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Abstract: Estimation of urban tree canopy parameters plays a crucial role in urban forest management.
Unmanned aerial vehicles (UAV) have been widely used for many applications particularly forestry
mapping. UAV-derived images, captured by an onboard camera, provide a means to produce 3D
point clouds using photogrammetric mapping. Similarly, small UAV mounted light detection and
ranging (LiDAR) sensors can also provide very dense 3D point clouds. While point clouds derived
from both photogrammetric and LiDAR sensors can allow the accurate estimation of critical tree
canopy parameters, so far a comparison of both techniques is missing. Point clouds derived from
these sources vary according to differences in data collection and processing, a detailed comparison
of point clouds in terms of accuracy and completeness, in relation to tree canopy parameters using
point clouds is necessary. In this research, point clouds produced by UAV-photogrammetry and
-LiDAR over an urban park along with the estimated tree canopy parameters are compared, and
results are presented. The results show that UAV-photogrammetry and -LiDAR point clouds are
highly correlated with R2 of 99.54% and the estimated tree canopy parameters are correlated with R2

of higher than 95%.
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1. Introduction

Urban trees play a critical role in greening and sustainably managing cities [1–4]. To
monitor urban trees, regular mapping is required. The traditional measurement methods
for tree canopy parameters such as height, diameter, area, and volume of canopies are
expensive due to time and labour especially when high accuracy is required over the area
of a local government. By contrast, remotely sensed 3D mapping tree canopy methods
can estimate tree canopy parameters accurately over a large area [5–8]. 3D mapping
methods rely on either Light Detection And Ranging (LiDAR) or Photogrammetric 3D
measurements. Both LiDAR and photogrammetric methods generate 3D point clouds
which can be used to estimate required parameters through further point cloud processing.

Unmanned Aerial Vehicles (UAV) have emerged as an increasingly important new
platform for 3D data collection with many applications [9]. Legal restriction on flying
UAVs in Australia varies according to the weight of the craft, where the craft is flown and
whether the UAV is flown recreationally or commercially. Exclusion zones exist within
5.5 km of control zones, which cover large metropolitan areas. Nonetheless, even in
urban areas UAV use of more than 2 kg, such as would be typical for data acquisition,
is possible for commercial operators with a remote pilot licence and a remotely piloted
aircraft operated certificate. Permission for each flight has to be obtained from the Civil
Aviation Safety Authority [10]. These requirements impose many hours of preparation
before data acquisition can be made.
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UAV data acquisition in urban areas can be useful, in some cases replacing fixed-wing
aircraft capture. As the expenditure for each commercial UAV operation is lower it allows
for an increased frequency of data acquisition. UAVs have been widely used for forest and
urban tree inventory [11–14], urban tree canopy parameter estimation [15–20], estimation
of forest canopy fuel [21] and mapping forest structure [22]. Aerial and UAV-based LiDAR
data has attracted much interest for researchers in forest inventory applications [23–27]
particularly for the corridor and utility mapping [28]. In addition to the use of mobile
LiDAR for 3D forest mapping [24] the fusion of imagery and LiDAR data also has been
used for 3D modelling and mapping urban tree canopies [29].

Estimation of urban tree parameters from point clouds has a more than thirty-year
history. Tree canopies were initially reduced to a digital surface model using algorithms
to define the ground layer from laser scanning [30]. As point clouds from buildings
are distinct from tree these permitted a form of segmentation [31], later on overlapping
canopies could be identified as individual tree stands by combining point clouds with other
spectral information [32]. As higher resolution scans became available, especially through
terrestrial laser scanning, feature extraction developed in computer science [33], could be
applied to the automatic recognition of tree canopy parameters using statistical techniques
such as principal component analysis [34]. Two key drivers of research can be identified
over this period. One is the extraction of tree features such as canopy volume, branches
and trunks to build 3D tree models [35]. The other is the extraction of tree parameters that
may be used by urban foresters for assessing the ecosystem service benefits of trees such as
canopy height and volume leaf area index [36,37], leaf area density distribution [38] or the
hazards of potential wildfires in areas of urban interfaces [39].

Across this historical development, perennial challenges remain for 3D mapping of
urban trees. These include access to trees that may be located in the private realm, which
limits terrestrial laser scanning; pruning and species diversity, which limits the use of
automatic feature recognition and individual tree segmentation, cost of data collection and
processing and occlusion.

In the following, we contribute to the understanding of the challenges for mapping
urban trees by considering the differences between point clouds that are derived from two
different sources using a UAV platform, to guide the use of these collection methods. So far,
we know of no study which has compared the accuracy of tree parameters derived from
point clouds from two different data acquisition methods using a UAV over an urban forest.
Forest structural attributes in subtropical planted forests were estimated using UAV-based
photogrammetric and LiDAR point clouds in [11,26] but individual tree parameters have
not been studied. However, inferences can be gained on performance, such as reduction of
the standard deviation of tree height, by understanding the workflow required of UAV-
derived LiDAR data and increases in point density in a forested environment [40], and on
the accuracy of ALS in predicting the position of trees [41]. Given the variability of canopy
shapes due to pruning and species selection in an urban environment and the essential role
that leaf area has to play in delivering ecosystem services, an understanding of the limits of
canopy mapping from UAVs is important for urban foresters in making a choice of which
point cloud acquisition technique to use.

Our study aims to contribute to the quality of decision making by guiding the use
of UAVs for data acquisition. We, therefore, compare the results from the same platform
but do not ground-truth our chosen tree parameters because measuring tree canopies
is a complex task in an urban environment and ground-based methods for tree canopy
measurements, such as those that rely on trigonometry for measuring height, are less
accurate than 3D measurement methods [42] and prone to operator error, occlusion and the
effects of humidity and air temperature especially when using ultrasound [43]. Our chosen
3D measurement methods are UAV-based imagery data, which provides 3D point cloud
data via a photogrammetric method along with RGB and NIR information for each point
and UAV-LiDAR, which produces 3D point cloud without semantic information except for
intensity [44–46].
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The point clouds derived from UAV photogrammetric and LiDAR vary according to
different aspects and several research works have been conducted for accuracy assessment
of UAV-based photogrammetric and LiDAR point clouds [13,47,48]. Moreover, photogram-
metric and LiDAR point clouds have been compared for many application such as change
detection [49], flood mapping [50], agriculture [51,52], forestry applications [53–57] and
urban tree species mapping [41].

This study presents the capability of LiDAR and photogrammetric acquisition-derived
point clouds to estimate tree canopy parameters in a park. Our selection of this experimental
site is deliberately aimed at isolating and discussing the factors that can affect tree canopy
measurement from different point clouds. In particular, it compares (1) point clouds
derived from LiDAR and photogrammetric source; and (2) tree parameters estimated using
LiDAR and photogrammetric methods.

The remainder of this paper is organized as follows: Section 2 presents the data set
and methods. Section 3 introduces the proposed comparisons of the point cloud derived
from different sources along with the analysis of the results. Discussion of the obtained
outcomes is presented in Section 4, and conclusions follow in Section 5.

2. Materials and Method
2.1. Study Area

The study area (around 200 m × 250 m) covers a part of Yarra Park in Melbourne,
Australia. It is limited between the latitude of 37◦49′2”S and 37◦49′9”S and the longitude
of 144◦59′9” and 144◦59′16”E and comprises Eucalyptus microcorys, Ficus macrophylla,
and Ulmus procera trees. The area is not large because of the flight restrictions for UAVs in
urban areas and the high expense of UAV LiDAR data collection. Figure 1 shows the study
area along with the measured ground control points (GCP). Trimble R8 Global Navigation
Satellite System (GNSS) receiver is used for positioning the GCPs with an accuracy of
1–2 cm through the real-time kinematic (RTK) positioning method.
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2.2. Data Collection  

Figure 1. Study area partially comprising Yarra Park, Melbourne and measured GCPs.

2.2. Data Collection

The LiDAR and imagery data were collected in 2017 using a LiDAR and imagery
sensor installed on the UAV which is developed by Melbourne Unmanned Aircraft Systems
Integration Platform (https://infrastructure.eng.unimelb.edu.au/unmanned-aircraft/, ac-
cessed on 1 April 2021), shown in Figure 2.

https://infrastructure.eng.unimelb.edu.au/unmanned-aircraft/
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The LiDAR sensor Phoenix ALPHA AL3-32 (Figure 3a) with ranging accuracy of 35
mm in 50 m and with a scanning speed of 700,000 points per second is used for LiDAR
point cloud collection. A brief technical specification of the LiDAR sensor is provided in
Table 1.

Table 1. Technical specification of the LiDAR sensor.

LiDAR Sensor Navigation System

Laser Properties Class 1, 905 nm Constellation Support GPS, GLONASS
Range min/max/Resolution 1.0 m/120 m/2 mm Support Alignment Static, Kinematic, Dual-Antenna

Field of Range FOV, 30◦ V/360◦ Hz Operation Modes Real-time, Post-Processing optional
Scan Rate 700 k shots/s, Accuracy Position 1 cm + 1 ppm RMS horizontal

Scan Height 20–60 m AGL PP Attitude Heading 0.009/0.017◦ IMU options

The LiDAR beams can penetrate in areas with vegetation, particularly tree areas, and
provide understory information for tree canopies. The number of returns (the first and
last return) is shown in Figure 4 along with the UAV trajectories. As LiDAR and imagery
sensors were installed on the platform, both LiDAR scanning and imagery data were
collected simultaneously.

The imagery data has been captured by MicaSense RedEdge (Figure 3b) multispectral
camera with 5 spectral bands (blue, green, red, red edge, near-infrared) of 960 × 1280
pixels. In total, 181 multispectral images with a spatial resolution of 8 cm ground sampled
distance (GSD) at 80 m above ground level (AGL) flight with 90% overlap between the
images and 70% overlap between the flight-lines were collected. Figure 5 shows one of the
multispectral images and highlights that red edge and near infra-red images offer different
information rather than RGB images emphasising the trees.
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2.3. Data Processing

To generate the LiDAR point cloud, post-processing of LiDAR observations including
ranging, position and orientation of the ranging sensor was carried out by the Phoenix
software suite. First, IMU and GNSS data were combined to generate smooth and accurate
flight trajectories (Figure 4). Then, calibration and coordinates of each laser return were
calculated, and finally, the data from multiple flight lines were geo-referenced and the
aligned data was exported in LAS format. To remove the erroneous points from the point
cloud, the exported LAS file was de-noised in the CloudCompare software (www.danielgm.
net/cc/, accessed on 1 April 2021).

www.danielgm.net/cc/
www.danielgm.net/cc/
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The LiDAR point cloud includes the XYZ coordinate of points along with the intensity
information which is related to surface reflectance, range, angle of incidence, etc. and is
similar to the near-infrared images.

In order to create a point cloud from UAV images, photogrammetric data process-
ing procedures such as aerotriangulation and dense cloud generation are required. The
workflow of photogrammetric data processing is demonstrated in Figure 6. The aerotrian-
gulation, self-calibration of the camera and dense cloud generation were performed using
Agisoft Metashape software (www.agisoft.com, accessed on 1 April 2021) which utilises
shape-from-motion (SFM) [58] and multi-view-stereo (MVS) [59] for aerotriangulation
and point cloud generation, respectively. As shown in Figure 1, six control points with
millimetre accuracy level have been utilised for geo-referencing the photogrammetric 3D
model.

In the photogrammetric process, the colour of each image pixel was added to the
point cloud to generate a colourised point cloud. Whereas, LiDAR point cloud does not
provide colour information except the intensity which is a measure of return strength of
laser pulse. Figure 7 depicts height coded and colourised photogrammetric point cloud, as
well as, LiDAR point cloud coded by height and intensity information.
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The ground points must be removed from the point clouds due to the lack of effect
on the estimation of tree canopy parameters. The chosen site was flat with no man-made
structures such as park benches and buildings. The cloth simulation filtering (CSF) [60]
method which is implemented in CloudCompare software has been utilised to classify the
point clouds into the ground and non-ground points. In applying the CSF method, cloth
resolution and classification threshold are set to 2 and 0.5, respectively.

Heights of LiDAR ground and non-ground points varied for 1.700 m and 23.635 m,
respectively. Similarly, heights of photogrammetric ground and non-ground points varied
for 1.822 m and 23.742 m, respectively. This highlights the high correlation between two
data sets however, the small difference can be due to the appearance of noise in the data
sets. The non-ground photogrammetric and LiDAR point clouds, shown in Figure 8, can
be used to generate the canopy height model (CHM) after subtracting the height of the
ground point from the non-ground ones.
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2.4. Comparison of Point Clouds

The LiDAR uses accurate RTK GNSS positioning and the photogrammetric point
cloud is geo-referenced using ground control points which are measured by survey-grade
GNSS, shown in Figure 1. Hence, the displacement between the point clouds is expected to
be small. The distance between two points from two-point clouds is calculated via estimat-
ing the distance between the LiDAR and photogrammetric point clouds using k-nearest
neighbour (k = 6) points (Figure 9). This method identifies k number of neighbour points
from the photogrammetric points for each LiDAR point, and the point with minimum
distance is selected to calculate the distance between the LiDAR and photogrammetric
points.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 17 
 

 

The ground points must be removed from the point clouds due to the lack of effect 
on the estimation of tree canopy parameters. The chosen site was flat with no man-made 
structures such as park benches and buildings. The cloth simulation filtering (CSF) [60] 
method which is implemented in CloudCompare software has been utilised to classify the 
point clouds into the ground and non-ground points. In applying the CSF method, cloth 
resolution and classification threshold are set to 2 and 0.5, respectively.  

Heights of LiDAR ground and non-ground points varied for 1.700 m and 23.635 m, 
respectively. Similarly, heights of photogrammetric ground and non-ground points var-
ied for 1.822 m and 23.742 m, respectively. This highlights the high correlation between 
two data sets however, the small difference can be due to the appearance of noise in the 
data sets. The non-ground photogrammetric and LiDAR point clouds, shown in Figure 8, 
can be used to generate the canopy height model (CHM) after subtracting the height of 
the ground point from the non-ground ones.  

 

 
Figure 8. 3D non-ground points: (a) height-coded photogrammetric point cloud; (b) colourised Photogrammetric point 
cloud; (c) height-coded LiDAR point cloud and (d) intensity of LiDAR point cloud. 

2.4. Comparison of Point Clouds  
The LiDAR uses accurate RTK GNSS positioning and the photogrammetric point 

cloud is geo-referenced using ground control points which are measured by survey-grade 
GNSS, shown in Figure 1. Hence, the displacement between the point clouds is expected 
to be small. The distance between two points from two-point clouds is calculated via esti-
mating the distance between the LiDAR and photogrammetric point clouds using k-near-
est neighbour (k = 6) points (Figure 9). This method identifies k number of neighbour 
points from the photogrammetric points for each LiDAR point, and the point with mini-
mum distance is selected to calculate the distance between the LiDAR and photogram-
metric points.  

 
Figure 9. Calculating the distance between the point clouds using k-nearest neighbour. Figure 9. Calculating the distance between the point clouds using k-nearest neighbour.

Although the distance between the point clouds is very small, the iterative closest
point (ICP) [61] has been exploited to estimate the displacements between the point clouds.
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The registered point cloud does not show significant improvement in the point cloud
alignment.

2.5. Comparison of Estimated Tree Canopy Parameters

Estimation of tree canopy parameters from the point clouds depends on raster and
vector data sources. Point clouds derived from raster sources depend on voxels but
estimated tree parameters can vary according to the voxel size which can decrease the
accuracy of the estimated tree parameters [62]. By contrast, point clouds from vector
sources use the irregular triangulated network to estimate tree parameters with a higher
level of accuracy but a greater cost of computation. The well-known convex and concave
hull methods can be used for the area and volume of tree canopies. The tree canopy is
projected to the floor to calculate the maximum diameter and area of the canopy (Figure 10).
Figure 11 shows that the convex-hull method overestimates volume, however, the concave-
hull method provides better fitting to the point cloud and offers more accurate and reliable
results.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 17 
 

 

Although the distance between the point clouds is very small, the iterative closest 
point (ICP) [61] has been exploited to estimate the displacements between the point 
clouds. The registered point cloud does not show significant improvement in the point 
cloud alignment. 

2.5. Comparison of Estimated Tree Canopy Parameters  
Estimation of tree canopy parameters from the point clouds depends on raster and 

vector data sources. Point clouds derived from raster sources depend on voxels but esti-
mated tree parameters can vary according to the voxel size which can decrease the accu-
racy of the estimated tree parameters [62]. By contrast, point clouds from vector sources 
use the irregular triangulated network to estimate tree parameters with a higher level of 
accuracy but a greater cost of computation. The well-known convex and concave hull 
methods can be used for the area and volume of tree canopies. The tree canopy is projected 
to the floor to calculate the maximum diameter and area of the canopy (Figure 10). Figure 
11 shows that the convex-hull method overestimates volume, however, the concave-hull 
method provides better fitting to the point cloud and offers more accurate and reliable 
results. 

  

LiDAR Photogrammetry 

Figure 10. Comparison of different tree canopy maximum diameter area using LiDAR and photo-
grammetric point clouds (convex hull in red and concave hull in blue). 

  

Figure 10. Comparison of different tree canopy maximum diameter area using LiDAR and pho-
togrammetric point clouds (convex hull in red and concave hull in blue).

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 17 
 

 

Although the distance between the point clouds is very small, the iterative closest 
point (ICP) [61] has been exploited to estimate the displacements between the point 
clouds. The registered point cloud does not show significant improvement in the point 
cloud alignment. 

2.5. Comparison of Estimated Tree Canopy Parameters  
Estimation of tree canopy parameters from the point clouds depends on raster and 

vector data sources. Point clouds derived from raster sources depend on voxels but esti-
mated tree parameters can vary according to the voxel size which can decrease the accu-
racy of the estimated tree parameters [62]. By contrast, point clouds from vector sources 
use the irregular triangulated network to estimate tree parameters with a higher level of 
accuracy but a greater cost of computation. The well-known convex and concave hull 
methods can be used for the area and volume of tree canopies. The tree canopy is projected 
to the floor to calculate the maximum diameter and area of the canopy (Figure 10). Figure 
11 shows that the convex-hull method overestimates volume, however, the concave-hull 
method provides better fitting to the point cloud and offers more accurate and reliable 
results. 

  

LiDAR Photogrammetry 

Figure 10. Comparison of different tree canopy maximum diameter area using LiDAR and photo-
grammetric point clouds (convex hull in red and concave hull in blue). 

  
Figure 11. Cont.



Remote Sens. 2021, 13, 2062 9 of 17Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 17 
 

 

 
 

 
 

LiDAR Photogrammetry 

Figure 11. Comparison of different tree canopy parameters using LiDAR and photogrammetric point clouds, top: convex 
hull and bottom: concave hull. 

In this research, the max value of CHM of each tree canopy is considered as the height 
of tree and other tree canopy parameters including diameter, area and volume are esti-
mated by both convex- and concave-hull methods [63]. Then, all estimated tree parame-
ters using photogrammetric and LiDAR point clouds are compared.  

3. Results 
In this research, photogrammetric and LiDAR point clouds are compared in geomet-

ric and statistical aspects. Then, estimated tree canopy parameters using both point cloud 
sources are compared in detail.   

3.1. Point Cloud Comparison 
As mentioned above, k-nearest neighbour distance is used for calculating the dis-

tance between the reference and the registered point clouds. The distance between the 
original photogrammetric point cloud and the aligned one is less than six cm (Figure 12). 
Figure 12a,b show that some horizontal offset is apparent between the two-point clouds 
at the edge of the trees. Figure 12c shows that the point clouds from both sources are most 
inaccurate at the margins of the scan path. The experimental evaluation of the point clouds 
denotes an acceptable co-registration accuracy for the point clouds derived from different 
sources.   

   
(a) (b) (c) 

Figure 12. Distance between the point clouds: (a) original photogrammetric and LiDAR point clouds, (b) registered pho-
togrammetric and LiDAR point clouds and (c) original and registered photogrammetric point clouds. 
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In this research, the max value of CHM of each tree canopy is considered as the height
of tree and other tree canopy parameters including diameter, area and volume are estimated
by both convex- and concave-hull methods [63]. Then, all estimated tree parameters using
photogrammetric and LiDAR point clouds are compared.

3. Results

In this research, photogrammetric and LiDAR point clouds are compared in geometric
and statistical aspects. Then, estimated tree canopy parameters using both point cloud
sources are compared in detail.

3.1. Point Cloud Comparison

As mentioned above, k-nearest neighbour distance is used for calculating the dis-
tance between the reference and the registered point clouds. The distance between the
original photogrammetric point cloud and the aligned one is less than six cm (Figure 12).
Figure 12a,b show that some horizontal offset is apparent between the two-point clouds at
the edge of the trees. Figure 12c shows that the point clouds from both sources are most
inaccurate at the margins of the scan path. The experimental evaluation of the point clouds
denotes an acceptable co-registration accuracy for the point clouds derived from different
sources.
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Statistical comparison of the photogrammetric and LiDAR point clouds can be con-
ducted directly on the Z values of the point clouds as well as the derived tree parameters.
In addition, statistical parameters such as min, max, mean and standard deviation (std) of
the point clouds in X, Y and Z directions are presented in Table 2. The min, mean and std
of Z values for both photogrammetric and LiDAR point clouds are underlined to highlight
small differences between the point clouds.

Table 2. Statistical parameters of the photogrammetric and LiDAR point clouds.

Point Cloud Direction Min (m) Mean (m) Max (m) Std (m)

Photogrammetry
X 0 89.46 182.88 43.59
Y 0 103.81 211.07 51.351
Z 0 9.11880 23.74 4.22

LiDAR
X 0 106.97 s 183.97 38.14
Y 0 104.33 208.76 46.66
Z 0 10.17 24.78 4.20

The scatterplot of Z values for photogrammetric and LiDAR point clouds along with
their probability distribution functions are presented in Figure 13. As expected the point
clouds derived using the different methods are highly correlated (R2 = 99.88%).
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3.2. Tree Canopy Parameters Comparison

The tree canopy parameters such as height, diameter, area and concave-hull volume
are presented in Figure 14 and the difference of the parameters are provided in Table 3
before being compared statistically.

Charts in Figure 14 show that for most of the stands, except 5, 6, 10, 15, 16, 18, 19, 22
and 25 photogrammetric point clouds produce a lower estimate of height, area, diameter
and canopy volume. This is not surprising when considering Figure 9. These show that the
photogrammetric point cloud is produced by a more regular array of points. This produces
a closer fit between the points and the line of the concave hull. On the other hand, the
LiDAR scans are more closely related to the leaf and branch returns that constitute the
canopy, but these leave areas with lower density points that with a convex hull method
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produces a smoother line that appears to inflate the canopy area. A similar process is
occurring for the majority of trees and parameters.
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Furthermore, a side view of LiDAR and photogrammetric 3D points of a tree is
presented in Figure 15 to highlight the branches of the tree.
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Table 3. The difference between estimated tree canopy parameters using photogrammetric and
LiDAR point clouds.

Criteria Height (m) Diameter (m) Area (m2) Volume (m3)

Min 0.03 0.28 0.45 7.30
Mean 0.26 0.95 17.45 138.67
Max 0.59 3.13 66.37 599.19
std 0.14 0.65 17.02 139.65
R2 99.54% 95.23% 96.39% 97.21%

As shown in Figure 16, statistical comparison of the estimated tree parameters us-
ing photogrammetric and LiDAR point clouds yield R2 of 99.54%, 95.23%, 96.39% and
97.21% for tree canopy height, diameter, area and volume, respectively. Coefficients on
the regressed relationship between LiDAR and photogrammetric point cloud-derived area
shows that for each unit increase in the area the difference between the two will be a factor
of 0.8751.
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4. Discussion

In this research, LiDAR and photogrammetric point clouds, as well as estimated tree
parameters, are compared using a UAV in an urban environment. UAVs offer an advantage
for highly detailed canopy mapping over a small area allowing access to tree parameters
on the public and private estate, without the need for physical on the ground access that
would be required with terrestrial scanning.

The limitations of the study include the use of a small area with a limited species
mix and minimal canopy overlap, but this is not unusual for an urban park. On the other
hand, these limitations allow for a direct comparison of the two point clouds derived from
different sensors.

The two point clouds derived from different geo-referencing methods, LiDAR (direct
geo-referencing) and photogrammetry (indirect geo-referencing), were matched with min-
imal horizontal offset. The results confirm the literature on the understood differences
between photogrammetry and LiDAR-derived 3D point clouds [64]. The LiDAR swath
angle to the Z-axis is very high at the edges of the scans but ideally should be zero. Yet, a
high overlap of 90% is recommended in the forestry literature for photogrammetric data
because a point can only be reconstructed if three or more photos are present [65]. For both
point clouds, the accuracy of the geometry of the points decreases towards the edge of the
scan because photogrammetry depends on the field of view and LiDAR depends on the
off-nadir scan angle.

The results demonstrate that differences in the two point clouds exist that should be
considered as part of a broader consideration of which point cloud to use when deriving
tree parameters. LiDAR is an active remote sensing technology in which pulses of light
are emitted and received. On the other hand, photogrammetry is a passive remote sensing
technology. The active technology is not affected by shadowing or occlusion of the light
source as much as with the photogrammetric point clouds because passive technology
relies on an external light source. This means that the depth of penetration of the canopy is
different for both data sets as the signal is being received from different parts of the canopy.
While LiDAR is more expensive, the penetration of the pulses into the canopy allows for
tree segmentation through the use of stem information [66].

These key differences can be seen in (Figure 15). The LiDAR point cloud can more pre-
cisely identify the branches underneath the canopy than the photogrammetry point cloud.
At the same time, the canopy surface appears more complex than the photogrammetry
point cloud canopy surface. Therefore tree architecture or the connection between clusters
of canopy and branches can be more accurately modelled using the LiDAR point cloud.

The results showed that there is no significant difference between the estimated tree
parameters using LiDAR and photogrammetric point clouds. In aerial (non-UAV) survey-
ing, photogrammetric sources are often more readily and cheaply available than LiDAR
sources. Understanding that photogrammetric point clouds have the same properties as
LiDAR point clouds are therefore important in different applications [64].

Notwithstanding some of the more specific applications of a LiDAR point cloud, such
as stem volume estimation [67], for the collection of urban forest parameters using a UAV,
the platform can be equipped with either a LiDAR scanner or camera, saving on cost but
more importantly on weight, battery life and therefore the area to be covered in a survey.

Research work in [68] occurs on different platforms (not UAV) but similar to our work
attempts a comparison and validation of airborne LiDAR point clouds and high-resolution
satellite images for extracting useful information about trees. In a more related research
work [69] to the current paper, it is shown that field measurements of tree height are very
similar (R2 = 0.97) to photogrammetric generated point clouds. Therefore, we have used
this reference to justify why we did not use field measurements of tree height.

Finally, it should be noted that multispectral images offer unique complementary
information in addition to 3D point clouds as the photographs can be used for tree species
identification. As the noise of point cloud derived from both sources can affect the estimated
tree parameters, de-noising the point clouds is recommended before estimating the tree
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parameters. This will guarantee the accuracy of tree parameters derived from 3D point
clouds.

5. Conclusions

The capabilities of photogrammetric and LiDAR point clouds for mapping urban tree
canopy were analysed and compared. The research showed that the point clouds derived
from both photogrammetric and LiDAR techniques are almost the same and provide
similar tree characteristics. This will assist urban foresters who use a UAV for scanning
canopies. By knowing that the point clouds from either sensor are the same, it will enable
the UAV to be lighter and to increase its flying time. In both cases, the low altitude of
the UAV leads to the obliqueness of the swath or reduces the field of view which causes
the gap between the scans line. A way of compensating for this would be to fly a highly
overlapping trajectory, but this may increase the overall time and cost for the scan and may
be impractical considering the battery life of the UAV.

The photogrammetric technique can provide sufficient information for mapping tree
canopy cover with low-cost sensors, 20 times cheaper than LiDAR sensors, and reasonable
computation cost [70]. The more expensive sensors yield more defects in the case of
a UAV crash. In addition, photogrammetric point clouds offer colourised point cloud
which will be more beneficial in terms of visualisation and further point cloud processing.
In addition, multispectral orthoimage as a photogrammetric standard product offers an
invaluable source of information to identify tree species. The point clouds can be found
from Supplementary Materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13112062/s1.
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