then analyze the implementation details of the training
and detection inference of the network. Next, the superiority of the proposed method
is analyzed in comparison with the state-of-the-art detectors. Finally, some promising
detection results are displayed.
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4.1. Data Sets and Evaluation Metrics

In our experiments, we chose three oriented optical remote sensing image data sets:
the DOTA [49] data set, the HRSC2016 data set [50], and the UCAS-AOD [51] data set.

4.1.1. DOTA Data Set

DOTA consists of 2806 aerial images that contain a total of 188,282 instances annotated
with horizontally oriented bounding boxes. The categories of the data set include plane,
ship, storage tank, baseball diamond, tennis court, swimming pool, ground track field,
harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer field, and
basketball court. The 15 categories contain 14 main categories, where small vehicles and
large vehicles are sub-classes of the vehicle category. In this data set, the proportions of
training, validation, and test images are 1/2, 1/6, and 1/3, respectively. The size of each
image falls within the range of 800 × 800 to 4000 × 4000 pixels. In the experiments, we
only used the annotations of the arbitrarily oriented bounding boxes. Multiple sizes were
used for the crop images; the sizes used were 512 × 512, 800 × 800, and 1024 × 1024 with
0.2 overlaps.

4.1.2. HRS2016 Data Set

HRSC2016 is a public data set for arbitrarily oriented ship object detection in ORSIs.
The HRSC2016 data set contains a total of 1061 images with scales from 300 × 300 to
1500 × 900 pixels that were captured from six famous ports. The training, validation, and
test data sets contain 436, 181, and 444 images.

4.1.3. UCAS-AOD Data Set

The UCAS-AOD data set consists of two types of targets: airplane and car, which are
labeled with oriented bounding boxes. It includes 1000 plane images and 510 car images,
which contain 7482 objects and 7144 objects, respectively. The scale of the UCAS-AOD
image is 1280 × 659 pixels. In the experiment, we randomly divided the training and
testing set according to the ratio of 7:3.

4.1.4. Evaluation Metrics

A predicted box is regarded as a true positive (TP) if the IoU between the pre-
dicted box and ground truth exceeds the preset threshold; otherwise, it is a false positive
(FP). If a ground truth box has not been detected correctly, it is labeled a false nega-
tive (FN). precision = TP/(TP + FN) denotes the proportion of true positives to all
predicted positive samples, while recall = TP/(TP + FP) indicates the ratio of correctly
detected positive samples to all positive samples. Combined with precision and recall,
F1score = (2 · precise · recall/(precise + recall)) can evaluate the one-class object detection
performance comprehensively. For multi-category object detection, we used the mean
average precision (mAP), which is defined as the mean value of the AP in each category, to
evaluate the detection accuracy. Meanwhile, we recorded the number of images that can be
processed per second (i.e., frame per second (FPS)) and the model parameters to evaluate
the detection speed and complexities of the methods.

4.2. Experimental Details and Network Inference
4.2.1. Experimental Details

In the experiments, the computer hardware platform used in this article was an
Inter®Xeon(R) CPUE52603v4@1.70GHz×6 CPU and two NVIDIA GeForce GTX 1080Ti
GPUs with 12 GB memory. We used the deep learning development framework PyTorch
1.0 that was run on the Ubuntu 16.04 operating system. In our method, ResNet-100, which
was initialized with the weights pre-trained on ImageNet, was used as the backbone
network. In addition, we used stochastic gradient descent (SGD) to optimize the network
and set the initial learning rate to 0.001. The learning rate was reduced by a factor of
1.8 every 20 k iterations with a batch size setting of 32. In addition, the weight decay
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and momentum were set as 0.0001 and 0.9, respectively. We resized the input image to
1024 × 1024 and randomly applied the data augmentation methods to enlarge the data
set, including horizontal and vertical flipping, rotation, cropping, and color dithering. We
trained the network for approximately 50 epochs on the DOTA data set and 150 epochs on
the UCAS-AOD and HRSC2016 data sets. We utilized ResNet-101+FPN as the backbone
network to optimize the parameters of our method on the UCAS-AOD data set. First, in
our method, the parameters α and γ in (8) are two factors that can have a vital impact
on the detection results. We analyzed the sensitivity of MSO2-Det on these two values.
We set the parameter α = {0.1, 0.25, 0.5, 0.75, 0.9} and γ = {0, 0.2, 0.5, 1, 2, 5}. Figure 5
shows that the best performance of our method was achieved with α = 0.25 and γ = 2.
Therefore, the values of these two parameters α = 0.25 and γ = 2 were set to zero-
point-two-five and two empirically. Meanwhile, as shown in Table 1, we set the value of
λ = {0.01, 0.1, 0.2, 0.5, 0.75, 1} in (7) and achieved the highest mAP of 96.33% when λ = 0.5.
Therefore, we chose 0.5 as the λ value for the best performance.

Table 1. Comparisons with different λ values on UCAS-AOD (%).

λ 0.01 0.1 0.2 0.5 0.75 1

Plane 97.14 97.10 98.06 97.81 97.31 97.15
Car 94.20 93.14 94.36 94.85 94.65 94.63

mAP 95.67 95.12 96.21 96.33 95.98 95.89
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Figure 5. Effects of different values of α and γ on the object detection results of the UCAS-AOD
data set.

4.2.2. Network Inference

The inference of our network is straightforward; we input the image into the net-
work and forwarded the input image through the network. The classification branch
of the prediction head will output an M-dimensional vector for C category predictions.
In addition, corresponding to the training targets, the final layer of localization branch
networks predicts an M-dimensional vector for angular-sector selection prediction, a
one-dimensional vector for angular-sector bias prediction, a 4N-dimensional vector for
scale-sector selection prediction, and a 4N-dimensional vector for scale-sector bias predic-
tion in the inference stage. For each point of the FPN feature map, we can map it back
onto the input image coordinate (x, y). Then, we can obtain the scale offset O1, O2, O3, O4,
and θ according to (4) and (5), respectively. Finally, we can calculate the four endpoints’
coordinates {(ex

i , ey
i )|i ∈ 1, 2, 3, 4} of the corresponding four middle supporting lines (i.e.,

O1, O2, O3, O4,), which are illustrated in Figure 4 by the following formula:
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ex
1 = x + O1 cos θ, ey

1 = y + O1 sin θ,

ex
2 = x−O2 sin θ, ey

2 = y + O2 cos θ,

ex
3 = x−O3 cos θ, ey

3 = y−O3 sin θ,

ex
4 = x + O4 sin θ, ey

4 = y−O4 cos θ.

(12)

In our method, we only decoded bounding box predictions from at most 1k top-
scoring predictions score p f in per FPN level, after thresholding the detector confidence
at 0.05. The top predictions from all levels were merged, and oriented non-maximum
suppression with a threshold of 0.5 was applied to yield the final detection results.

4.3. Ablation Study

We conducted some ablation experiments on the UCAS-AOD data set to verify the
effectiveness of the proposed smooth angular-sector label (SASL) and localization-aided
detection score (LADS). All models for impartial comparison were based on ResNet101-
FPN with data augmentation.

4.3.1. SASL

In our method, we transformed the regression of the object orientation angle into the
discrete fine-grained multiple angular-sector classification problem. In the experiment,
we found that the one-hot label used in the baseline model that adopts a point-to-point
mapping between the ground truth and true predicted angular-sector was agnostic to
the angle bias between the false angular-sector classification prediction and ground truth.
All false classification results of the angle were allocated an equal prediction loss, but the
prediction results close to the ground truth should be assigned a smaller classification loss.
To tackle this problem, we designed an angular-sector label that smoothly distributes the
label value with a definite tolerance radius. Our baseline model without SASL and LADS
only achieved 90.56% mAP. Integrated with SASL, the performance of our model was
improved by 2.22% compared with the baseline model, due to its ability to accommodate
the angle prediction results, which were allowed within a defined error tolerance limit
from a detection perspective.

4.3.2. LADS

A single classification score cannot comprehensively assess the final detection quality
of the detected box. Therefore, we used the average value of four scale-sectors and the
angular-sector classification scores as the localization quality Ploc of the AOBB to aid the
evaluation of the detected box quality. Then, as shown in (6), we took the weighted
product of localization score and classification score as the final detection confidence Pf in,
which took into account both classification and localization confidence. By using LADS
to reflect the confidence of detected AOBB, the detection performance was improved by
3.42% compared with the baseline model. The additional improvement indicated that the
localization score made the accuracy increase significantly, and the LADS enabled better
assessment of the quality of the detected box.

As shown in Table 2, the proposed MSO2-Det that combines the SASL and LADS
achieved a total of a 5.77% mAP improvement compared to the baseline model, pushing
the mAP to 96.33%, which illustrates that these two methods are actually complementary
to each other and can effectively improve the detection performance. Meanwhile, Figure 6
shows some detection results from the baseline model (first row) and the full implementa-
tion of the proposed MSO2-Det (second row). The green, red, and yellow boxes indicate
true positives (TPs), false positives (FPs), and false negatives (FNs), respectively. We can
see that the additions of SASL and LADS can effectively decrease the number of FPs and
FNs and improve the recall and precision rate. Moreover, we recorded the PRCs for car and
plane objects on the UCAS-AOD data set with the four implementation models (baseline,
MSO2-Det w/o SASL, MSO2-Det w/o SASL, and MSO2-Det) in Figure 7 and concluded
that the full implemented MSO2-Det outperformed the other three models in terms of
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AP by a large margin, which further proved the effectiveness of our SASL and LADS.
Figure 8 shows the curves of the validation mAP and losses obtained by the MSO2-Det
and MSO2-Det without SASL models in 150 training epochs. It can be seen that MSO2-Det
with the SASL component yielded a higher validation mAP and a smaller loss and then
converged faster, which demonstrated that SASL played a precise active role in speeding
up the convergence of the network and improving the detection accuracy.

Table 2. Comparisons on UCAS-AOD with different detectors (%). Note that the MSO2-Det (baseline)
model represents the MSO2-Det model without SASL and LADS.

Model Plane (%) Car (%) mAP (%)

R-DFPN [52] 95.60 82.50 89.20
S2ARN [53] 97.60 92.20 94.90

RetinaNet-H [54] 97.34 93.60 95.47
ICN [28] - - 95.67

R3Det [54] 98.20 94.14 96.17
WPSGA-Net [9] 97.86 94.66 96.26

MSO2-Det (Baseline) 92.67 88.45 90.56
MSO2-Det w/o SASL 94.73 90.83 92.78
MSO2-Det w/o LADS 96.62 91.34 93.98

MSO2-Det 97.81 94.85 96.33

Figure 6. Various detection results from our method on the UCAS-AOD data set. The green, red, and yellow bounding
boxes represent TPs, FPs, and TNs, respectively.
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Figure 8. (a) mAP and (b) losses obtained by the MSO2-Det and MSO2-Det without SASL models in 150 training epochs.

4.4. Analysis of High Parameters

In this section, we performed a sequence of comparison experiments with the proposed
MSO2-Det on HRSC2016 data set to analyze the effect of the key parameters.

4.4.1. Smooth Radius of SASL

The smooth radius R of the SASL is a crucial parameter as discussed in Algorithm A2.
It can be seen as the reflection of the maximum error tolerance of angular-sector classifi-
cation. Therefore, it is vital for MSO2-Det to determine the optimal range of the smooth
radius. As shown in Table 3a, the value of α of LADS was fixed at 0.4. First, when R was
zero, SASL degenerated to the original one-hot label, and we can see that the F1-score and
AP of MSO2-Det only achieved 0.8875 and 0.8956, respectively. Then, with the increase of R,
the indexes of the F1-score and mAP on the HRSC2016 data set with MSO2-Det gradually
increased until reaching R = 5, which further verified the effectiveness of our smooth
radius. However, if the value of R was further increased, the tolerance of the angular-sector
error would be overburdened, and the performance would degrade. Taking the above into
consideration, the smooth radius R was set to the crucial value of five in our method.
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Table 3. Analysis of influence of the hyper-parameters R and α.

Parameters Value Recall Precision F1-Score AP

0 0.9123 0.7985 0.8516 0.8672
1 0.9245 0.8012 0.8584 0.8864

(a) R 3 0.9367 0.8133 0.8706 0.8992
(α = 0.4) 5 0.9323 0.8265 0.8762 0.9021

7 0.9208 0.7956 0.8536 0.8834

1 0.9023 0.7887 0.8417 0.8872
0.8 0.9167 0.7988 0.8537 0.8956

(b) α 0.6 0.9302 0.8056 0.8634 0.8922
(R = 5) 0.4 0.9323 0.8265 0.8762 0.9021

0.2 0.9216 0.8078 0.8610 0.8991
0 0.9045 0.7894 0.8430 0.8825

4.4.2. Trade-off Factor of LADS

When using the combination of localization and classification scores as the detection
confidence, the trade-off between these two scores determines the importance of classifica-
tion and localization tasks. To test the influence of the trade-off factor α on our method,
we first set the smooth radius R to five based on the analysis of the smooth radius R
and then explored different α values in Table 3b. First, if we only considered the local-
ization confidence, i.e., α = 0, the detector would encounter a considerable performance
degradation (an mAP of only 0.7853) because the localization score does not contain the
category information at all. Similarly, the detection score that only takes classification
confidence into account will also face the problem of deficient localization information.
Then, by gradually increasing the value of α from zero to one, we can conclude that when
α equaled 0.6, the F1 score and mAP achieved the highest values of 0.8854 and 0.8744,
respectively. Experimental results demonstrated that this pattern of information fusion
effectively improved the detection performance.

4.4.3. Numbers of Scale and Angular Sectors

To find suitable hyper-parameter settings of the scale sector N and angular sector M
in our method, we conducted parameter optimization experiments, and the results are
shown in Table 4. First, the scale sectors were set to 45, 90, and 180, which demonstrated
that the angular space was divided into 45, 90, and 180 sectors, and each sector was equally
allocated to 2◦, 1◦, and 0.5◦, respectively. Then, the number of scale sectors increased
from two to six. We listed all the combined results and found that when N and M were
extremely small or large, the performance dropped sharply (as in (M = 180, N = 6) or
(M = 45, N = 2)) because these settings of M and N destroyed the balance between the
classification and regression tasks. For example, when M equaled 90, the demand for
classification accuracy would increase, leading to the CNN confronting more difficulty in
learning and converging. Under this consideration, the number of scale sectors N and M
was set to five and ninety for optimal detection performance, respectively.

Table 4. Analysis of the influence of the hyper-parameters M and N.

M N mAP M N mAP M N mAP

2 0.8308 2 0.8597 2 0.8490
3 0.8578 3 0.8709 3 0.8516

45 4 0.8745 90 4 0.8823 180 4 0.8772
5 0.8818 5 0.9021 5 0.8872
6 0.8589 6 0.8792 6 0.8352

4.5. Comparison with State-of-the-Art Detectors

We compared the performance of the proposed MSO2-Det with the state-of-the-art
oriented detectors on three data sets: DOTA [49], UCAS-AOD [51], and HRSC2016 [50].
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4.5.1. DOTA

To comprehensively verify the superiority of our method, we performed a series of
experiments including some precision comparison and speed comparison experiments
on the DOTA data set. First, we compared the AP in 15 categories of objects and the
mAP value of fifty deep learning-based methods. All models listed in Table 5 adopted
ResNet-101-FPN as the backbone network, except that RRPN [55], R2CNN, and O2-DNet
adopted VGG-16 and ResNet101, respectively. Note that data augmentation was applied
for a fair comparison with all the compared methods. In terms of the mAP values over
fifteen categories of remote sensing targets, six of the fifteen detectors had mAP values over
70%, and the proposed MSO2-Det achieved an mAP of 76.63%, which outperformed the
top six detectors, i.e., R3Det, O2-DNet, SCRDet, Gliding Vertex, WPSGA-Net, and OPLD
by 4.94%, 5.51%, 4.02%, 1.51%, 0.60%, and 0.20%, respectively. In addition, the AP values
of small-scale and densely arranged objects (e.g., plane and storage tank), large aspect
ratio objects (e.g., ship and harbor), and easily confused objects (e.g., baseball diamond
and ground track field) with MSO2-Det were all higher than all compared methods, which
demonstrated the superiority of our method for remote sensing object detection. Figure 9
displays the mAP-IoU curves of our model and the other four anchor-free models. Note
that a higher IoU threshold represents more accurate detection results. It can be seen that
the mAPs generated from our model were always higher than the other four anchor-free
models, which indicated that our model was more efficient and accurate in the ORSI object
detection task. Moreover, as indicated in Table 6, we compared the speed, accuracy, and
model parameters with the other four anchor-free methods and four anchor-based models.
Note that the computational burden of post-processing is also included. Our method can
achieve the highest accuracy of 76.63% while maintaining a speed of 7.67FPS with 218.5MB
parameters, which was faster and more lightweight than all compared anchor-based models
and most anchor-free models except for O2-DNet and TOSO. The experimental results
indicated that our model was relatively efficient and lightweight, but the complexity of our
detector was exactly heavier compared to some state-of-the-art anchor-free methods due to
the further stages of sector processing. The visualization results on the DOTA data set are
shown in Figure 10.

Figure 9. The mAP-IoU curves of four anchor-free detectors.
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Table 5. Comparisons on DOTA with the state-of-the-art detectors. We chose an IoU threshold of 0.5 when calculating the AP.

Method Backbone AF Pl Bd Br Gft Sv Lv Sh Tc Bc St Sbf Ra Ha Sp He mAP

FR-O [49] RN101-F × 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.47 52.52 46.69 44.80 46.30 52.93
TOSO [41] RN101-F X 80.17 65.59 39.82 39.95 49.71 65.01 53.58 81.45 44.66 78.51 48.85 56.73 64.40 65.24 36.75 57.92
IENet [40] RN101-F X 57.14 80.20 65.54 39.82 32.07 49.71 65.01 52.58 81.45 44.66 78.51 46.54 56.73 64.40 64.24 57.14

R2CNN [56] VGG16 × 80.94 65.67 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67
RRPN [55] VGG16 × 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58 61.01

Axis Learning [42] RN101-F X 79.53 77.15 38.59 61.15 67.53 70.49 76.30 89.66 79.07 83.53 47.27 61.01 56.28 66.06 36.05 65.98
ICN [28] RN101-F × 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20

RoI Trans [29] RN101-F × 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
CAD-Net [31] RN101-F × 87.80 82.40 49.40 73.50 71.10 63.50 76.70 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90

R3Det [54] RN101-F × 89.54 81.99 48.46 62.52 70.48 74.29 77.54 90.80 81.39 83.54 61.97 59.82 65.44 67.46 60.05 71.69
O2-DNet [7] RN101 X 89.20 76.54 48.95 67.52 71.11 75.86 78.85 90.84 78.97 78.26 61.44 60.79 59.66 63.85 64.91 71.12
SCRDet [57] RN101-F × 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

Gliding Vertex [58] RN101-F × 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
WPSGA-Net [9] RN101-F X 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03

OPLD [35] RN101-F X 89.37 85.82 54.10 79.58 75.00 75.13 86.92 90.88 86.42 86.62 62.46 68.41 73.98 68.11 63.69 76.43

MSO2-Det RN101-F X 89.93 86.02 54.23 79.68 76.59 76.29 88.63 90.33 86.61 86.93 63.52 68.03 74.43 69.33 64.41 76.63

Pl: plane, Bd: baseball diamond, Br: bridge, Gft: ground field track, Sv: small vehicle, Lv: large vehicle, Sh: ship, Tc: tennis court, Bc: basketball court, St: storage tank, Sbf: soccer-ball field, Ra: roundabout, Ha:
harbor, Sp: swimming pool, He: helicopter, AF: anchor-free, RN101-F: ResNet101-FPN.
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Table 6. Speed and accuracy comparisons with the state-of-the-art methods on DOTA.

Model Anchor-Free mAP (%) Params FPS

TOSO [41] X 57.92 212.5 MB 7.75
Axis learning [42] X 65.98 224.7 MB 7.19

O2-DNet [7] X 71.12 186.5 MB 10.23
WPSGA-Net [9] X 76.03 251.7 MB 6.65
RoI Trans [29] × 69.56 273.0 MB 5.16

R3Det [54] × 71.69 277.0 MB 4.56
SCRDet [57] × 72.61 285.0 MB 3.37
OPLD [35] × 76.43 268.5 MB 5.28

MSO2-Det X 76.63 218.5 MB 7.67

Table 7. Comparisons results on the HRSC2016 data set. Data Aug. represents data augmentation.

Model Backbone Resolution Data Aug. mAP (%)

R2CNN [56] ResNet101-FPN 800 × 800 × 73.07
RC1&RC2 [59] ResNet101-FPN 800 × 800 × 78.15

Axis learning [42] ResNet101-FPN 800 × 800 × 78.15
RRPN [55] ResNet101-FPN 800 × 800 × 79.08
R2PN [30] VGG16 [60] 800 × 800 X 79.60

RetinaNet-H [54] ResNet101-FPN 800 × 800 X 82.89
RRD [61] VGG16 [60] 384 × 384 X 82.89

RoI Trans [29] ResNet101-FPN 512 × 800 × 86.20
R3Det [54] ResNet101-FPN 800 × 800 X 89.14

Gliding Vertex [58] ResNet101-FPN 512 × 800 × 88.20
GRS-Det [37] ResNet101-FPN 800 × 800 X 89.57

MSO2-Det ResNet101-FPN 800 × 800 X 90.21

4.5.2. UCAS-AOD

In addition, we evaluated the proposed method on the UCAS-AOD data set and com-
pared it with several advanced oriented object detectors, namely R-DFPN [52], S2ARN [53],
RetinaNet-H [54], ICN [28], R3Det, and WPSGA-Net [9], as shown in Table 2. We can see
that our method achieved state-of-the-art performance, and the detection accuracy AP of
the small car exceeded that of other compared detectors, which indicated that our method
was robust to densely arranged ORSI objects.

4.5.3. HRSC2016

To test the performance of our MSO2-Det, we compared it with eleven ship detectors,
which included several state-of-the-art methods such as RoI Transformer [29], R3Det [54],
Gliding Vertex [58], and GRS-Det [37]. The comparison results are reported in Table 7. We
can see that MSO2-Det outperformed all compared methods in terms of mAP. Compared
with the methods that adopted data augmentation and resized the input image to 800 × 800
(R2PN [30], RetinaNet-H [54], R3Det [54], and GRS-Det [37]), MSO2-Det outperformed
them by 10.61%, 7.32%, 1.07%, and 0.64%, respectively, which indicated the superiority of
our method in the ship detection task. The detection results on HRSC2016 are visualized
in Figure 11. It can be noticed that the ship with a large aspect ratio, which increased
the difficulty of network convergence, can be detected well, and the detected box gave a
compact peripheral outline of the ship.
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Figure 10. Visualization of the detection results from MSO2-Det on the DOTA data set.
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Figure 11. Visualization of the detection results from MSO2-Det on HRSC2016.

5. Conclusions

In this paper, we abandoned the anchor mechanism and direct regression paradigm
and proposed MSO2-Det, which tackled the prediction of bounding box scale and orienta-
tion via a successive coarse-granularity classification to fine-grained regression strategy
in the discrete scale and angular sector space. Furthermore, we also designed a smooth
angular-sector label to speed up the network’s convergence and dramatically improve the
detection performance. In addition, to obtain a more accurate detection confidence, we
adopted a localization-aided detection score that combined the category-classification score
with localization sector-selection score. Extensive experimental results and ablation studies
based on the DOTA, UCAS-AOD, and HRSC2016 data sets proved the effectiveness of our
method in optical remote sensing arbitrarily oriented object detection. In future work, we
will design a more lightweight and efficient backbone network to speed up the real-time
performance of the detector for detecting oriented targets in optical remote sensing images.
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Appendix A

Algorithm A1 Scale offset calculation procedure.

Input: Bin : {(vx
i , vy

i )|i ∈ {1, 2, 3, 4}}: coordinates of the four vertexes of the input bound-
ing box.
(xr, yr): coordinates of the regression point associated with Bin.

Output: regression scale offset target for four quadrants {(O∗j )|j ∈ {1, 2, 3, 4}};
1: set vx

1 = vx
max; the rest of the coordinates are arranged counterclockwise based on vx

1 ;
2: if ((vx

1 = vx
2) or (vx

1 = vx
4)) (i.e., Bin ∈ AABB) then

3: O∗1 = vx
1 − xr, O∗3 = xr − vx

3 ,
O∗2 = vy

3 − yr, O∗4 = yr − vy
1.

4: else
5: for i = 1; i < 5; i ++ do
6: if i 6= 4 then
7: Ai = sqrt((vx

i − vx
i+1)

2 + (vy
i − vy

i+1)
2)

8: Bi = sqrt((vx
i+1 − xr)2 + (vy

i+1 − yr)2)

9: Ci = sqrt((vx
i − xr)2 + (vy

i − yr)2)
10: si = (Ai + Bi + Ci)/2;
11: Si = sqrt(si ∗ (si − Ai) ∗ (si − Bi) ∗ (si − Ci))
12: O∗i = 2Si/Ai
13: else
14: A4 = sqrt((vx

4 − vx
1)

2 + (vy
4 − vy

1)
2)

15: B4 = sqrt((vx
1 − xr)2 + (vy

1 − yr)2)

16: C4 = sqrt((vx
4 − xr)2 + (vy

4 − yr)2)
17: s4 = (A4 + B4 + C4)/2;
18: S4 = sqrt(s4 ∗ (s4 − A4) ∗ (s4 − B4) ∗ (s4 − C4))
19: O∗4 = 2S4/A4
20: end if
21: end for
22: end if
23: return scale offsets O∗1 , O∗2 , O∗3 , O∗4

Algorithm A2 Smooth angular-sector label generation.

Input: Ai : {i ∈ {1, 2 · · · M − 1, M}}: each angular sector of the ground truth; θ : the
ground truth angle;

Parameter: smooth radius R = 5; angular-sector interval Iθ = 1◦; sector number M = 90
Output: the smooth angular-sector label Li of Ai

1: for i = 0; i < M; i ++ do
2: if (i · Iθ) < θ ≤ ((i + 1) · Iθ) (i.e., θ ∈ Am) then
3: the ground truth angle θ belongs to the m-th angular sector (i.e., m = i);
4: take Am as the center, and set Lm = 1
5: end if
6: end for
7: for k = 1; k ≤ M; k ++ do
8: 4r = |k−m|
9: if4r > R then

10: Lk = 0
11: else
12: Lk = 1−4r/R
13: end if
14: assign Lk to Ak
15: end for
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