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Abstract: This paper introduces a new GeoAI solution to support automated mapping of global
craters on the Mars surface. Traditional crater detection algorithms suffer from the limitation of
working only in a semiautomated or multi-stage manner, and most were developed to handle a
specific dataset in a small subarea of Mars’ surface, hindering their transferability for global crater
detection. As an alternative, we propose a GeoAI solution based on deep learning to tackle this
problem effectively. Three innovative features are integrated into our object detection pipeline: (1) a
feature pyramid network is leveraged to generate feature maps with rich semantics across multiple
object scales; (2) prior geospatial knowledge based on the Hough transform is integrated to enable
more accurate localization of potential craters; and (3) a scale-aware classifier is adopted to increase
the prediction accuracy of both large and small crater instances. The results show that the proposed
strategies bring a significant increase in crater detection performance than the popular Faster R-CNN
model. The integration of geospatial domain knowledge into the data-driven analytics moves GeoAI
research up to the next level to enable knowledge-driven GeoAI. This research can be applied to a
wide variety of object detection and image analysis tasks.

Keywords: GeoAI; object detection; deep learning; scale; knowledge-driven; Mars

1. Introduction

Impact craters have been important in the development of our understanding of
the geological history of the Solar System. Scientists observe the number, size, shape,
distribution or the density of craters on planets to learn about the geological processes of
those bodies without landing on the surfaces [1–5]. For instance, crater counts are used to
estimate the age of planetary surfaces [6,7], while crater characteristics such as distribution
and size-density are leveraged to understand geological processes [8,9]. On Mars, impact
craters are a key factor in the study of its climatic past and living conditions [10,11]. Over
several decades of research, impact craters have been cataloged by various methods,
including visual/infrared imagery and digital elevation models (DEMs) of a planet’s
surface [12–15].

Recognizing and measuring craters from observational data is, however, a very labor-
intensive and time-consuming process. Taking Robbins’ Mars crater database as an exam-
ple [14], the authors report a dataset of 384,343 craters with four searches of the Mars global
mosaic [16]. The whole process took several years of manual inspection by the authors. To
address the issue of high-cost in manual data collection, researchers have proposed crater
detection algorithms (CDAs) for automating the process of crater cataloging. These CDAs
are based on prior knowledge; they are implemented by following the common patterns
and structures of craters, for instance, a circular shape. Based on prior knowledge, crater
sub-structures, such as edges, rings, and depressions, can be extracted and then a classifier
is applied to discern them and their geologically properties [17–23].

Traditional CDAs suffer from several limitations. First, most are tested on small local
sites rather than global ranges. There are different types of surfaces on Mars, and they
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have varying characteristics. This requires the manual adjustment of a model’s parameters
to transfer the learning process into different surface areas. In other words, most models
are not robust or generalizable for large-scale surveys and are not practical for global
crater detection. Second, most CDAs are limited in the size of crater they can detect
due to restriction of the models or the data sources. For most models, increasing the
range of detectable sizes implies an increase in the computation efforts, resulting in a
trade-off between efficiency and accuracy. Besides the models’ intrinsic limitation, data
sources also affect detectable sizes. Visual/infrared imagery often provides high-resolution
morphological contexts which are suitable for small crater detection, but image quality is
easily influenced by environmental status. On the contrary, a DEM keeps the topographical
data “cleaner” but the complex terrain information is often lost due to the coarse resolution.
Last, CDA evaluation metrics often focus on precision and recall measured using data
in existing databases, which contain only a subset of global ground-truth data. Even in
the latest and largest Robbin’s Mars crater database [14], manual inspection of craters is
inevitable despite the support of CDAs.

Compared to traditional methods, the emerging technology of GeoAI, or geospatial
artificial intelligence [24], has shown great potential in performing large-scale, automated
detection of natural terrain features [25–31]. On the one hand, the revolutionary develop-
ment of convolutional neural network (CNN) models enables the automatic extraction of
prominent features of an object by mining massive amounts of data, especially images. A
convolution module is introduced such that the feature extraction process is based on a
local operation, instead of global. These mechanics break down the computation bottleneck
of the high interdependency in the traditional neural network models and therefore CNN
is easily parallelizable to achieve much higher efficiency and better predictive performance
than traditional data analytics algorithms. On the other hand, the deep convolutional
layers of a CNN model allow extraction of features on different scales, to potentially enable
learning at different scales for which low-level features to high-level semantics gradually
appear in the learning process.

In recent years, GeoAI has advanced from performing purely data-driven discovery to
the integration of geospatial knowledge to further improve its predictive performance. For
instance, Li et al. [26] integrate Tobler’s First Law in Geography to leverage an important
principle of spatial dependence to achieve weakly supervised object detection leveraging
temporal data classification [32]. Ghorbanzadeh et al. [33] integrate the output from a CNN
to a knowledge-based classification model to improve the accuracy for object-based image
classification. Li et al. [34] exploit the potential for integrating deep learning and ontology-
based knowledge reasoning for improved semantic segmentation of remote sensing images.
Other similar works can be found in [35].

Leveraging the advantages of GeoAI, we developed a deep learning model that
enables multi-scale learning and crater detection on Mars. Three innovative contributions
are made: (1) a Mars crater dataset is created to support machine learning and deep
learning tasks; (2) a deep learning-based object detection pipeline that combines a feature
pyramid and scale-aware classification is developed to allow multi-scale learning and
detection of Mars’ craters of various sizes; and (3) Hough transform-based prior geospatial
knowledge integrated into the deep learning process to further improve the model’s
detection performance. This work is a critical step towards developing an intelligent and
automated approach for building a comprehensive Mars crater database. The combination
of knowledge-driven and data-driven machine analytics also promises future advances
of GeoAI and its use in a broad range of applications, from target detection to image
classification and segmentation.

2. Literature Review

In this section, we will conduct a review on the methodology for Mars crater detection
from two aspects: traditional CDAs, and the recent advances in deep learning-based
object detection.
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2.1. Automated Crater Detection

There is a large body of literature on CDAs since they can be used in a wide variety
of applications, such as planetary landing [36], and estimation of geological processes
and age [37,38]. Generally, the goal of CDAs is to automate the process of collecting
geological and scientific information of craters from remote sensing images. Most CDAs
can be separated into two steps. The first is to extract features from images which indicate
potential crater presence, such as edges, rings, depressions, or even craters themselves.
The second step is to determine if an extracted feature is a crater and to determine its
position on the planet, size, and various attributes. The two steps may be implemented
using traditional image processing methods or newer machine learning techniques. For
instance, in the first step, a Sobel filter [19], Canny edge detector [39] or random structured
forest [29] can be leveraged to detect edges; or gradient-based image processing [40] and
sliding window techniques [17,22,23] can be used to recognize depressions and craters. In
the second step, extracted features in the first step can be further classified using circular
Hough Transform (CHT) [17,19,41], template matching [21,42,43], or classifiers, such as
decision trees [40] and support vector machines [23]. A table summarizing different CDA
approaches can be found in [27].

Recently, with the increasing availability of large datasets and computational power,
deep learning has brought algorithms that learn from the data directly instead of designing
rules manually [44]. Some deep learning-based CDAs follow the same two-step strategy
like early CDAs. For example, a CNN-based image segmentation [42] can be leveraged
to extract ring structures in the first step. A CNN classifier [22,29,39] is utilized to classify
extracted features in the second step. Another strategy is to adopt and fine-tune existing
end-to-end vision models for the crater detection task. For instance, the authors of [27]
explore multiple design choices, such as kernel size and filter numbers of U-Net [45]. Fusion
of different data sources is also a popular strategy [30,46,47]. For example, Tewari et al. [28]
modify Mask R-CNN [48] to simultaneously utilize multi-source data including optical
images, DEMs and slope maps. However, most existing deep learning-based CDA works
are only applied in a limited spatial coverage due to data availability or processing issues.
For example, DeLatte et al. [27] choose data within the latitude range of±30◦ to avoid crater
image distortion in the high latitude area. Besides, few CDAs have dealt with the issue of
large scale differences of craters existed in a single image. Wang et al. [31] use feature maps
from different layers to address this issue. However, feature maps from different layers
are different not only in the scales but also their semantic meanings. Compared to other
deep learning-based CDA works, our proposed method make a substantial improvement
to existing literature in terms of both global and multi-scale crater detection.

There are several metrics used to evaluate the performance of CDAs. Visual examina-
tion of the detection results is perhaps the simplest way [23,49,50]. To quantitatively mea-
sure performance, the results can be statistically compared with existing databases [14,51].
The most common metrics are precision and recall. Precision is the fraction of detected
craters that are “true craters” (those exist in the target database) among the detection results.
It measures the fidelity of CDAs results. Recall is the ratio between the number of detected
“true craters” and the total number of craters in the benchmark database. Hence, recall is
a measure of true positives, and precision is a measure of false positives. The more true
positives that are detected, the higher the recall. The fewer the false positives, the higher
the precision. Hence, the recall rate will be 100% if all craters in the benchmark database
are found even if there could be many false positives (objects detected as craters but are not
in the database). The combination of the two measures will provide a better view of the
quality of the CDA algorithm. The mean Average Precision (mAP) is a combined measure
of both recall and precision. In the current paper, the performance of our proposed crater
detection method will be evaluated based on the above three measures.
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2.2. Multi-Scale Object Detection

As discussed, a major challenge in crater detection is the capability of an algorithm
to identify craters of varying sizes. Multi-scale object detection in image analysis and
computer vision targets this problem. An intuitive solution for detecting craters of varying
scales is to run repeated detections upon an image pyramid, a set of images with different
spatial resolutions. This simple yet effective approach has been widely used in both early
machine learning methods [52] and recent deep neural networks [53,54]. The advantage
of the image pyramid strategy is that the generated features of objects at all scales are of
equally high quality. However, it is computationally expensive because the scale differences
across image levels need to be small enough to discern objects of varying sizes.

In the newer CNN-based object detectors, one method to save computational time is
to recognize objects using features from different layers of a CNN. By reusing the features
generated from the CNN’s forward-pass computation, multi-scale object detection can
be achieved with no extra cost. CNN generates features hierarchically where low-level
feature maps are at high-resolution with small receptive fields and high-level feature maps
have the opposite characteristics. The receptive field determines the number of pixels
that are considered in the decision-making process. The smaller a receptive field is, the
larger the resultant feature map is and therefore more pixels are contained in a feature map.
Unlike image pyramids, CNN feature maps are not semantically equivalent. Low-level
features are more suitable for small object detection because the feature map of a crater
will not be mixed with surrounding information. High-level features created in the deep
convolution pipeline are suitable for large object detection since they will not only focus
on object parts but also the structure of the entire large object. When these features are
combined, a model’s expressive power is much more enhanced than the image pyramid
method. Some researchers such as [55–57] either use multi-level feature maps separately or
fuse them together to generate the final feature map for object detection.

To address the weak semantics of low-level features, low-level feature maps have
been merged with high-level feature maps to create semantically strong features at all
scales [58–60]. Lin et al. [59] further adopt a feature pyramid strategy where detections are
made independently for each feature layer. Besides image or feature pyramid strategies,
multi-scale detection networks have been developed to integrate sub-networks specializing
on objects at certain scales [61–63]. For example, Li et al. [62] integrate two scale specific sub-
networks for large and small size pedestrian detection and results from the subnetworks
are combined to obtain a final prediction.

However, even the state-of-the-art multi-scale CNN-based detectors [59,64] cannot be
directly applied for crater detection. Although these works are proven to perform well on
different datasets [65–67], their targets are mostly man-made objects. There are no natural
scenes in these datasets and the scale range of man-made objects or animals is much smaller
than the scale range of natural scenes that terrain features, such as those that Mars craters
exist in. For example, in Everingham et al. [65], the largest object is 497× 499 pixels and the
smallest object is 3× 5 pixels. In comparison, the largest crater in the Robbin’s database [14]
is 12,806 × 12,806 pixels while the smallest crater is 9× 9 pixels (spatial resolution: 100 m).

This paper builds on the latest advances in multi-scale object detection from computer
vision and expands the deep learning model by integrating a multi-scale classifier in
addition to feature-level fusion to further improve the model’s predictive performance.
Furthermore, we use domain knowledge to guide the deep learning process to make
the learning more oriented and more intelligent. We also created a Mars crater training
dataset based on the largest available Mars database, the Robbins’ database, to verify the
effectiveness of our proposed model.

3. Methodology
3.1. Data Preparation

In order to train and evaluate the proposed network, we created a Mars crater image
dataset. It assembles a total of 92,575 images extracted from a Mars global mosaic [16] with
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a size of 25.6 km × 25.6 km (256× 256 pixels at the equator). All craters in the images
are annotated with instance-level bounding boxes (BBOXes) utilizing the Martian impact
crater database by Robbins and Hynek [14]. Figure 1 shows examples of the generated
crater images and labels.

(a) (b)
Figure 1. Examples of the training images and labels: (a) Single crater; (b) Multiple craters.

The Mars global mosaic [16] consists of 2001 Mars Odyssey Thermal Emission Imagin-
ing System (THEMIS) daytime infrared (DIR) data with 100 m spatial resolution and global
coverage. Although high resolution images up to 10- to 1-m spatial resolution are available,
such as those reported in [68,69], they are only available with a limited spatial coverage.
Our goal is to generate a global Mars crater database, hence, we selected global mosaic
data. The crater information including locations and diameters are from the Robbins
database [14]. It contains 384,343 craters of diameters ≥1 km and positional, morphologic,
and morphometric data. It was compiled by multiple manual searches on both infrared
imagery [16] and topographic data [70,71].

The image dataset extracts non-overlapping image samples from the global mosaic.
Because the mosaic uses a cylindrical projection, the distortion increases rapidly away
from the equator. To make the dataset more practical and useful, distortion correction was
applied during the training image generation. A cylindrical project introduces distortions
along the longitude (width) when moving from equators to the poles, and the data across
the latitude (height) are evenly partitioned into regular grids. Our proposed distortion
removal process is to obtain the width of an image at a given latitude that covers the same
range (25.6 km/256 pixels) in width as it is at the equator where minimal distortion is
found. Once this width information is obtained, the image of that width and a fixed height
will be cut, and image resampling will be applied to resize the image into 256× 256 in pixel
size to correct the distorted (horizontally stretched) craters to its actual shape and size.

Mathematically, assuming the image origin is at the upper left corner, for each pixel p
with row and column indices of (x, y) in the global image mosaic, its latitude plat can be
calculated as:

plat =
x− nrow

2
Ry

, (1)

where nrow is the total number of the rows in the global mosaic (a.k.a. the height of the
mosaic), and Ry is the spatial scale of the mosaic in the vertical direction. Further, the
distortion ratio (D) can be obtained, assuming the Mars globe is a perfect sphere, by:

D =
1

cos plat
, plat ∈ (−π

2
,

π

2
). (2)
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Equation (2) indicates that the horizontal distortion has no impact at the vertical center
of the mosaic (latitude = 0) and where D = 1. However, as we move away from the
equator, the distortion rapidly increases and becomes infinite at the poles. We revert the
distortion by resizing the cropped image width with the distortion ratio. For instance,
given a desired final image width l, the width l′ in the original mosaic should be:

l′ = D · l. (3)

This is also the image width (l′) needed to crop from the mosaic. Therefore, when
sampling images from the mosaic, the height is always 256 pixels and the image widths
vary upon the sampling locations. After the image is extracted, it is resampled into the
required 256× 256 pixels.

For each sampled image, a corresponding ground truth label for craters is also gen-
erated. Each crater is labeled with a BBOX with the center and length derived from the
crater’s location and diameter in the Robbins crater database. However, some craters may
be trimmed during the image generation; as a result, they are unable to be recognized
visually. For craters that are split into two or more images, we calculate the ratio between
the part of area falling in an image and its actual area. If the ratio is larger than 75%, a large
portion of the crater is still within the image so the crater is recognizable and we keep the
label. If the ratio is less than 25%, most of the crater is outside the image so we remove the
label. For a ratio between 25% and 75%, we find that it is ambiguous to identify the crater
so we simply discard images containing such craters.

The resulting dataset contains 92,575 images of 256× 256 pixels. The total number of
craters is 192,036. The maximum number of craters in an image is 28 while the minimum is
1. In addition, the maximum crater bounding box is 255× 255 pixels while the minimum
box is 9× 9 pixels. Hence, this training image set has a good representation of the diversity
of the Mars crater data. Figure 2 shows statistical data from the generated dataset including
the number of craters per image (Figure 2a) and the crater size distribution (Figure 2b).
As seen from Figure 2a, although the total number of craters per image ranges from 1
to 28 in the training database, about 45% of the images contains one crater, and about
99% images contain no more than seven craters. Figure 2b shows that craters vary a lot
in size, from a few hundred meters in diameter (a few pixels) to nearly 27 km in diameter
(270 pixels), making their correct detection challenging. Figure 2c further demonstrate
the global distribution of the 192,036 craters within the training and testing datasets. As
seen, there are more craters in the lower latitude region than the the high latitude regions.
The distribution patterns for the training and testing are almost identical because they are
created based on a chessboard selection from the Mars global image grids.

The next subsections introduce the baseline object detection pipeline and the im-
provement made to enable knowledge-driven, scale-aware GeoAI for automated Mars
crater detection.
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(a) (b)

(c)
Figure 2. Statistics from the generated Mars crater dataset. Each pixel edge is 100 m. (a) The cumulative image frequency
plot in terms of number of craters within each image; (b) The cumulative crater frequency plot in terms of crater sizes. One
pixel represents an 100 m × 100 m area; (c) The heat map distribution of all the craters in our training database.

3.2. Baseline Deep Learning Model for Crater Detection

The baseline crater detection framework is implemented using the Faster R-CNN
model [72]. It consists three sub-networks: a feature extractor, a region proposal network
(RPN), and a classifier. The feature extractor, which often contains a CNN-based network,
that is, ResNet [73], has the ability to hierarchically extract implicit features from the input
images at multiple scales. The last generated feature map (a single scale that contains
high-level semantics) is then sent to both the RPN and the classifier for object localization
and classification.

The RPN is modeled using a fully convolutional neural network [74]. It takes the
feature map as input and outputs a set of object proposals (candidate object BBOX) indicat-
ing objects’ locations. The proposal generation is through a sliding window which scans
over the entire feature map. The window can be of any size and it is set to 3× 3 in this
task. At each sliding window location, multiple proposals at different scales and ratios are
generated. The features within the window are used to learn and predict two attributes:
the object class and its location, the latter of which can be adjusted from the original candi-
date BBOX. The object classification contains two scores indicating the proposal being or
not being an object (i.e., foreground vs. background). The BBOX regression adjustment
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contains the differences between the location of the proposal and the ground truth BBOX.
Finally, multiple proposals could overlap over the same object, therefore, an algorithm
called non-maximum suppression (NMS) is employed to remove duplicated proposals.
If the overlapping area of two proposals is over a predefined threshold, the one with the
lower classification score will be discarded. After applying NMS, proposals are randomly
selected to train the classifier.

The classifier of a Faster R-CNN model is implemented using several fully connected
neural net layers and a region of interest (RoI) pooling layer. It takes the feature map of the
entire image and the region proposals as input. For each proposal, the RoI pooling layer
extracts the corresponding features from the feature map and outputs a fixed-length feature
vector. Similar to the RPN, each feature vector undergoes a series of computations and is
branched into two outputs (object class and location adjustment) of each proposal. The only
difference is, instead of generating a binary classification score, the classifier outputs the
probabilities for an object to be of any candidate class including the background. A proposal
will be assigned to the class with the highest probability value. Finally, a class-based NMS
is applied on all proposals with the same class prediction and the model chooses the most
optimal proposal as the final prediction.

Although popular, directly applying the Faster R-CNN still cannot yield high-quality
prediction due to the challenging nature of Mars crater detection. The following sections
introduce three new features added to Faster R-CNN (Figure 3) to enable scale-aware,
knowledge-driven deep learning for automated Mars crater detection.

Figure 3. A knowledge-driven, scale-aware Mars crater detection pipeline. Components 1–3 in dashed boxes are new
features of the model.

3.3. Feature Pyramid Network (FPN)-Based Feature Extractor

The distribution of the crater BBOX size in Figure 2 shows that the scale range of
the craters is very large. Therefore, ability to detect objects in a multi-scale context is
important for the detection model. In the original Faster R-CNN -based detection pipeline,
the model utilizes only the (late) feature map resulting from the last convolution layer.
As discussed, a feature map created from the deeper network will contain high-level
semantics of the image, that is, object relationships. Its dimension is much smaller than a
feature map generated in the early convolutional layers. Correspondingly, small objects
will be dissolved and often represented in less than one pixel in the late feature maps
(refer to component 1 in Figure 3). Hence, using the late features alone will reduce the
detection performance of small craters. To achieve multi-scale deep learning, we replace
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the feature extractor with a feature pyramid network (FPN) [59]. As shown in Figure 3, an
FPN consists of an encoder-decoder structure. The encoder takes an image as input and
hierarchically computes features layer by layer. The spatial dimension of feature maps is
gradually reduced. It is easier to capture larger objects in later feature maps and smaller
objects in earlier feature maps. Inherently, the encoder generates feature maps of different
scales at different convolution stages. In comparison to the image pyramid approach, FPN
reduces the computation time by efficiently constructing multi-scale features from a single
resolution image.

However, the semantic information is not equally strong at each level. The high-
resolution maps (early features) contain only low-level semantics, that is, texture and edges,
and are therefore limited in their interpreting power. To enhance the weak semantics
of early features, the decoder successively aggregates information from later layers into
earlier layers and gradually recovers the object semantic details in a top-down manner
with lateral connections. Iteratively, the later, coarser but semantically stronger feature map
is upsampled to the same size as the feature map in the earlier layer. The earlier feature
map also undergoes a 1× 1 convolutional operation to reduce the number of channels in
order to fix the number of channels of the final feature map. Both feature maps are then
merged to create rich semantics at all scales.

Finally, a 3× 3 convolution is applied on the merged feature map to generate the final
feature map. This is to reduce the aliasing effect during the upsampling operation. Feature
maps at all scales are then sent to the RPN and the classifier for crater detection.

3.4. Domain Knowledge Integration with the Data-Driven Model

Besides the multi-scale improvement of the feature extractor, we also explore how
domain knowledge can be integrated into the data-driven learning framework to further
empower the detection model. In traditional CDAs, the crater rim is often considered an
important feature to localize a crater. Therefore, we explicitly incorporate the rim feature
as prior knowledge into the model.

The first step is to trace and extract the crater rim in the images using CHT [41,75].
CHT is a feature extraction technique used in image processing for detecting circles. It is
a commonly used strategy and has been applied in a number of CDAs [20,76]. The basic
idea is to vote centroid candidates from each edge point using every possible radius and
identify a circle using the highest voted centroid and radius. Figure 4 demonstrates the
resultant images after CHT using the same images in Figure 1. The area in white indicates
circles found in the images. In this study, the CHT is conducted during the preprocessing
step which is not involved in the training phase so this extra process will not affect the
model’s efficiency.

(a) (b)
Figure 4. Results from Circular Hough Transform (CHT) on images shown in Figure 1: (a) Single
crater; (b) Multiple craters.
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The second step is to integrate the identified rim feature into the detection network.
As shown in Figure 3 (Component labeled as 2), this is achieved by adding another FPN as
a feature extractor running in parallel with the original FPN. Each stage of the new FPN
generates a feature map of the same dimension as the output of the FPN applied on the
original input image. Two dimension-identical feature maps are then concatenated together.
For the RPN or the classifier, the input becomes a feature map with twice the channels.
Therefore, a 1× 1 convolution operation is applied to reduce the channel dimensions to the
same number as before. Compared to the single FPN, the data propagation in the two FPN
structures can be easily implemented in parallel so the overall execution time will increase
only by 5%.

3.5. Scale-Aware Object Classification

For crater detection, the large size variance not only introduces the feature scale
difference but also completely different features. For example, large craters appear with
central peaks or multi-ring basins while small craters exhibit obscure bowl structures. This
large intra-class feature variance may dramatically reduce detection performance because
the original pipeline utilizes only a single classifier. Therefore, we replace the classifier
by a scale-aware classifier [62]. The scale-aware classifier assembles two scale specific
sub-networks for large and small craters, respectively, and uses a scale gate function to
adaptively combine detection results of the sub-networks.

Figure 3 (Component labeled 3) shows the structure of the scale-aware classifier. The
classifier takes the feature map at each level of the FPN and the crater proposals from the
RPN as inputs. Two sub-networks generate category-level confidence scores and BBOX
regressions like the original classifier in the Faster R-CNN. The detection results are then
combined using a weighted sum with weights given by a scale-aware weighting layer. The
scale-aware weights assigned to the two sub-networks make them specifically focus on
their targeted crater sizes.

Intuitively, the weighting layer assigns a higher weight to the large-size sub-network
when the crater has a large size. Otherwise, it gives a higher weight to the small-size
sub-network. Suppose the weight for the large-size sub-network is wlarge, the weight for
the small-size sub-network is wsmall and the input crater size is d, where d is defined as the
length of a BBOX edge. Then, wlarge and wsmall are calculated as:

wlarge =
1

1 + α · exp− d−d̄
β

(4)

wsmall = 1− wlarge, (5)

where d̄ is the average size of the craters in the training set and α and β are two learnable
parameters. The ranges of wlarge and wsmall are from 0 to 1, and their sum is 1, a form of
weighted sum to avoid the tendency of one model dominating the decision-making process
over the other.

Once wlarge and wsmall are generated, the detection results from two sub-networks
are simply combined using weighted sum. For example, the category-wise confidence
scores of each proposal from large-size and small-size sub-networks are slarge and ssmall ,
respectively. sx = (sx0, sx1) where sx0 is the score for the background and sx1 is the score
for the crater from the sub-network x. The final score s f inal = (s f 0, s f 1) becomes

s f inal = wlarge · slarge + wsmall · ssmall . (6)

The final BBOX regressions are calculated using the same weighted sum approach.
s f inal also has a range between 0 and 1, with 1 being high confidence and 0 being low
confidence. The proposal receiving the highest score is chosen as the final prediction.
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4. Experiments
4.1. Experiment Setup

We demonstrate the performance of the proposed model through a series of exper-
iments using the generated crater images. The total number of images is 92,575 and the
total number of craters is 192,036. We separate the images evenly into training and testing
sets and both have the same geographical distribution on the Mars surface. This splitting
strategy ensures that data in both sets have similar statistics. The training set includes
46,288 images (96,481 craters) and the testing set includes 46,287 images (95,555 craters).

We compare our method with the baseline model Faster R-CNN [72]. Faster R-CNN
is the first phenomenal work that uses CNNs for feature extraction, region proposal, and
classification in an end-to-end manner. It improves not only the detection performance but
also computational efficiency. Based on Faster R-CNN, FPN introduces a feature pyramid
to the backbone feature extractor to achieve multi-scale detections without sacrificing
speed. It generates semantically rich feature maps at all levels via a top-down pathway
and lateral connections. Five feature maps of different scales are sent to the RPN. The
maximum number of proposals before reduction (NMS) at each level is 2000 so the total
number of proposals is 10,000. To make a fair comparison, we increase the maximum
number of proposals of Faster R-CNN to 10,000, also. Besides integrating FPN, our method
includes two additional improvements: domain knowledge integration (D) and scale-
aware classifier (S). We provide a detailed comparison of the performance contribution of
each modification.

The evaluation metrics used in this work are precision, recall and mAP. Precision
and recall are standard metrics in the CDA works which refer to the proportion of correct
predictions and the proportion of ground truths that are identified, respectively. In the
object detection task, a score is given to every detection. Therefore, a predefined detection
threshold determines valid predictions and affects the precision and recall calculation. In
this work, we use 0.5 as the detection threshold, and also demonstrate how this value
affects the final result. mAP is a popular metric to evaluate deep learning-based object
detection models. In comparison to precision and recall, mAP further measures how well
the model finds all ground truths by ranking all the possible predictions. A model performs
better if it finds more ground truths in the top-K predictions.

Ablation experiments are also conducted to investigate the impact of different param-
eters in the proposed method, for example, how does the number and size of the training
images affect the detection results? The models were developed with the PyTorch [77]
machine learning framework. ResNet50 (pretrained on ImageNet) is used as the feature
extractor for both the Faster-RCNN and our proposed models. All models are trained with
stochastic gradient descent (SGD) optimization algorithm. The hyperparameters include
an initial learning rate 0.005 and a momentum value 0.9. Furthermore, a learning rate
scheduler is used to decay the learning rate to 0.001 after 30 epochs. One epoch means hav-
ing the entire dataset passed through the network once. Total number of epochs is set to 50.
The experiments were conducted on Amazon’s EC2 platform using a g4dn.xlarge instance.
The g4dn.xlarge instance on AWS provides 4 vCPUs, 16 GB memory and 1 NVIDIA T4
GPU with 16 GB memory. The 100 GB elastic block storage (EBS) was used to store the
training and testing data as well as trained models.

Experiment 1 (Section 4.2) compare the performance of the baseline Faster R-CNN
model with our proposed improvement. Experiment 2 (Section 4.3) further illustrates
the impact of the detection threshold on the final results in terms of precision and recall.
Experiment 3 (Section 4.4) investigates the influence of the proposed methods on the
model’s efficiency. Section 4.5 presents the detection results.

4.2. Model Comparison

In Experiment 1, we compared the baseline model (Faster R-CNN) with our proposed
improvements (FPN, domain knowledge integration (D) and scale-aware classifier (S)). The
information presented in Table 1 demonstrates the detection results in terms of total number
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of predictions (with detection threshold set to be 0.5), precision, recall, and mAP. Overall,
the proposed model combining the proposed strategies outperforms the baseline model for
all evaluation metrics. In comparison, Faster R-CNN performs worse than other models
without the adoption of multi-scale future maps. Compared to the network integrating
FPN only (we call it FPN for short), the FPN + D model generates more predictions with a
higher recall. This is because the CHT module guides the network to locate potential crater
locations and increases the information intensity of the feature maps, thereby ensuring
detection of more possible craters. However, the semantic ambiguity due to large variation
of crater sizes complicates the detection process using a single classifier. This results in a
lower precision than FPN. This issue is well addressed by the integration with a multi-scale
classifier S. As Table 1 shows, the FPN + S model is capable of generating more accurate
results (higher precision) by separating the decision process for large and small craters.
Surprisingly, the FPN + S model also increases the recall rate with fewer predictions. By
analyzing the results of FPN and FPN + S, we conclude that the scale-aware classifier
not only eliminates the decision ambiguity between craters of different sizes but also
helps the model to distinguish between craters and non-craters. The results of the two
models (FPN + D and FPN + S) verify that our proposed methods work well from both
the precision and recall perspectives. The final model (FPN + D + S) yields a significant
increase (13% and 20.6% in precision and recall) than the Faster-RCNN model and yields a
10.37% and 4.75% increase in precision and recall, respectively, than FPN. It also achieves
the state-of-the-art performance in the mAP metric. This result verifies the outstanding
performance of the proposed model compared to existing solutions.

Table 1. Model comparison (threshold = 0.5). D: domain knowledge integration. S: scale-
aware classifier.

Models Predictions Precision (%) Recall (%) mAP (%)

Faster R-CNN [72] 88,125 71.53 65.97 72.18
FPN [59] 105,539 74.13 81.87 78.09
FPN + D 115,121 69.70 83.97 76.16
FPN + S 97,231 82.63 84.08 79.72
FPN + D + S 97,956 84.50 86.62 81.45

4.3. Detection Threshold

The outputs of object detection models come with scores. The score represents the
confidence level associated with each prediction and is usually transferred into a softmax
score within [0, 1]. We can specify a cutoff threshold after training to determine what is a
“good” match. Predictions below the threshold will be removed and not considered further.
In our proposed network, the threshold is probably the most important hyperparameter. It
determines the number of objects that will be identified as craters. A high threshold will
let a few crater candidates to pass the model, resulting probably in a high precision but
a low recall. A low threshold value will instead result in more detections, but the results
may not be as good in quality as those receiving a high probability score. In this scenario,
recall rate may increase but precision may be lowered. Hence, an improper threshold
value may lead to much extra work to filter out false positives or become unhelpful for
crater cataloging. Therefore, we investigate how detection threshold impacts the predictive
performance. In experiment 2, three different threshold values are chosen: 0, 0.3, and 0.5,
and two models (raw FPN and our proposed model) are compared in terms of number of
predictions, precision, and recall. The results are shown in Table 2. It is obvious that the
number of predictions decreases as the threshold value increases. However, in comparison
of the two models, our proposed model (FPN + D + S) has fewer predictions than FPN
under the same threshold value. From the previous experiment, we found that this is
mainly due to the integration of the scale-aware classifier which allows the discerning of
crater from non-crater objects. By removing a large portion of false positive predictions,
our proposed model yields both higher precision and recall than the FPN model. The



Remote Sens. 2021, 13, 2116 13 of 19

results reflect a general trend that the higher the threshold that is utilized, the higher the
precision it will achieve. At the same time, the recall will be lower. This experiment also
allows us to identify the trade-offs between accuracy and efficiency and provides a general
guideline for assigning a proper threshold value to each task to obtain a satisfactory result.
For example, the recall can be as high as 92.01% if we choose the threshold value to be 0,
but the model may spend lots of time removing incorrect predictions (about 30% of the
total predictions). Although it locates most of the potential craters, this value is chosen
only when cataloging all craters in a given area is the most important requirement.

Table 2. Detection threshold comparison.

Models Threshold Predictions Precision (%) Recall (%) mAP (%)

FPN [59]
0 140,864 55.92 85.97

78.090.3 109,001 69.96 83.22
0.5 105,539 74.13 81.87

FPN + D + S
0 128,524 68.40 92.01

81.450.3 103,907 81.09 88.18
0.5 97,956 84.50 86.62

4.4. Computational Efficiency

In this experiment, we compare the unit training and inference (prediction) time
among different models. The training time is measured as the time cost per iteration, which
includes calculating the prediction and loss (forward propagation) and updating the model
parameter (backward propagation) of the network. The inference time is measured as
the time cost of the forward propagation for a single image. Both runtimes are measured
on NVIDIA T4 GPUs. Several points are noteworthy given the results in Table 3. First,
although the structure of Faster R-CNN is simpler than FPN, its training and inference
time are more than FPN. The reason lies in the time-consuming operation for NMS, which
is used to remove overlapping proposals and has O(n2) runtime where n is the number
of proposals. In order to have a fair comparison, we make the total number of proposals
the same between Faster R-CNN and FPN. However, FPN generates proposals from
five different feature maps and Faster R-CNN uses only the feature map from the last
convolution layer. This results in Faster R-CNN running NMS with a large number of
proposals (10,000) while FPN runs NMS separately with a small number of proposals (2000)
at each level. Therefore, Faster R-CNN spends more time on the training and inference
even though FPN contains more convolution operations. Because FPN performs better
than Faster R-CNN, we further compare the efficiency of our proposed strategies over
the FPN.

Second, FPN + D (Domain Knowledge Integration) model is about 1.6x–1.7x slower
than FPN on a single-GPU implementation. This is due to an additional backbone fea-
ture extractor, and the operations execute in a sequential order in two backbone feature
extractors. To further improve efficiency, model parallelism can be utilized because one
of the two backbones is sitting idle throughout the execution and the operations in two
backbones are independent. We split two backbones onto two GPUs and the computed
feature maps are combined in one of the GPUs. The result shows that the time cost of the
model’s parallel implementation is only about 5% longer than the FPN. This is due to the
overhead in copying data back and forth across the GPUs. Besides, the time consumption
of the FPN + D model does not include the rim feature calculation for domain knowledge
integration. Such operations can be computed in the pre-processing step and will not
influence training and inference efficiency. Next, the additional sub-network (classifier) of
FPN + S model introduces the extra time cost compared to the FPN. The 15% slower speed
yields an 8.5% increase in precision, 2.21% increase in recall, and 1.63% increase in mAP.
Finally, the combination of D and S modules (FPN + D + S) increases the time by almost
twice that of the FPN in the single-GPU implementation. Like the FPN + D network, we
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can apply model parallelism to reduce the time cost. This results in 25%–30% more time
than the FPN with over 3%–10% improvement in all evaluation metrics.

Table 3. Efficiency comparison. *: Model parallelism on two GPUs.

Models Training Time (Second/Iteration) Inference Time (Second/Image)

Faster R-CNN [72] 3.0983 0.0695
FPN [59] 1.4386 0.0301
FPN + D 2.4576 (1.5091 *) 0.0492 (0.0314 *)
FPN + S 1.6544 0.0361

FPN + D + S 2.8415 (1.8112 *) 0.0583 (0.0389 *)

4.5. Detection Results

Figure 5 demonstrates the crater prediction results (in blue box) and the ground-truth
labels (in red box) of our proposed model. The figures show that the model performs well
in detecting all labeled craters. Figure 5a,b demonstrate that craters can be detected even
though the size variance is large. The model is also capable of predicting multiple craters of
the same size (Figure 5c) or different sizes (Figure 5d) in the same image scene. Interestingly,
the BBOX predicted by the model is also of higher quality than the ground-truth labels. In
addition, the model can not only detect labeled craters, but it can also capture craters which
are not yet included in the Robbin’s database (Figure 5e,f). Through visual inspection, they
are likely to be craters. Besides these new predictions, there are also crater-like features
that are not detected by the model (Figure 5f).

(a) (b) (c)

(d) (e) (f)
Figure 5. (a–f) illustrate sample detection results for Mars craters at different locations on the Mars surface. The ground-truth
Bounding Boxes (BBOX) are labeled in red and model prediction results are the blue boxes.
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To further evaluate the model performance (model with FPN + D + S), the cumula-
tive plots were generated for analyzing the model’s predictive performance against the
46,287 testing images. The number of ground truth labels, the model detection results,
true positive, false positive and false negative results at different crater sizes are presented.
Among which, true positive results are correct detections from the model; false positive
results refer to the non-crater objects detected as craters; false negative results refer to
craters failed to be detected by the model. Figure 6a shows the accumulative plot for all
the results and Figure 6b shows part of the results with crater size smaller than 50 pixels
(5 km in diameter). The results show that (1) the model predicted more results (orange line)
than the ground-truth data (blue line), but the difference is small; (2) the number of true
positive results are about three times as many as the false positive results; and (3) most false
positive results are detected in smaller craters (with diameter smaller than 5 km/50 pixels).
A portion of these false negatives might be craters (blue-only boxes in Figure 5). They will
be further analyzed through joint efforts with Earth and space scientists. If our assumption
is true, our model actually has higher prediction accuracy than the current numbers. These
findings can be used to further enrich the knowledge about Mars’ craters and the land
surface processes on Mars.

(a)

(b)
Figure 6. A detailed analysis of detection results: (a) Cumulative plot for ground-truth and model
prediction results of craters of all sizes; (b) A closer look at the cumulative plot in (a) for ground-truth
and model prediction results of craters with diameters less than 50 pixels (5 km).
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Overall, the proposed GeoAI model has demonstrated its outstanding capability in
the automated detection of Mars craters. Besides advanced models, we have carefully
prepared the training and testing datasets that have both global coverage and geographical
representativeness of Mars craters. Different from existing solutions, especially the CDA
algorithms applied to a specific region, our model is capable of handling and extracting
prominent image features from Mars craters distributed at a global scale. This way, model
generalization and scalability can both be achieved. Our GeoAI model can serve as an
effective tool for enriching existing Mars crater databases and correcting the location
information of the logged craters.

5. Conclusions and Future Work

We have presented a GeoAI framework for building an accurate crater detection
system. By injecting the domain knowledge and enabling the scale-aware learning, our
method shows obvious improvements over existing object detection models with deep
learning. Furthermore, the system presents a methodology for significantly reducing the
time for cataloging new craters. What enables such a conversion is the convergence research
between computer scientists, and Earth and space scientists. Computer science researchers
provide expertise in image processing. Models for general object detection and localization
have been extensively developed in the community. Utilizing the domain knowledge of
crater data and features from geospatial scientists enables domain-specific improvement to
the proposed model. The integration of data-driven and knowledge-driven analytics yield
important results in automated crater cataloging.

In the future, we will further improve two aspects of our research program: data and
methodology. From the training data perspective, many craters were removed during train-
ing data generation which results in incomplete crater cataloging in the benchmark dataset.
An enhanced data split and merge strategy will be developed to leverage the model’s
capabilities to the entire Mars craters. Next, although Robbins’ crater database contains
over 380,000 impact craters on Mars, a large number of small craters with diameters less
than 1 km have not been included in the database. From the methodology perspective,
while we have successfully shown the accurate detection results of our model, efficiency
optimization becomes the next stage of work. One possible strategy is to combine the RPN
and the object classifier such that the detection framework can be transformed to the more
efficient, single stage learning. We will also integrate multi-source data, such as remote
sensing images and the Mars elevation dataset, into the deep learning model to further
improve the detection accuracy. The model and data in this work will be open sourced to
encourage more researchers to jointly tackle this exciting research area.
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Abbreviations
The following abbreviations are used in this manuscript:

GeoAI Geospatial Artificial Intelligence
DEM digital elevation model
CDA Crater detection algorithm
CNN Convolutional neural network
mAP Mean Average Precision
BBOX Bounding box
THEMIS Thermal Emission Imagining System
DIR Daytime infrared
RPN Region proposal network
NMS Non-maximum suppression
RoI Region of interest
FPN Feature pyramid network
CHT Circular Hough Transform
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