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Abstract: The use and research of Unmanned Aerial Vehicle (UAV) have been increasing over the
years due to the applicability in several operations such as search and rescue, delivery, surveillance,
and others. Considering the increased presence of these vehicles in the airspace, it becomes necessary
to reflect on the safety issues or failures that the UAVs may have and the appropriate action. Moreover,
in many missions, the vehicle will not return to its original location. If it fails to arrive at the landing
spot, it needs to have the onboard capability to estimate the best area to safely land. This paper
addresses the scenario of detecting a safe landing spot during operation. The algorithm classifies the
incoming Light Detection and Ranging (LiDAR) data and store the location of suitable areas. The
developed method analyses geometric features on point cloud data and detects potential right spots.
The algorithm uses the Principal Component Analysis (PCA) to find planes in point cloud clusters.
The areas that have a slope less than a threshold are considered potential landing spots. These
spots are evaluated regarding ground and vehicle conditions such as the distance to the UAV, the
presence of obstacles, the area’s roughness, and the spot’s slope. Finally, the output of the algorithm
is the optimum spot to land and can vary during operation. The proposed approach evaluates the
algorithm in simulated scenarios and an experimental dataset presenting suitability to be applied in
real-time operations.

Keywords: Unmanned Aerial Vehicle; LiDAR; landing spot detection; emergency landing; point
cloud

1. Introduction

Presently, Unmanned Aerial Vehicles (UAVs) are gaining more interest in the scientific
and industrial research community due to their autonomy, maneuverability, and payload
capacity, making them suitable robots to perform real-world tasks in different scenarios.
There have been several research topics related to hardware development, human-system
interaction, obstacle detection, and collision avoidance [1]. The UAVs are designed to
be remotely controlled by a human operator or execute a mission autonomously [2]. In
the latter case, the degree of autonomy and the mission they can achieve depends on the
sensors used. Concerning the UAV classification, there are several ways in which UAVs
can be defined: aerodynamics, landing, weight, and range [3]. Considering the state of
the art of UAVs, commercial or research, there is a large spectrum of applications, such as
search-and-rescue operations [4,5], delivery, surveillance, inspection, and interaction with
the environment [6,7].

Given the application scenarios, there are missions where the UAV must fly in civilian
airspace; i.e., they must fly over populated areas. However, they are susceptible to external
disturbance or electromechanical malfunction. Different failure scenarios could impact the
operation, thus leading to an emergency landing:
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• Global Positioning System (GPS) failures. In general, UAVs use GPS messages to
navigate. Although several sensors could aid the navigation, the vehicle may need to
land in the occurrence of loss of GPS signal.

• Loss of communication. In the event of loss of communication between the UAV and
a base station, one possible action is to perform an emergency landing.

• Battery failure. If a battery failure is detected, the vehicle may not be able to continue
its operation, and as a result, an emergency landing is necessary.

• Software and hardware errors. A UAV can experience a mechanical fault during a
mission, like a broken propeller or a fail in the motor, or even a software issue that
could require that the vehicle must perform an emergency landing.

• Environment factors. Bad weather conditions such as strong winds and rain make
the vehicle unable to carry out the mission, forcing it to land.

In these situation, UAVs must safely land to reduce damage to themselves and avoid
causing any injury to humans.

Consequently, detecting a reliable landing spot is essential to safe operation. In order
to estimate a landing spot, a set of conditions must be evaluated when analyzing the sensor
data. These conditions are typically restraints on the landing surface. The reliability of a
safe landing site depends on several factors, such as the aircraft’s distance to the landing
site and the ground conditions, such as (a) the slope of the plane: the landing spot must
have a slope smaller than a threshold so that the vehicle does not slide when landing;
(b) the roughness of the area: there are cases when the vehicle will land on a surface
with vegetation or other small obstacles—in this case, these obstacles’ height must not be
larger than a maximum value predefined before the mission, avoiding contact with the
propellers; (c) the size of the spot: the landing spot must be large enough for the UAV;
(d) the presence of obstacles: the approximation to landing spot depends on the area’s
obstacles, namely building, vegetation, or humans. Therefore, the presence of obstacles
must be taken into account when evaluating the spot. Another rule also imposed on the
algorithm is the distance to the landing spot. The UAV must be able to reach the desired
spot with the remaining battery power. Since one factor is the aircraft’s distance to the
landing site, the landing spot’s suitability varies during the mission. Figure 1 illustrates
the conceptual approach for emergency landing spot detection with a UAV in real-time.

Figure 1. Conceptual approach for emergency landing spot detection with a UAV.

Considering the robustness problems that a UAV faces during an autonomous mission,
this paper addresses developing an algorithm for detecting, storing, and selecting real-time
emergency landing spots based on LiDAR data. The main focus is to develop an algorithm
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that will continuously evaluate the terrain based on LiDAR data and establish a list of
possible landing spots. Additionally, a continuous evaluation of the detected landing spots
is required given that the best spot can vary during the UAV operation. The developed
algorithm accumulates the 3D point cloud provided by the sensor and then generates
downsampled point clouds. Following that, a plane is detected by applying the PCA
algorithm in a spherical neighborhood. The potential spots are subsequently evaluated
regarding different parameters, and finally, the resulting score is assigned to the spot.
This paper is an extended version of work published in [8,9]. Compared to the previous
papers [8,9], this work presents a more extensive review of the related works. Furthermore,
the proposed approach was evaluated with field tests during a 3D reconstruction survey
mission that took place in the Monastery of Tibães, Braga, Portugal. The results were
also improved with the evaluation of spots’ score for each dataset. This work intends to
contribute by applying a Voxel Grid Filter to the point clouds provided by a LiDAR. The
application of this filter speeds up the plane detection step by reducing the size of the
point cloud and removing redundant points. Moreover, it is shown that the algorithm can
obtain a list of safe landing spots without segmenting the entire point cloud by analyzing
spherical regions within it.

The paper outline is as follows: Section 2 presents a preliminary study of the related
works regarding emergency landing and landing detection given LiDAR and camera
data. Then, Section 3 shows the high-level hardware and software architecture, detailing
their components. Section 4 introduces the developed algorithm and its requirements. In
addition, the algorithm sequence of data processing blocks is displayed and explained. In
Section 5, the results obtained are presented, as well as the analyses and performance of
the algorithm. Finally, in Section 7, we discuss the conclusions of the method for detecting
safe landing spots. Here we also present suggestions or directions for further work.

2. Related Work

The main problem to be addressed is the integration in a UAV to detect safe landing
zones. Thus, it is necessary to process different types of data from several sensors so that
it is possible to obtain information about the surface where we intended to land. Each
sensor onboard the UAV provides specific information regarding terrain and obstacles and
therefore has advantages and disadvantages that must be evaluated. Consequently, there
are multiple literature approaches regarding safe landing, either for emergencies or for
other purposes.

2.1. LiDAR Based Detection Systems

Among the primary sensors used to solve the problem of detecting emergency landing
spots is LiDAR. Generally, the point clouds are processed, determining terrain features
such as slope and roughness. In addition, LiDAR data present usefulness in other tasks,
for instance, hazard detection and avoidance. Typically, a geometric approach is a common
approach concerning LiDAR data.

In 2002, in order to perceive obstacles and land spacecraft, a 2.5D grid map tech-
nique was used by Johnson et al. [10]. Their work applied a Least Mean Square (LMS)
algorithm to estimate a plane in the grid map, computing the incidence angle and the
roughness to generate a landing cost map. Another geometric approach was presented by
Whalley et al. [11,12] in 2009. In the author’s strategy, each LiDAR scan is mapped to a
grid in which a sliding window moves along to calculate the terrain restraints. Finally, the
optimal spot is chosen after the entire grid is covered.

Regarding unknown environments, Chamberlain et al. [13], in 2011, presented a
proposal that permits a full-scale unmanned helicopter to land without human control
or input. Their methodology utilizes a 3D scanning LiDAR in two modes. A forward
scan is performed to detect obstacles, and a downward scan is subsequently carried out
to map the environment. A 3D virtual model of the helicopter is placed on each cell of
the resulting map. An assessment of the area is executed considering the skid contact,
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wind direction, and presence of obstacles. This work is expanded in [14–16] by presenting
experimental results in urban and natural environments. In the evaluation step, a 2D
Delaunay triangulation [17] of the potential landing sites data is generated in order to
establish the intersections with the landing skids and the roll and pitch of the helicopter.
Ultimately, the volume between the triangulation and the 3D model is used to estimate
bad contact.

One of the drawbacks of the geometric approach is the presence of low vegetation in
the landing spot, as it makes the spot extremely rough. In order to overcome this hindrance,
Maturana and Scherer [18] proposed a 3D Convolutional Neural Network [19] algorithm.
The strategy is to generate a volumetric density map given the globally registered LiDAR
point clouds. The volumetric map is then divided into sub-volumes that are the input
of the neural network. The algorithm was able to detect small obstacles using synthetic
datasets and simulation.

In 2017, Lorenzo et al. [20] proposed a landing site detection algorithm on many core
systems by using parallel processing. An octree is built in order to increase process speed
during a neighborhood search step. Then, the normal of all points are computed in parallel,
and geometric restraints are used to assess the spot.

Recently, the authors of [21] proposed an approach to select landing zones based on
a region growing algorithm. The initial strategy is to find flat regions from LiDAR point
clouds and then apply a Progressive Sample Consensus (PROSAC) algorithm to fit a plane.
The detected planes are assessed conforming slope, roughness and maximum difference of
height. However, the proposed method was only evaluated in simulation experiments and
the PROSAC algorithm can be time consuming.

2.2. Vision-Based Detection Systems

The vision-based system has been the most popular approach to detect and evaluate a
landing spot. There are multiple strategies to land a UAV using vision-based algorithms.
Cameras have the advantage of being inexpensive and lighter compared to LiDARs. Bosch
et al. [22] developed an algorithm to autonomously detect landing sites with monocular
images. First, a cluster of potential points in a plane is selected by applying a homography
estimation process. Then, the algorithm distinguishes planar from non-planar surfaces.
This information is stored in the stochastic 2D grid cell. However, this proposal stores the
probability of the region being flat and hence cannot be used for other applications, such as
obstacle avoidance.

Several works have used machine vision to detect landing spots [23–25]. The authors
proposed a technique that generates two binary images by applying a Canny Edge Detector
and a line-expansion algorithm. Given the fusion of the two images, the preliminary map
is built to label safe and unsafe areas. Then, the surface is classified, and fuzzy logic is used
to select the safest spot. The work was later expanded in 2015 by Warren et al. [26]. A 3D
reconstruction using Structure-from-Motion is carried out to analyze the surface.

Eendebak et al. [27] presented a technique for emergency landing in real-time op-
erations given camera movement. Their work is based on a Background Estimation on
stabilized video in which the camera frames are compared to distinguish moving objects
and structures. Then, a distance map to all detected obstacles is generated. The maximum
distance on the map is calculated and chosen as the best landing area.

Forster et al. [28] proposed an elevation map-based technique to landing spot detection
for micro-aerial vehicles using a monocular camera. A depth map is generated given the
camera images and the vehicle’s pose. Furthermore, an elevation map is also built and
consequently updated according to the depth maps. During the algorithm selection stage,
a flat surface with a radius depending on the vehicle size is considered a landing spot.

Another proposal to detect landing spots in unknown environments in real-time is
presented by Hinzmann et al. [29]. A segmentation step is applied to the camera images,
classifying the regions as “grass” or “not grass.” Next, 3D reconstruction and elevation
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maps are achieved given the results of the segmentation stage. Finally, the area is assessed
considering the ground features, such as slope and roughness.

In 2019, Kaljahi et al. [30] proposed a system for detecting landing sites using Gabor
Transform and Markov chain codes. The authors proposed a method that obtains flat
surfaces from images using the Gabor Transform. Then, histogram operations are applied
in order to determine the pixels that contribute to the highest peak. The next step consists
of using Markov Chain Codes to estimate and group potential pixels as candidate regions.
For each candidate region, Chi square distance is computed and compared to a reference to
define the similarity between the regions, resulting in the final safe landing zone.

In 2020, Bektash et al. [31] presented a machine-vision-based algorithm to recognize
landing areas. The model chosen for the network was the convolutional neural network
that receives split images provided by a camera as an input. However, manual vision
inspection of the camera frames is used as criteria for classifying the landing site.

2.3. Other Approaches

In addition to techniques that use one primary sensor to solve landing detection, other
approaches combine multiple sources of information. Serrano [32] presented a probabilistic
framework using Radio Detection Furthermore, Ranging (RADAR), LiDAR, and camera
data to improve the robustness of the selection of landing sites stage in space operation.
By applying a Least Median of Squares regression to fit a plane using the RADAR and
LiDAR data, the authors calculated the terrain slope and roughness. Furthermore, an edge
detection algorithm is applied in the camera images to distinguish craters and rocks. Finally,
a Bayesian Network [33] is used to evaluate the area safety considering the information
acquired in the previous steps.

Using a similar set of sensors, Howard and Seraji [34] built three hazard maps from
RADAR, LiDAR, and camera data. These maps were then used to obtain measurements
and the landing site features in which each map is labeled with a confidence variable.
Finally, the maps were fused using fuzzy logic presenting the landing site safety.

2.4. Overall Discussion

The decision between LiDARs or cameras to serve as the primary sensor to detect
emergency landing spots depends on the vehicle’s characteristics and the mission in
which it will be applied. Generally, the feasibility of vision-based techniques depends on
visibility restrictions. However, this drawback can be easily overcome by LiDARs sensors.
Nevertheless, the processing power, weight, and price of LiDARs are more demanding for
UAVs than cameras.

The use of LiDAR is justified due to the greater robustness to situations of luminosity
variations [14,15,21], already obtaining depth information at the instant of the SCAN, not
requiring a stereo baseline or depth estimation by sequence of images, and being robust in
flights nocturnal.

In terms of processing time of LiDAR-based systems, the current works indicate the
importance of knowing the sensor data structure to reduce the number of operations and,
thereby, to improve data access efficiency and execution time of the algorithm. Hence, the
point clouds are generally spatially structured. It is worth noting that the approach chosen
for structuring can cause loss of spatial information, such as 2.5D grid and plane-projected
images. Consequently, additional statistical data must be stored in these scenarios.

Most of the works related to landing spots detection identify the terrain’s geometric
features to find planar surfaces [10–16]. In general, the features are slope and roughness.
Other approaches consist of neural networks or machine vision [18,23–25]. However, these
techniques present the need to train the algorithm.

Regarding the selection of landing spots, the exposed works revealed the importance
of classifying the area in a probabilistic manner. These probabilistic values should consider
the possibility of landing, presence of obstructions, battery power, ground restraints.
Consequently, the levels vary during the operation.
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3. System Design

This section describes the hardware and software architectures that were considered
during the implementation of the proposed algorithm. The landing spot detection algo-
rithm was developed in Robotic Operating System (ROS) [35], due to providing a modular
structure able to integrate available ROS packages straightforwardly with other software
modules already available in the UAV.

The proposed framework processes the 3D point clouds provided by a LiDAR to
detect landing zones in real time. Furthermore, another layer of software is responsible
for analyzing the UAV status, such as remaining battery power, the status of hardware
and software components. Therefore, in a failure situation in which a forced landing is
necessary, this layer will search for the current best landing spot detected by the proposed
algorithm.

3.1. Hardware

The landing spot detection algorithm is designed to be executed simultaneously with
other UAV tasks during operation. The VLP-16 LiDAR provides 3D point clouds that
are processed using an onboard computer. Considering that modern LiDARs produce
hundreds of thousands of points in each scan, a high transmission rate between the sensor
and the computer is necessary (Figure 2 in blue).

The point clouds are given in the LiDAR reference frame. Consequently, knowing the
UAV pose is essential to transform the data to a fixed frame. There are several approaches
to estimate the vehicle pose. In this case, the method is to fuse the Global Navigation
Satellite System (GNSS) and Inertial Measurement Unit (IMU) measurements. Another
critical issue is to correlate in real-time the LiDAR scan with all the UAV onboard sensors.
Therefore, to ensure synchronization, the timestamp data from the GNSS is provided to
both systems, LiDAR and PC, with Chrony [36] service.

LiDAR

Onboard 
Computer

GNSS Receiver

IMU

AUTOPILOT

GNSS data
PPS signal

POSE
High-level 
commands

Linear Acc.
Angular Vel.

Linear Acc.
Angular Vel.

Ethernet

Figure 2. High-level hardware architecture (adapted from Refs. [37,38]).

3.2. Software

Figure 3 presents the high-level software architecture to detect a potential landing
spot given a point cloud generated by a LiDAR sensor. All the pipeline elements were
developed within the ROS framework, except for the sensor’s input data. The software is
divided into several data processing-blocks:
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State
Estimator

GPS

IMU

Frame Trans-
formation

Point Cloud
Down-

sampling

Plane
Detection

Spot Eval-
uation

Spot RegisterLiDAR

GPS Data

Lidar Data Point Cloud
Transformed

Point Cloud
Downsampled

Potential
Spots

Sorted
Spots

Imu Data

UAV Pose

Data Fusion

Landing Spot Detection Algorithm

Reclassification

Figure 3. High-level software pipeline .

• Data Fusion: the data fusion section estimates the UAV’s states by fusing the measure-
ments from the IMU and GPS. There are several approaches to realize this procedure.
For instance, an Extended Kalman Filter (EKF) can be applied.

• Frame Transformations: considering that the LiDAR is fixed to the vehicle, the Li-
DAR pose is correlated to the UAV pose. Therefore, the LiDAR point cloud can be
transformed from the LiDAR frame to the local navigation frame. Using the tf2 (
http://wiki.ros.org/tf2 (accessed on 14 May 2021)) package, the relations between
the UAV, LiDAR and global coordinate frames are established.

• Point Cloud Downsampling: each LiDAR scan produces a point cloud with thou-
sands of points. Considering that the vehicle did not travel a large distance to detect a
spot, it is important to accumulate the point clouds in order to not to lose information.
Conversely, accumulating the point clouds increases computational effort. Therefore,
the referenced point cloud is downsampled.

• Plane Detection: following the downsampling of a point cloud, a plane can be de-
tected in the new point cloud. The plane detection can be subdivided into several
steps, confirming the available time, the computational power, and the desired resolu-
tion. Generally, the algorithms consist of estimating the parameters from the plane
equation in a limited region of the original point cloud. Moreover, the algorithms
have to fit a plane in the presence of outliers, i.e., points that do not fit the plane
model. Besides the landing spot detection for aerial vehicles, estimating the ground
conditions is also useful for detecting clear paths and making further processing less
complex.

• Spot Evaluation: the segmented point cloud containing the detected plane is then
evaluated to classify the spot’s reliability. The roughness of the landing zone can be
assessed by computing the standard deviation in the z-axis. The higher the standard
deviation, the rougher the area. In addition, a high value can also indicate the presence
of obstacles, such as trees or buildings. The spots are also evaluated regarding their
slope as the landing zone cannot be steep enough to destabilize the vehicle when
landed. Furthermore, the size of the area and the distance to the UAV can also be used
to evaluate the spot. Each evaluation factor has different importance according to the
environment. Thus, it becomes interesting to assign different weights to these factors.

• Spot Register: the assessed spots are then registered as a landing spot. However, the
suitability of a landing point to be the optimal choice varies during operation. In this
way, the points registered have to be periodically reassessed.

4. Emergency Landing Spot Detection Algorithm

The developed algorithm procedure is divided into several steps: the frame transfor-
mation of the input data, the downsampling of the point cloud, the spatial structuring of
the data, detection of planes, filtering of potential candidates, and classification of detected
spots. In addition, there are some rules created to obtain the desired objective. Figure 4
shows the flowchart of the developed software.

http://wiki.ros.org/tf2
http://wiki.ros.org/tf2
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Raw Point Cloud Data

Transform to local
navigation frame

Accumulate point cloud

Check if
conditions are met

Downsample the point cloud

Subdivide the point cloud
using octree

Choose a random point

Determine the spherical
neighbourhood of the point

Apply PCA and determine plane slope

Slope less than
θmax degrees?

Check if ra-
dius is greater
than rmax?
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neighbourhood radius

Compute standard
deviation in z

Check if
σ ≤ σmax

Compute centroid and
distance to UAV

Classify spot

Reject spot

Send best spot
position to main node

yes

no

yes

no

no

yes

yes

no

Figure 4. Flowchart of the developed algorithm.

4.1. Frames Transformation

The pose of a robot is generally given in the local navigation coordinates system.
Consequently, the landing spot must be in the same frame. However, LiDARs report
data in their own reference frame. Then, the first step of our proposal is to transform
the point cloud from the LiDAR reference frame to the local navigation reference frame.
This procedure can be fulfilled by using transformation matrices. Therefore, the relation
between the frames is defined by Equation (1):

pn(t) = Tn
b(t)T

b
LpL(t). (1)
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Considering a 3D point pL(t) in the LiDAR reference frame, at instant t, the transformation
matrix given by Tb

L transforms the point to the body reference frame. At this step, it is
considered that the LiDAR is fixed to the robot, hence the Tb

L matrix not varying over time.
Finally, the Tn

b(t) matrix multiplied by Rb
LpL(t) results in the data expressed in the local

navigation reference frame.
The algorithm does not apply the landing zone detection step for each LiDAR scan.

This is due to the following reasons: the vehicle may not have traveled a sufficient distance
to need a new spot other than the take off point; in addition, the sensor may not return
sufficient points of the environment. Therefore, the point cloud registered in the local frame
is stored until it reaches the conditions to start the next step. The defined conditions are:

• Traveled distance: if the robot has traveled a long distance in relation to the last
landing spot, it becomes necessary to find a new location, since, in an emergency
scenario, the vehicle may not be able to reach the landing zone.

• Size of accumulated point cloud: a high number of points in the point cloud increases
the execution time of search algorithms and the memory consumption of the onboard
computer. For this reason, if the size of the accumulated cloud reaches a threshold,
the algorithm starts the next step.

At the moment, this step is done considering only the vehicle pose. However, in future
projects, it is worth considering the vehicle velocity.

4.2. Point Cloud Downsampling

Accumulating the data until one of the necessary conditions are reached will increase
the processing effort. In order to obtain better performance in terms of execution time and
memory consumption, it becomes necessary to perform the downsampling of the point
cloud. Therefore, a Voxel Grid filter [39] is applied. The filter takes a spatial average of the
points in the cloud. A set of 3D volumetric pixels (voxel) grid with size v f ilter is generated
over the cloud, and the points are approximated with their centroid.

Figure 5 shows the result of the downsampling. At first analysis, the point clouds
displayed in Figure 5a,b are almost identical. However, the downsample technique created
a point cloud three times smaller in size. This method allows decreasing the number of
points of the cloud and gives a point cloud with approximately constant density. Finally,
the algorithm resets the original point cloud in order to free the memory.

(a) Point cloud accumulated over time. (b) Point cloud downsampled.
Figure 5. Point cloud downsampling.

4.3. Data Structuring and Neighbor Search

The next step is to determine the neighborhood of a point to perform the plane
identification method. The process of detecting a plane in a point cloud is the most time-
consuming process in the algorithm. Due to the large number of data, this step needs
to be optimized in order to obtain a real-time analysis. For this reason, the point cloud
is spatially structured using octree [40]. Each internal node of the octree is subdivided
into eight octants. By using a tree structure like an octree, the execution time of a search
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algorithm is considerably reduced [41]. There are several approaches to identify the
neighborhood of a point. In this case, the algorithm finds the spherical neighborhood
of a randomly chosen point. Considering a point p(xp, yp, zp) in the point cloud, the
neighborhood N(p) of this point with radius r is determined by:

N(p) = {∀q : (xq − xp)
2 + (yq − yp)

2 + (zq − zp)
2 < r2}, (2)

where q(xq, yq, zq) is any point in the cloud.
The minimum radius (rmin) of a plane is defined by the user as depends on sensor

and environment characteristics. By applying Equation (2), all the points placed inside the
sphere are considered as part of the neighborhood.

4.4. Plane Detection

After the previous step, it is possible to calculate a planar surface given the neigh-
borhood points. This is done satisfactorily by using the PCA algorithm. PCA applies an
orthogonal transformation to map the data to a set of values called principal components
that correspond to the eigenvectors of the covariance matrix.

Considering the plane equation given by:

ax + by + cz + d = 0. (3)

The normal vector is represented by:

n =

a
b
c

. (4)

The eigenvectors determined with PCA serve as the three axes of the plane while the
eigenvalues indicate the square sum of points deviations along the corresponding axis.
Therefore, the eigenvector with the smallest eigenvalue represents the normal vector given
by Equation (4), and the points are bounded by the other two axes. In this perspective, the
slope of the plane is examined using the normal vector. The slope is the angle between the
normal vector and the vertical vector ẑ =

[
0 0 1

]T and is computed using Equation (5):

θ = arccos (ẑTn). (5)

Hence, a first evaluation can be done using the plane slope. If the resulting value
is greater than the maximum slope (θmax) permitted for the robot, the plane is rejected.
Otherwise, the neighborhood radius used in the previous section is increased and the
process is repeated until the maximum radius (rmax) is reached. By doing this procedure,
the method tries to find regions with different sizes that can be considered a landing spot.
Algorithm 1 describes the neighborhood and plane identification steps. The idea of the
method is to detect planes for npoints random search points with increasing radius. The
PCA step is only performed if the number of points within the neighborhood sphere is
greater than nmin. The slope angle is immediately computed after detecting the plane and,
if it is greater than θmax, the plane is rejected and the algorithm restarts the process for a
new search point. In addition, when we increase the radius of the sphere and a previously
detected plane has a slope greater than the threshold, only the point cloud corresponding
to the previous slope and the respective radius of the sphere is sent to the evaluation step.
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Algorithm 1 Algorithm for neighborhood and plane identification steps.

Input: pointcloud downsampled
Output: point cloud cluster

1: for j = 1 to npoints do
2: Select random point in cloud as the search point

Declare radius and vectors of cloud indices
3: float rmin, vector radiusInx

While the plane is accepted, do radius search
4: while isPlane = true do
5: Start radius search;
6: if (radiusInx ≥ nmin) then
7: Get points inside the neighborhood;
8: Start PCA;
9: Compute plane parameters;

10: Compute plane slope;
11: if slope ≤ θmax then
12: Increase radius;
13: else
14: isPlane = false;
15: end if
16: else
17: isPlane = false;
18: end if
19: end while
20: end for

In summary, only the planes that have a slope less than or equal to θmax are sent to the
register stage. Table 1 describes the parameters used in the algorithm.

Table 1. The parameters used in the plane detection step.

Parameters Description

npoints Number of random points chosen from the cloud cluster
nmin Minimum points used to fit a plane
rmax Maximum radius considered for a plane
rmin Minimum radius considered for a plane
θmax Maximum slope accepted for the drone

4.5. Registration and Classification

Given the algorithm presented in the previous section, the next step consists in
evaluating the detected planes. In this context, many factors are considered to decide
the best landing spot. Initially, the point cloud centroid is computed and is considered
the spot center. After this, each factor is computed individually. A score (gn) from 0 to
20 is computed for each parameter. It is worth noting that the degree of importance for
each parameter depends on the operation. Consequently, each grade has a different weight
previously defined by the user. Finally, each spot is classified regarding the following
equation:

spotgrade =
(g1 · w1) + (g2 · w2) + (g3 · w3) + (g4 · w4)

20 · (w1 + w2 + w3 + w4)
. (6)

Table 2 shows the parameters computed to classify the plane and their respective
weights. In this stage, the planes that have standard deviation in the z-axis greater than the
maximum standard deviation σmax are immediately rejected.
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Table 2. The parameters that are analyzed to classify the spot.

Parameters Weight Description

rp w1 Spot radius
θp w2 Spot slope
σp w3 Standard deviation of the spot
dv w4 Distance from the spot to the vehicle

Using these parameters, the algorithm evaluates the landing spot in terms of terrain
roughness, vehicle stability when landed, obstacle clearance of a location and distance
to the UAV. Ultimately, the spots are stored and sorted from highest rate to smallest. In
general, a spot quality depends on the vehicle trajectory. In this perspective, the stored
spots are re-evaluated periodically.

4.6. Algorithm Output

The algorithm returns the current best landing spot in the local navigation frame and
the score obtained in the classification step. Concurrently, the algorithm keeps updating
the spots score as the vehicle continues the mission by computing the new distance to
the UAV and recalculating the score. Therefore, the landing spot detection and selection
algorithm is always being performed for each scan provided by the LiDAR.

5. Results
5.1. Simulated Environment
5.1.1. Simulation Setup

Before proceeding to field tests, one requirement was to evaluate the algorithm’s
robustness and quality under a simulation environment. Therefore, the simulation environ-
ment that was considered was the Modular Open Robots Simulation Engine
(MORSE) [42–44]. MORSE is an open-source simulator with several features, such as
ROS support and virtual sensors, including a generic 3D LiDAR that performs a 180-degree
scan and publishes as a point cloud message. Moreover, it is developed in Python and uses
the Blender Game Engine to model and render the simulation.

The simulation was performed on a computer with an Intel Core i7-6500U CPU @
2.50 GHz with 4 cores and 8 GB RAM, with a Linux 4.15.0-50-generic Ubuntu. Moreover, it
used the ROS Kinetic Kame distribution (http://wiki.ros.org/kinetic accessed on 14 May
2021).

5.1.2. Environment I

The first scenario is a standard MORSE environment, as shown in Figure 6. This
environment is relatively flat with only a few obstructions, namely the buildings. Thus,
this simulation’s objective was to analyze the algorithm’s behavior in terms of time con-
sumption, specifically in the downsampling and plane detection steps.

Figure 6. First scenario point cloud and Blender model.

http://wiki.ros.org/kinetic
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The algorithm waits for the vehicle to travel the minimum distance of tvd = 10 m
or the accumulated point cloud reaches its maximum size of csize = 106 points to start
the downsampling. Each voxel of the Voxel Grid filter was defined to v f ilter = 5 cm. The
environment was simulated for several values of maximum sphere radius and search
points in the plane detection stage. Finally, potential spots slope greater than θmax = 15◦ or
standard deviation along the z-axis greater than σmax = 0.20 m were rejected.

Figure 7 shows a comparison of the execution time between the downsampling step
and the PCA stage for several simulations with increased number of search points. The
downsampling technique is relatively fast, taking about 20 ms. Moreover, increasing the
number of search points implies more iterations for the PCA algorithm. Considering
that the PCA is applied in a downsampled point cloud, downsampling the point cloud is
justified because it limits the sample size.
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(a) Time for 20 search points and maximum 3 m for radius.
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Figure 7. Comparison between downsampling and PCA execution time for the first simulation.

Regarding the number of detected spots, it is not possible to obtain a precise analysis
of the performance of the algorithm in this simulation. This is due to the fact that the envi-
ronment has many regions for landing. Table 3 summarizes the results for the simulation.
It also presents the simulation results with fixed search points but increasing maximum
radius. The PCA run-time increases rapidly to a small increase in radius. This implies that
the value chosen for the neighborhood radius has greater weight in this step.
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Table 3. Results for the simulation of the first case.

Search
Points (#) Radius (m) Downsample

Mean Time (ms)
PCA

Mean Time (ms)
Rejected
Planes

Accepted
Planes

Chosen
Spots

10 3 20.54 84.73 184 146 27
20 3 19.07 408.00 495 65 41
30 3 19.55 556.93 754 116 54
50 3 20.00 898.35 1197 203 56
100 3 19.621 1674.37 2499 401 70

10 4 21.50 400.96 36 244 62
10 5 23.18 802.21 35 245 82
10 10 22.14 4583.9 24 156 7

5.1.3. Environment II

A second environment (displayed in Figure 8) was developed in Blender with the
intention of evaluating the performance of the algorithm in a bad scenario with few
landing spots. The set consists of six rectangular surfaces that represent the desired landing
spots surrounded by a mountain like structures. Considering the environment and the
dimension of each surface, the simulations were realized for four different search points.
In this simulation, the standard deviation was decreased to σmax = 0.15 m.

Figure 8. Second scenario point cloud and Blender model.

Figure 9 shows a comparison of the execution time between the downsampling step
and the PCA stage for several simulations with increased number of search points. For
the simulations in Figure 9a,b, the run-time of the PCA algorithm was similar to the
downsampling stage. The reason for this is that the planes are immediately rejected.
Since the environment has a high variance in z, the angle between the normal vector
calculated by the PCA and the vertical vector (ẑ = [0, 0, 1]T) is generally greater than the
maximum allowed. As a result, the algorithm does not perform many iterations for the
same search point.

Considering the detected spots, Figure 10 shows the results obtained from the simu-
lation. The landing surfaces are the red rectangles, and the black crosses are the detected
spots. However, the algorithm was not able to find a landing spot in all planes. In this
scenario, one drawback of the algorithm is that if the random search point falls near a high
deviation zone like the surface edges, and the algorithm may discard the plane or detect a
spot outside the surface, such as a result for 100 search points (Figure 10d).



Remote Sens. 2021, 13, 1930 15 of 23

0 20 40 60 80 100

Simulation Time (s)

10

20

30

40

50

60

70

D
o
w

n
s
a
m

p
le

 T
im

e
 (

m
s
)

0

50

100

150

200

250

300

350

P
C

A
 T

im
e
 (

m
s
)

Execution time

Downsample Time

PCA Time

(a) Execution time for rmax = 2 m and 20 search points.
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(b) Execution time for rmax = 2 m and 50 search points.
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(c) Execution time for rmax = 2 m and 50 search points.
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(d) Execution time for rmax = 2 m and 100 search points.

Figure 9. Comparison between downsampling and PCA execution time for the second simulation.

For a better understanding of how the best landing spot varies during the simulation,
Figure 11 displays the graphs of the best spot score and the score of each detected area for
the case with 50 search points. Furthermore, when a spot is detected or is considered the
best spot, it is marked on the graph. As the vehicle moves away from the spot, the grade
associated with it decreases. If another spot has a higher score, then it becomes the new
best spot.

Table 4 summarizes the results for the second simulation. The PCA mean run-time is
smaller than the downsampling mean time in the first test. The difference between rejected
and accepted plans increased considerably as expected.

After this procedure, new simulations with different values for the voxel size were
carried out to comprehend the influence of the voxel size on the other steps of the algo-
rithm. Table 5 presents the results obtained. It was chosen as the number of search points
npoints = 20. As the value of the voxel increases, the size of the new point cloud decreases
considerably. This result shows that it is necessary to adjust the variable correctly, as it can
lead to a great loss of information about the environment. Furtherore, after 1 m of voxel
size, the algorithm stopped detecting landing points. In terms of the PCA performance, the
increase in size did not reflect a major change in the execution time. However, the number
of detected planes increased, indicating that the downsampled point cloud did not present
as many obstructions as it should.
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(b) Spots detected for 30 search points and maximum 2 m for radius.
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(c) Spots detected for 50 search points and maximum 2 m for radius.
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(d) Spots detected for 100 search points and maximum 2 m for radius.

Figure 10. Spots detected for the second scenario with different parameters.

Figure 11. Grades of the best spot and each spot detected for 50 search points.
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Table 4. Results for the simulation of the second case.

Search
Points (#)

Downsample
Mean Time (ms)

PCA
Mean Time(ms)

Rejected
Planes

Accepted
Planes

Chosen
Spots

20 23.77 20.64 278 22 3
30 24.27 25.30 566 54 5
50 23.57 52.43 1362 137 5
100 23.97 119.63 2712 288 8

Table 5. Results for several values of voxel size.

Voxel Size (m) Mean Point
Cloud Size

Mean Downsampled
Point Cloud Size

Downsample
Mean Time (ms)

PCA
Mean Time (ms)

Accepted
Planes

Detected
Spots

0.05 183278.6 70022.4 15.507 18.907 22 3
0.10 183278.6 32146.2 15.7388 9.155 78 7
0.5 183278.6 5735.2 12.390 9.606 132 8
1.0 183278.6 1541.5 11.733 10.565 210 0

5.2. Experimental Dataset
5.2.1. Experimental Setup

The multirotor UAV STORK (shown in Figure 12) is an autonomous aerial vehicle
with ss designed to achieve real-time data acquisition and processing efficiently. It has been
used for several applications, including power lines inspection and mapping. The UAV
was built, allowing a modular payload assembly, i.e., the sensor can be replaced by others
that supply different types of data and using the same frame [45].

Figure 12. STORK UAV equipped with the LiDAR VLP-16.

The UAV can operate in both manual and autonomous modes. Currently, the UAV
Stork’s low-level control is accomplished by a customized autopilot (INESC TEC Autopilot),
while an onboard computer ODROID-XU4 performs the high-level control. In terms of
navigation, the UAV possesses two IMUs and two GNSS receivers. In addition to the
low-cost sensors, STORK also has the high-performance IMU STIM300 and the single-band
GNSS receiver ComNav K501G that supports Real-Time Kinematic (RTK). Generally, this
setup of sensors succeeds in satisfying the requirements for many applications.

Regarding the perception assembly, the sensors to extract information about the sur-
rounding area, the UAV STORK, has two visual cameras (Teledyne Dalsa G3-GC10-C2050
and FLIR Point- Grey CM3-U3-13S2C-CS) and a 3D spinning LiDAR sensor (Velodyne
VLP-16). These sensors provide data used as input for processing algorithms in several
modules, such as navigation and 3D reconstruction. For instance, the Velodyne VLP-16
data is the input for the emergency landing spot detection algorithm.
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5.2.2. Dataset

The experimental dataset corresponds to the staircase of the Monastery of Tibães,
Braga, Portugal. The stairway consists of several water fountains that are intertwined by
stairs. This area has numerous trees that hinder the navigation and localization of the UAV
and are considered obstacles for detecting landing points.

Two experiments were performed to assemble this dataset. First, the vehicle started
by mapping a field of vegetation near the staircase (see Figure 13a). After that, the UAV
traveled through the different levels of the stairway. The second experiment was done at
the monastery building, specifically on the fence of the monastery (Figure 13b). This region
consists mainly of buildings and vegetation. It is an open area with more landing spots.

(a) Monastery of Tibães stairway. (b) Monastery of Tibães fence.

Figure 13. 3D reconstruction of the Monastery of Tibães.

In this experiment, the landing spot detection algorithm was evaluated with more
restrictive parameters. Planes with standard deviation along the z-axis greater than σmax =
5 cm were rejected. In addition, the maximum allowed radius for a spot was rmax = 4 m,
and the maximum point cloud size for starting the downsampling algorithm was 30,000
points. In addition, it was chosen as the number of search points npoints = 5.

5.2.3. Dataset Results

For a better understanding of the algorithm procedure, in Figures 14 and 15, we
identified the detected spots along with the camera image in the current timestamp of the
operation. The red lines represent the center of the spot found during the plane detection
step. The small red lines are detected spots that were not chosen as the best landing zones.
It is worth noting that some of the detected landing spots are part of a larger spot. Besides
the fact that the search points are chosen at random, another reason that justifies this
behavior is the need for the maximum radius not to be too large so that the plan detection
algorithm does not consume much time, as previously demonstrated by the simulations.

Moreover, the best spot grade has been stored and shown in Figure 16. The result
obtained illustrates the effect of the weights in the spot classification stage. For instance,
since the maximum allowed value for the standard deviation is very restrictive, relatively
safe zones can be chosen as the best spot even with a low score.

Table 6 presents some statistics obtained for the experiment. In order to obtain the
influence of the algorithm on the computer’s energy consumption, the consumption rate
was measured before initializing the algorithm and afterwards. An average increase of
2.96 W was observed. Additionally, the detected spots had an average radius of 3.24 m.
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Figure 14. Point cloud, spots, and camera image near a water fountain.

Figure 15. Point cloud, spots, and camera image near entrance.
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Figure 16. Rating of the best spot for the dataset.
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Table 6. Statistics for the experimental dataset.

Parameter Evaluated Value

Plane detection step mean time 37.87 ms
Plane detection physical memory mean usage 14.90 MB

Total of detected landing spots 1724
Mean of spots’ radius 3.24 m

Mean of spots’ σ 0.028 m
Mean energy consumption without the algorithm 15.26 W

Mean energy consumption with the algorithm 18.22 W
Maximum energy consumption with the algorithm 21.89 W

Similarly to the simulation of the second environment, the algorithm’s performance
was evaluated for several sizes of voxels. Table 7 displays the results. The results obtained
are similar to the simulation in relation to the loss of information with the voxel increase.
However, a considerable reduction in the execution time of the plane detection step was
observed. One explanation is that the dataset has more landing zones compared to the
second simulated environment. Therefore, many iterations are performed in the PCA step,
unlike the simulation, where there are only a few planar surfaces. In addition, the number
of detected spots reduced with the increasing voxel size.

Table 7. Results for several values of voxel size in the dataset.

Voxel Size (m) Mean Point
Cloud Size

Mean Downsampled
Point Cloud Size

Downsample
Mean Time (ms)

PCA
Mean Time (ms)

Accepted
Planes

Detected
Spots

0.05 31155.9 23131.5 5.333 55.035 2206 372
0.10 31155.9 13945.4 4.493 39.390 1703 319
0.5 31155.9 1996.8 3.695 4.838 1440 302
1.0 31155.9 538.9 3.261 3.177 565 37

6. Discussion

Some considerations concerning the acquired results have been already discussed
in Section 5. The algorithm was able to detect safe landing spots in simulation and also
during the experimental dataset. Downsampling the accumulated point cloud proved to be
very useful. The plane detection algorithm is the most demanding in terms of processing
time and memory consumption. This is expected due to the loop nature of this part of
the algorithm. Therefore, in the downsampling step, reducing the number of points while
maintaining a faithful representation of the environment becomes essential to decrease the
execution time in the following steps.

Regarding the experimental field test, the point cloud was generated based on LiDAR
data at an approximate rate of 10 Hz. Consequently, the algorithm can run in real-time as
the algorithm processes the data and outputs a spot in less than 100 ms. However, this
depends on the parameters chosen by the user, namely the size of the accumulated point
cloud and the number of search points in the plane-detection loop. The plane detection
algorithm had an average execution time of 37.87 ms. Therefore, we can see the good
computational efficiency of the algorithm. In terms of physical memory, the average usage
was 14.90 MB for a total of 8GB of the computer. It was also possible to conclude the
algorithm’s energy only added an average of 2.96 W to the consumption rate regarding
energy consumption.

One limitation of the algorithm is that it does not guarantee that a landing point will
be found due to the random approach to choosing the search point from the point cloud.
However, the results showed that, by gradually increasing the neighborhood sphere’s
radius, the algorithm could obtain a satisfactory region to detect the planes.
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7. Conclusions and Future Work

This paper addressed the development of a real-time emergency landing detection
method based on LiDAR for UAVs. Methods like the one presented in this paper will
allow us to have more safety during UAV out-of-sight missions. The proposed algorithm
was evaluated in a simulation environment to characterize the robustness under different
conditions and also in an experimental dataset during a 3D reconstruction mission in
the staircase of the Monastery of Tibães, Braga, Portugal. The overall results showed the
algorithm’s ability in both cases, i.e., simulation and experimental datasets, to detect the
landing spot in real-time and continuously recalculate new landing spots during a UAV
mission based on the parameters defined in Table 2. To the best of the authors’ knowledge,
this paper contributes to the global system solution to provide emergency landing spots
and the implementation of Voxel Grid Filter for point cloud compression. This step allows
the algorithm to considerably decrease the number of points while maintaining an adequate
representation of the environment.

As future work, we intend to validate the proposed algorithm under different surfaces
with water and snow. These regions can reflect the light beams of the LiDAR, and the
algorithm would consider areas with slopes equal to zero. Therefore, it would be chosen as
a landing point. Furthermore, it is also interesting to benchmark the algorithm performance
with other data-structuring techniques regarding computational time and spot detection.
Another research work will integrate more weighting factors (wind speed, battery status,
etc.) that could be considered during the spot evaluation layer.
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LiDAR Light Detection and Ranging
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MORSE Modular Open Robots Simulation Engine
PCA Principal Component Analysis
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RADAR Radio Detection Furthermore, Ranging
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