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Abstract: Recent computer vision techniques based on convolutional neural networks (CNNs) are
considered state-of-the-art tools in weed mapping. However, their performance has been shown
to be sensitive to image quality degradation. Variation in lighting conditions adds another level of
complexity to weed mapping. We focus on determining the influence of image quality and light
consistency on the performance of CNNs in weed mapping by simulating the image formation
pipeline. Faster Region-based CNN (R-CNN) and Mask R-CNN were used as CNN examples
for object detection and instance segmentation, respectively, while semantic segmentation was
represented by Deeplab-v3. The degradations simulated in this study included resolution reduction,
overexposure, Gaussian blur, motion blur, and noise. The results showed that the CNN performance
was most impacted by resolution, regardless of plant size. When the training and testing images
had the same quality, Faster R-CNN and Mask R-CNN were moderately tolerant to low levels of
overexposure, Gaussian blur, motion blur, and noise. Deeplab-v3, on the other hand, tolerated
overexposure, motion blur, and noise at all tested levels. In most cases, quality inconsistency between
the training and testing images reduced CNN performance. However, CNN models trained on low-
quality images were more tolerant against quality inconsistency than those trained by high-quality
images. Light inconsistency also reduced CNN performance. Increasing the diversity of lighting
conditions in the training images may alleviate the performance reduction but does not provide the
same benefit from the number increase of images with the same lighting condition. These results
provide insights into the impact of image quality and light consistency on CNN performance. The
quality threshold established in this study can be used to guide the selection of camera parameters in
future weed mapping applications.

Keywords: precision agriculture; digital weed science; object detection; instance segmentation;
semantic segmentation

1. Introduction

Choosing the right camera parameters and lighting conditions is a critical considera-
tion for researchers and engineers trying to obtain the best possible computer vision result
in agricultural applications [1–3]. There are numerous camera choices on the market, each
with many adjustable parameters. Furthermore, the surrounding environments, especially
the lighting conditions, vary across different image collection events and times, severely
complicating the decision-making process. Unfortunately, limited research has been con-
ducted to provide insight into the vision system settings that are most suitable for weed
mapping applications. Inappropriate selections may lead to unsatisfactory mapping results,
and re-collecting images using new settings may be expensive and sometimes impossible.
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Recent computer vision techniques based on convolutional neural networks (CNNs)
are considered state-of-the-art tools in agriculture. Kamilaris and Prenafeta-Boldú [4]
reported in a literature survey that CNNs were employed for object detection in 42% of the
surveyed agriculture-related papers, and that they typically outperform traditional image
processing techniques. Using YOLOv3, a popular CNN framework, Gao et al. [5] obtained
average precisions of 76.1% and 89.7%, respectively, for the detection of hedge bindweed
(Convolvulus sepium) and sugar beet, with a 6.48 ms inference time per image, illustrating
the great potential of CNNs for weed mapping applications.

Despite the impressive accuracy and speed of CNNs, they have been shown to be
sensitive to image degradation. Various types of image degradation, including Gaussian
blur, motion blur, out-of-focus blur, reduced contrast, compression, fish-eye distortion,
reduced resolution, salt-and-pepper noise, Gaussian noise, haziness, underwater effect,
color distortion, and occlusion have been simulated by researchers to study their influence
on CNN performance [6–10]. Although results showed varying degrees of impact on the
performance of CNN, a major drawback in these studies was that all the image degradation
simulations were performed on the images that were already processed by cameras or
computers, which do not sufficiently represent real image degradations that occur in a
camera [11]. Moreover, the reported degradation levels cannot be related to real camera
parameters, which further limits their utility.

In addition to image quality, variation in illumination adds another level of complexity
to weed mapping since it has enormous effects on the appearance of objects [12]. Variations
in light direction result in shadows of different shape and position. Shifts in the light
spectrum affect the pixel intensities of each color channel in an image [13]. Spotlights,
such as the sun, tend to create highlights on objects, while area light sources such as
light-emitting diode (LED) light panels tend to make objects appear flattened [14]. Peng
et al. [15] simulated human face images under different illuminations and found that a face
under non-uniformly distributed light has greatly reduced feature similarity to the same
face under frontal light.

Standardizing computer vision systems may help address the issues associated with
image degradation and light variation [16,17], but is difficult to achieve in weed mapping.
Camera choices are often affected by the budget and commercial availability. This is espe-
cially true for drone-mounted cameras as they are often sold as an integrated component
of a drone that is expensive to replace. Moreover, new camera models are launched by
manufacturers at a fast rate and old models are typically terminated. Lighting condition is
another factor that is difficult to control. Artificial lighting can be an option for proximal
weed mapping, but is virtually impossible for remote mapping.

To our knowledge, no research has been done in the weed mapping domain to
determine the influence of image quality and light consistency on CNN performance. Yet, a
wide range of cameras have been used under different lighting conditions to collect various
weed image datasets [18–20]. Because the plant species, resolution, image channel number
and lighting conditions are all different in these datasets, comparison of CNN performance
between these datasets is likely to result in ambiguous or misleading conclusions. In
order to determine the minimum quality that should be met for image dataset collection to
train CNNs in weed mapping tasks, a robust approach is to simulate the image formation
pipeline for different image qualities [21].

In this research, we aim to gain insights into the influence of image quality and
light consistency on the performance of CNNs for weed mapping by utilizing the image
formation pipeline shown in Figure 1 (described further in Section 2). This pipeline is
simulated with the introduction of various image alterations (quality degradations and
enhancements) and light parameters to test their effect on CNN performance.
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Figure 1. Raw image formation and postprocessing pipeline. Redrawn from Tsin et al. [22],
Liu et al. [23], and Sumner [24] based on the noise model proposed by Healey and Kondepudy [25].

2. Background
2.1. Formation of Raw Images

Digital images are formed from photons emitted by light sources and reflected from
object surfaces. The photons are then diffracted through the camera lens and projected
onto the detector array inside the camera. Each photon produces an electrical response at a
specific site on the detector array, and the resulting signals are transformed electronically
into a grid of pixel values. Pixel values thus convey the information of physical properties
and conditions of the light sources and scenes.

The digital camera image formation pipeline can be grouped into a sequence of
modules that describe the scene, optics, sensor, and processor [26]. For a given scene, the
optical system of a camera first linearly converts scene radiance into irradiance on the
detector array [27]. However, lens imperfections, defocus, and light diffraction limit the
precision of scene reproduction on the camera sensor. These factors can cause image blur
and can be collectively modeled as a convolution between the ideal sensor irradiance map
and a point spread function (PSF) [28–30]. The irradiance map is commonly filtered by
a Bayer filter to separate red, green and blue color bands [31]. As a result, a single pixel
location is only able to record one color. The sensor then transforms the optical irradiance
into a 2D array of electron buckets. In this process, individual light detectors respond
linearly to the number of incident photons and sum the responses across wavelength.

Various types of noise are introduced when the camera converts the irradiance map
into a raw digital image. There are five main sources of noise as indicated by Healey and
Kondepudy [25], namely fixed pattern noise, dark current noise, shot noise, read noise,
and quantization noise. In this research, we only focus on dark current noise, shot noise,
read noise, and quantization noise since fixed pattern noise is a relatively minor source [32].
The signal intensity P at a specific pixel location can be modeled as:

P = K(E + NDC + NS + NR) + NQ (1)

where E is the number of electrons stimulated by the sensor irradiance, NDC is the noise
due to dark current and follows a Poisson distribution, NS is the zero mean Poisson shot
noise with a variance equal to E, which is given by the basic laws of physics and behaves
consistently for all types of camera [32], NR is the read noise that is independent of E and
follows a Gaussian distribution, NQ models the quantization noise introduced when the
camera converts analog values to digital values, and K is the combined gain of the output
amplifier and the camera circuitry.
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Signal intensity P has the following statistical properties:

µ(P) = KE + Kµ(NDC) (2)

σ2(P) = K2
(

E + µ(NDC) + σ2(NR)
)
+ σ2(NQ

)
(3)

If we denote K2σ2(NR) + σ2(NQ
)

as σ2
C, it can be easily seen that σ2(P) and µ(P) have

the following linear relationship:

σ2(P) = Kµ(P) + σ2
C (4)

Since σ2(P) and µ(P) follow a positive linear relationship, a large µ(P) means that a
pixel has a large σ2(P), but it does not necessarily mean low image quality. The relative
amount of significant information compared with noise in the image determines image
quality [33] and can be expressed in terms of signal-to-noise ratio (SNR), which is defined
as the ratio of the signal to its standard deviation [34]. Based on our noise model, SNR can
be written as:

SNR =
µ(P)√
σ2(P)

=
µ(P)√

Kµ(P) + σ2
C

(5)

2.2. Raw Image Postprocessing

Digital values read out by the camera circuitry from the sensor array will form a
raw image. In RGB cameras, since each pixel is filtered by a Bayer filter to record only
one of the three colors, raw images are often stored as a Bayer pattern array. Several
postprocessing steps take place in the camera to convert the Bayer pattern array to an image
that can be rendered correctly. These steps include white balancing, exposure correction,
demosaicking, color transformation, tone adjustment, and compression [22–24,31,35]. It
should be noted that there is no standard postprocessing sequence, and each camera
manufacturer implements it differently [31].

2.3. Convolutional Neural Network (CNN) Structures

CNN is a feed forward type of network commonly used to process images [36]. The
tasks for which CNN models are most used in weed mapping can be grouped into three
categories: object detection, semantic segmentation, and instance segmentation. Object
detection localizes objects in an image with bounding boxes and classification confidences.
Faster Region-based CNN (R-CNN) [37] is one of the most representative models. It
generates region proposals first and then predicts on each proposal using a classification
branch. Different from object detection, semantic segmentation makes pixelwise predictions
in an image [38]. DeepLab-v3 [39] is the state-of-the-art model for semantic segmentation.
Instance segmentation is more challenging as it requires detecting objects in an image
and segmenting each object. Mask R-CNN [40] is the most representative architecture
for instance segmentation and adds to the Faster R-CNN structure an additional branch
parallel to the existing classification branch to predict segmentation in a pixelwise manner.

3. Materials and Methods

In this paper, we focus on determining the influence of image quality and light consis-
tency on the performance of CNNs in weed mapping by simulating the image formation
pipeline. We collected images under three lighting conditions and varied our simulation
based on the five most commonly occurring image degradation types in cameras: resolu-
tion reduction, overexposure, Gaussian blur, motion blur, and noise. We also studied three
popular CNN frameworks used in weed mapping: object detection, semantic segmentation,
and instance segmentation.
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3.1. Image Collection

We used a FUJIFILM GFX 100 RGB (red, green and blue) camera for image collection.
The camera provides 100-megapixel resolution with its 43.8× 32.9 mm sensor. We mounted
the camera to a Hylio AG-110 drone and set it to face straight downwards. The drone
was flown at a height of 4.88 m above the ground and a speed of 0.61 m/s during image
collection. The FUJIFILM GF 32-64 mm f/4 R LM WR lens with the focal length set to
64 mm yielded a spatial resolution of 0.27 mm/pixel and a field of view of 319 × 239 cm
on the ground. This image collection configuration captured very detailed visual informa-
tion of the young crop plants and weeds, while allowing image collection to take place
under natural lighting conditions without much influence from the shadow of the image
collection system.

Image collection took place at the Texas A&M University AgriLife Research Farm,
College Station, Texas in June 2020 over a cotton field and a nearby soybean field, roughly
one month after planting. The drone was operated in the automatic navigation mode
over the same area of the field during each flight. Three lighting conditions were targeted:
sunny-around noon (5 June), sunny-close to sunset (4 June), and fully cloudy (5 June), with
the sun elevation angle being around 67◦, 16◦, and 60◦, respectively. We denote the three
collected image sets as Snoon, Ssunset, and Scloudy, respectively (Figure 2). The shutter speed
was set at 1/4000s and ISO at 1250 for all the three lighting conditions. These settings were
selected in order to reduce motion blur as much as possible while keeping the noise level
relatively low. Small f-stops result in vignetting effects in images. To avoid this problem,
the f-stop was set to 8 for the sunny conditions and 5.6 for the cloudy condition. All data
were collected within a 24 h period, with the intention to reduce the impact of plant growth
on our result. All collected images were stored in raw format at 16-bit depth.
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Figure 2. Example of images divided to 2048 × 2048 in Snoon (a), Ssunset (b), and Scloudy(c).

3.2. Camera Characterization

To simulate the image formation pipeline with various types of image degradation,
it is necessary to know the inherent camera characteristics so that the degradation can be
introduced precisely, and the result can be reported quantitatively for future comparison.
We characterized the point spread function, noise, gain, and color transformation matrix of
the camera and the lens system using the raw images. Point spread function was estimated
as a 2D Gaussian distribution by the slant edge method proposed by Fan et al. [30] using
an image of a slant edge landmark taken at the beginning of each data collection (Figure 3).
Noise and gain estimation was performed following the method proposed by Healey and
Kondepudy [25]. Since it is difficult to estimate SNR of each pixel for a moving camera, we
instead report SNR for the whole image dataset using the mean pixel intensity µ̃(P) of all
the pixel values in the dataset.
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Figure 3. An example of the ColorChecker and the slant edge landmark image taken by the camera
before data collection in the field, for estimating color transformation matrix M and point spread
function (PSF).

To ensure correct rendering of the images, we converted the raw images from the
camera’s color space to the standard RGB (sRGB) space through the Commission Interna-
tionale d’Eclairage (CIE) XYZ space. For this purpose, we captured an image of an X-Rite
ColorChecker the same way as in PSF estimation (Figure 3). The ColorChecker image was
white balanced using the 18% gray patch on the ColorChecker (the fourth patch from left
to right) as reference. We applied to the whole image the scaling factors that force the
average intensities of the red and blue channels on the gray patch to be equal to the green
channel. Furthermore, a 3 × 3 color transformation matrix M [41] was estimated to convert
the white-balanced RGB values to XYZ values. A least square estimation approach was
adopted to obtain M, using the mean pixel intensities for each of the 24 patches on the
ColorChecker and their corresponding XYZ values [42]. The transformation matrix from
XYZ space to linear sRGB space was obtained from [43].

3.3. Simulation

A reference image that perfectly reproduces scene irradiance is ideal for the simulation.
Unfortunately, such reference does not exist since any raw image from digital cameras does
not preserve all the information of the scene due to blurring, noise, and Bayer filtering.
We consider the raw images we collected as “ground truth” on which all the simulations
were conducted.

The final simulated output images were generated from the raw images processed
through the steps shown in Figure 1. We first subtracted the black level from the raw
images and white-balanced them using the scaling factors calculated during the color
transformation estimation process (Section 3.2). The images were then demosaicked using
the nearest neighborhood interpolation method [44,45]. After demosaicking, the color
transformation matrix M was applied to convert the images from camera RGB space to
XYZ space. Eventually, the images were converted to linear sRGB space and encoded by a
tone response curve with gamma equal to 2.4. All the simulated images went through the
same process except for the steps where degradation or denoising was introduced. The
output images without any degradation or denoising were used as the baseline. Example
images of the simulations are shown in Figures 4 and 5.
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3.3.1. Denoise

Convolutional kernels applied to the images for our blur simulations will inevitably
reduce the overall pixel noise levels [46]. To confirm that denoising will not alter CNN
performance, the non-local means algorithm proposed by Darbon et al. [47] was used to
denoise the raw images in this experiment. The principle of this algorithm is to search in a
window for patches that are similar enough to the patch of interest and then average the
pixel values centered at resembling patches. We set the size of patch and search window at
7 × 7 and 21 × 21 pixels, respectively. The parameter that controls the weights of pixels
with different similarity, h, was tested at three levels: 32, 64, and 128. A higher h results in
a smoother but more blurred image (Figure 4).

3.3.2. Resolution

For a detector array with a given size, the pixel number is inversely related to pixel
size. Our simulation of image resolution was analogous to replacing the original detector
array by an array with the same array size, but bigger pixel size. The raw images were first
demosaicked which were then resized using the box sampling algorithm [48]. Box sampling
considers the target pixel as a box on the original image and calculates the average of all
pixels inside the box weighted by their area within the box. Eventually each channel was
sub-sampled according to the camera’s Bayer array pattern. The rest of the postprocessing
steps were identical to that of the baseline images. Scale factor s was set to 0.707, 0.5, 0.353,
and 0.25 in our experiment.

3.3.3. Overexposure

An image may be described as overexposed when it loses highlight details [49,50]. In
principle, we can set up an experiment to study how exposure affects CNN by changing
shutter speed or aperture for the same scene. However, the drawback with this approach is
that SNR also gets changed, making it difficult to isolate SNR effect from exposure effect.
Thus, we simulated exposure in the postprocessing pipeline using the following function:

RGB′ =
{

RGB× 2EV i f RGB× 2EV < RGBmax
RGBmax otherwise

(6)

where RGBmax is the saturated intensity value allowed by the bit depth of the image. In this
experiment, exposure values (EV) of 2, 2.5, 3, and 3.5 were used. The resulting percentage
of saturated pixels for Snoon is shown in Table 1.

Table 1. Percentage of saturated pixels in each channel resulting from exposure simulation for Snoon

with EV values of 2, 2.5, 3, and 3.5.

Baseline EV = 2 EV = 2.5 EV = 3 EV = 3.5

Red channel <0.01% 48.8% 73.4% 81.3% 87.1%

Green channel <0.01% 0.42% 20.5% 67.0% 83.0%

Blue channel <0.01% 0.12% 0.21% 3.12% 41.0%

3.3.4. Gaussian Blur

The PSF resulting from lens imperfections, defocus, and the physics of light diffraction
limit were approximated using 2D Gaussian blur [28–30,51]. The raw images were convo-
luted with 2D Gaussian kernels at four variance levels to simulate the effect of different
PSFs. However, this will inevitably alter the variance of noise in each pixel and has similar
effect as denoising [46]. As shown in the result of denoise simulation, the performance of
CNN stays stable within a wide range of denoise levels. It can be assumed that reduction
of noise variance by 2D Gaussian kernels will not significantly alter the performance of
CNN. The 2D Gaussian kernels were applied with standard deviations (σB) at 1.25, 2.5, 5,
and 10. The resulting standard deviation of PSFs is shown in Table 2.
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Table 2. The standard deviations of the resulting PSFs after applying 2D Gaussian kernels to the raw
images on top of the inherent image PSF.

Baseline σB = 1.25 σB = 2.5 σB = 5 σB = 10

Red channel 1.46 1.92 2.90 5.21 10.11

Green channel 1.30 1.80 2.82 5.17 10.08

Blue channel 1.45 1.91 2.89 5.21 10.10

3.3.5. Motion Blur

A motion blurred image is resulted from object or camera movement during exposure
and can be in the form of translation, rotation, or sudden scaling [52]. In this research, we
only focused on the translation blur as it is the most common form in weed mapping. The
raw images were convoluted by 1D uniform kernels with different lengths to simulate the
effect of linear motion blur [52]. The length l of the 1D uniform kernels was set to 3, 5, 7,
and 9 pixels. The inherent motion blur resulting from the drone movement can be ignored,
as it is only equivalent to a 1

2 pixel long kernel, much smaller than the kernel length used
for simulation.

3.3.6. Noise

A Poisson distribution is well approximated by a Gaussian distribution according to
the Central Limit Theorem. The combined noise of a camera was simulated by a zero mean
additive Gaussian noise and different levels of SNR were achieved by varying the variance
σ2

N of the Gaussian noise. The same σ2
N was applied to all the three channels. The noise was

added with σN at 80, 160, 320, and 640 to the raw images. The resulting SNR for channel i
was reported as:

SNRi =
µ̃i(P)√

K̂iµ̃i(P) + σ̂i
2
C + σ2

N

(7)

where K̂i and σ̂i
2
C are the estimated gain and noise, and µ̃i(P) is the mean pixel intensity of

the whole dataset (Table 3).

Table 3. Signal-to-noise ratio (SNR) resulting from adding Gaussian noise to the raw images with
standard deviation σN at 80, 160, 320, and 640, respectively.

Baseline σN = 80 σN = 160 σN = 320 σN = 640

Red channel 24.6 19.6 13.6 7.7 4.0

Green channel 28.2 23.4 16.8 9.8 5.1

Blue channel 18.8 13.1 8.2 4.4 2.3

3.4. Image Annotation

Since the simulated images have a dimension of 11,648 × 8736, which is too large for
neural network training, the images were divided into 2048 × 2048 patches. The resulting
image sets were denoted as DSnoon, DSsunset, and DScloudy. Both bounding box and polygon
annotation were performed on the divided images. The plant types in the image set were
grouped into five categories: cotton, soybean, morningglory, grasses, and others. Although
there were several grass species, they were grouped into a single category since they were
hardly distinguishable in the images. The last category contains several weed species,
but only makes up less than 3% of the total plant instances. A total of 1485 images were
annotated for DSnoon, 500 for DSsunset, and 500 for DScloudy. The composition and the size
distribution of the annotated bounding box for the three lighting conditions were almost
identical (Figure 6).
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3.5. Neural Network Training and Evaluation

We trained and tested CNN models for three situations: (1) training and testing
images have the same quality; (2) training and testing images have quality inconsistency;
(3) training and testing images have light inconsistency. For the first and second situations,
simulation was only performed on the 1485 DSnoon images. DSnoon images were split
into 80% training set and 20% testing set. Two scenarios were considered for the second
situation, the first being that the training images have higher quality than the testing
images, the second being the opposite. In the first scenario, we trained a CNN model
using the baseline images and tested on the degraded images. In the second scenario, we
trained CNNs using images with specific degradations and tested on the baseline images.
For image light consistency study, training sets were assembled with different number
of images from DSnoon, DSsunset, and DScloudy. Trained CNNs by the assembled training
sets were then tested on 500 DSnoon images that were not used for training. All training
and testing were performed on a NVIDIA GeForce RTX 2080Ti GPU (graphics processing
unit) with PyTorch framework [53]. Images were augmented only by random horizontal
flipping during training.

We adopted a standard Faster R-CNN model with ResNet50 + FPN backbone [37,40].
The Faster R-CNN model was trained using transfer learning with the weights pretrained
by Microsoft Common Objects in Context (COCO) train2017 images, a public dataset
containing millions of images spanning 80 classes [54]. Stochastic gradient descent (SGD)
optimizer [55] with a learning rate of 0.0005 and a batch size of 2 was chosen to minimize the
loss function. Training stopped at 11,880 iterations when there was no further improvement
of CNN performance. The sizes of anchor boxes were set to 322, 642, 1282, 2562 and 5122

with aspect ratio at 0.5, 1.0 and 2.0. The size of anchor boxes was scaled accordingly when
testing the impact of resolution. Mask R-CNN provides both bounding box and instance
segmentation prediction, but we only reported its instance segmentation performance as
the bounding box prediction of Mask R-CNN and Faster R-CNN has a very similar trend.
The same training strategy was adopted for Mask R-CNN.

The Deeplab-v3 model was used with the ResNet50 backbone for semantic segmen-
tation [39]. The weights were pretrained by a subset of COCO train2017 images on the
20 categories that were present in the Pascal VOC dataset [56]. Each 2048 × 2048 image
was further divided into four during training. The SGD optimizer [55] was adopted with a
learning rate of 0.005 and a batch size of 2 to minimize the cross-entropy loss function. The
model was trained for 6 epochs, each with 2376 iterations. Because of the imbalance of pixel
number for each category, we used weighted loss for training, by setting the initial weights
at 0.1, 1.0, 1.0, 1.0, 1.0, and 10 for background, cotton, soybean, morning glory, grass, and
other, respectively. The weight of the background was adjusted to 0.5 after 2 epochs and to
1.0 again after another 2 epochs.
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3.6. Metrics

For object detection and instance segmentation, we presented the results following
the standard COCO-style average precision (AP). We reported AP for each plant category
and also the mean AP (mAP) averaged from categorical AP. In addition, to examine CNN
performance on plants with different sizes, the plants were grouped by bounding box area
into the range of 0–102 mm2, 102–202 mm2, 202–402 mm2, 402–802 mm2, 802–1602 mm2,
and >1602 mm2, corresponding to 0–36.52, 36.52–732, 732–1462, 1462–2922, 2922–5842, and
>5842 pixels. AP were then calculated for each area range. For semantic segmentation,
intersection over union (IoU) between the predicted mask and the ground truth mask of all
the testing images were reported for each category. The ground truth mask was generated
from the polygon annotation. The average of categorical IoU, mIoU, was also reported.

4. Results and Discussion
4.1. Effects of Image Denoising

In the experiment, we kept the size of comparing patch and search window the same
but changed the parameter h to control the amount of denoising. The image with h = 128
shows a significant reduction of noise but tends to over-smooth the texture of the leaves
and soil. However, the overall AP for object detection and instance segmentation was very
close to the baseline (Figure 7). The same trend was observed in the semantic segmentation
performance of Deeplab-v3. These results indicate that the denoising algorithm, even
though it makes the images more visually appealing, does not significantly influence the
performance of Faster Region-based CNN (R-CNN), Mask R-CNN and Deeplab-v3. It can
also be safely assumed that the denoising effect of the kernels used in Gaussian blur and
motion blur simulations will not significantly alter CNN performance.
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4.2. Effects of Image Degradation

Training and testing of Faster R-CNN, Mask R-CNN and Deeplab-v3 were conducted
on the images with the same degradation type and level. In general, the performance of
Faster R-CNN and Mask R-CNN tends to decrease with the increase of the degradation
levels (Figure 8). In contrast, Deeplab-v3 is more tolerant to image degradation.
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4.2.1. Resolution Reduction

Faster R-CNN and Mask R-CNN is sensitive to resolution reduction. The AP values
dropped from 55% to 34% for object detection and from 42% to 25% for instance segmenta-
tion when the resolution dropped from 2048 × 2048 (baseline) to 512 × 512, equivalent to a
drop of spatial resolution from 0.27 mm/pixel to 1.10 mm/pixel. The influence of resolu-
tion can also be seen in the trend for AP from small to large plants. In the baseline dataset,
object detection AP increased from 17% for plants smaller than 102 mm2 to 79% for plants
larger than 1602 mm2. The same trend was also observed in the instance segmentation AP
and semantic segmentation IoU.

4.2.2. Exposure

The red channel had the highest average pixel intensities in our dataset, followed by
the green and the blue channels (Table 1). When EV increased, the red channel was the
first channel with many pixels reaching saturation. However, the loss in highlight details
of the red channel did not impact Faster R-CNN and Mask R-CNN performance. This
is partially because most of the pixels with high red intensities were soil and the loss of
information in the soil pixels did not affect the detection and classification of the crops
and weeds. The performance did not decrease significantly even when the EV was 2.5,
although it resulted in about 20% highlight detail loss in the green channel. Significant
performance loss occurred when there was 67% highlight detail loss in the green channel.
This result indicated that Faster R-CNN and Mask R-CNN is moderately tolerant to detail
loss due to overexposure, especially in the red channel. Furthermore, the Deeplab-v3 was
slightly influence by the information loss due to overexposure, even when there was 83.0%
information loss in the green channel.

4.2.3. Gaussian Blur

Gaussian blur resulted in large quality degradation visually. However, it did not
largely affect the performance of instance segmentation until σB reached 10. It was also
notable that the performance drop occurred most severely for cotton. This is probably
an indication that the feature types utilized by Mask R-CNN were different across plant
species. For cotton, it is likely that Mask R-CNN relied more heavily on leaf details which
were mostly lost in the highly blurred images. The same also happened in the noise
experiment. Similar to that of Mask R-CNN, performance degradation for Deeplab-v3 only
happened when σB reached 10 but only at a smaller extent. The largest decrease in the
semantic segmentation IoU was also observed in cotton.

4.2.4. Motion Blur

Motion blur had little effect on the performance of Faster R-CNN, Mask R-CNN and
Deeeplab-v3. A slight reduction was observed when l was set at 7. This motion blur
level was the same as that observed with flying the drone at a height of 4.88 m and a
speed of 7.8 m/s, with the shutter speed and focal length settings at 1/4000 s and 64 mm,
respectively. This result indicates that weed mapping can be performed at a relatively high
speed without losing mapping accuracy.

4.2.5. Noise

Both in the object detection and instance segmentation tasks, low levels of noise
(σN = 80 and σN = 160 ) added to the images did not significantly change the performance
for different categories of plants, except for cotton. It was likely that noise masked the fine
details of cotton leaves, which the Faster R-CNN and Mask R-CNN relied upon (Figure 5).
A significant performance reduction was observed with Faster R-CNN and Mask R-CNN
when σN was 640, with corresponding SNR values at 4.0, 5.1, and 2.3 respectively for the
red, green, and blue channels. The Deeplab-v3 was less sensitive to noise, with the only
exception of cotton pixels wherein the classification accuracies were noticeably reduced at
σN = 640 .
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4.3. Quality Inconsistency between Training and Testing Datasets

CNN training and testing are two asynchronous processes. In real-world applications,
it is difficult to totally avoid the situation where the testing image quality differs from that
of the training images. Therefore, it is important to study how the quality difference (higher
or lower) between training and testing images can influence CNN performance. For the
high-quality training images, CNNs were trained on the baseline images and applied to the
images with various levels of quality degradation (Table 4). For the low-quality training
images, the CNN models were trained on images with specific degradations and were then
applied to the baseline images (Table 5).

Faster R-CNN and Mask R-CNN trained on the baseline images were very sensitive
to the degraded testing images. The highest sensitivity was observed with resolution
reduction; when the resolution decreased from 2048 × 2048 to 512 × 512, object detection
AP reduced from 55.4% to 3.5% and instance segmentation AP reduced from 42.3% to
2.3%. Faster R-CNN and Mask R-CNN were also sensitive to the exposure inconsistencies
between the training and testing images, especially when the exposure differences were
high. In contrast, low levels of motion blur and noise had little effect on Faster R-CNN
and Mask R-CNN predictions. Deeplab-v3, on the other hand, was the most susceptible to
exposure inconsistency. All levels of overexposure resulted in very poor segmentation per-
formance. This was probably due to the heavy reliance of Deeplab-v3 on color information.
The performance of Deeplab-v3 was moderately sensitive to resolution reduction, Gaussian
blur, and noise, much lesser than that of Faster R-CNN and Mask R-CNN. Motion blur in
the testing images had the least impact on Deeplab-v3′s performance and did not seem to
affect Deeplab-v3 at low levels.

When the quality of the training images was lower than the testing images, the
performance of Faster R-CNN and Mask R-CNN was less impacted. Again, the highest
sensitivity was observed with resolution reduction. Faster R-CNN and Mask R-CNN
trained on overexposed images were more robust to exposure changes than models trained
by images that were not overexposed. This is probably because the non-overexposed
images have features that do not exist in the overexposed images. Faster R-CNN and Mask
R-CNN trained with low levels of motion blur and noise achieved very close performance
to models trained with baseline images. Distinctively, Deeplab-v3 trained at all levels of
motion blur and noise achieved the same or even higher IoU than the model trained by
the baseline images. This indicates that when noise and motion blur are expected to vary
in the testing images, increasing these two degradations in the training images is a good
strategy to guarantee Deeplab-v3 performance. Similar to Faster R-CNN and Mask R-CNN,
Deeplab-v3 trained with overexposed images was more tolerant to changes in exposure.

Table 4. Result of inference by convolutional neural network (CNN) models trained on baseline
images and applied to testing images with various levels of image degradation.

Degradation Type
Object

Detection
mAP (%)

Instance
Segmentation

mAP (%)

Semantic
Segmentation

mIoU (%)

Baseline 55.4 42.3 68.6

Resolution

s = 0.707 45.3 34.7 65.0

s = 0.5 29.0 22.2 55.9

s = 0.353 11.3 7.8 36.6

s = 0.25 3.5 2.3 23.9

Exposure

EV = 2 48.2 37.1 16.0

EV = 2.5 29.2 24.9 15.9

EV = 3 12.1 9.8 15.9

EV = 3.5 7.4 5.9 15.9
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Table 4. Cont.

Degradation Type
Object

Detection
mAP (%)

Instance
Segmentation

mAP (%)

Semantic
Segmentation

mIoU (%)

Gaussian blur

σB = 1.25 43.5 36.2 54.8

σB = 2.5 43.8 35.8 55.6

σB = 5 38.3 30.0 57.9

σB = 10 11.0 8.3 36.2

Motion blur

l = 3 54.5 41.6 68.6

l = 5 49.8 38.7 68.1

l = 7 43.7 34.9 65.4

l = 9 36.9 30.6 61.2

Noise

σN = 80 54.4 41.7 67.6

σN = 160 47.1 38.6 61.1

σN = 320 27.8 24.0 30.7

σN = 640 9.3 8.1 18.2

Table 5. Result of inference by CNN models trained on images with various levels of image degrada-
tions and applied to the baseline testing images.

Degradation Type Bounding Box
mAP (%)

Instance
Segmentation

mAP (%)

Semantic
Segmentation

mIoU (%)

Baseline 55.4 42.3 68.6

Resolution

s = 0.707 49.9 38.0 65.6

s = 0.5 36.4 24.1 57.2

s = 0.353 20.5 13.6 36.8

s = 0.25 12.2 6.7 34.8

Exposure

EV = 2 53.8 41.2 63.5

EV = 2.5 52.7 40.4 60.9

EV = 3 48.9 37.8 53.2

EV = 3.5 41.8 32.8 21.8

Gaussian blur

σB = 1.25 53.7 40.2 57.0

σB = 2.5 53.2 39.7 48.9

σB = 5 47.2 32.4 43.0

σB = 10 23.3 10.1 22.6

Motion blur

l = 3 54.0 41.6 68.4

l = 5 51.8 38.4 68.8

l = 7 50.1 34.5 68.8

l = 9 39.5 28.6 68.7

Noise

σN = 80 54.2 41.8 69.3

σN = 160 53.5 41.2 69.6

σN = 320 52.3 38.8 67.7

σN = 640 47.6 36.0 68.4
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4.4. Light Inconsistency between Training and Testing Datasets

Training image sets pertaining to DSnoon, DSsunset, DScloudy were used to train the
CNN models, which were then applied on 500 DSnoon testing images to study the influence
of light inconsistency on CNN performance. The number of images from each lighting
condition is shown in Table 6. As expected, the highest performance was achieved when
all the 500 training images were from DSnoon. When the number of DSnoon images were
increased from 166 to 500 without including images from DSsunset and DScloudy, the object
detection AP and instance segmentation AP increased from 43.2% and 33.4% to 50.1%
and 39.4%, respectively. This indicates that increasing training images pertaining to the
same lighting condition typically increases CNN performance. When images from DSsunset
and DScloudy were included and the total training image number was kept at 500, the
performance of Faster R-CNN and Mask R-CNN increased, but not as much as the increase
provided by images from Dnoon. The worst performance was observed in the CNN models
trained from DSsunset. Because of the huge plant appearance different between DSsunset
and DSnoon (Figure 2), CNNs probability learned features in DSsunset not applicable to
DSnoon images. In contrast, Deeplab-v3 did not benefit much from the inclusion of training
images at different lighting conditions.

Table 6. Influence of light inconsistency on the performance of CNN models.

No. Training
Images in

DSnoon

No. Training
Images in
DSsunset

No. Training
Images in
DScloudy

Bounding
Box

mAP (%)

Instance
Segmentation

mAP (%)

Semantic
Segmentation

mIoU (%)

500 0 0 50.1 39.4 68.4

334 0 0 48.1 37.4 67.9

334 166 0 48.9 37.8 68.4

334 0 166 49.0 38.3 67.4

166 0 0 43.2 33.4 67.1

166 166 166 48.2 36.8 67.9

166 334 0 47.0 36.7 67.2

166 0 334 46.3 36.3 67.6

0 166 334 42.1 32.6 63.3

0 334 166 42.2 31.9 63.0

0 500 0 38.2 30.9 61.7

0 0 500 41.8 32.8 66.3

4.5. Implications of the Study

The degree of image degradation and inconsistency to which the CNNs can withstand
for object detection, semantic segmentation and instance segmentation established in
this research can be used to guide the selection of camera parameters in weed mapping
applications. For example, we can fly a drone at a speed up to 5.6 m/s without losing CNN
performance when the height is at 4.88 m, the shutter speed at 1/4000s and the focal length
at 64 mm. As another example, camera exposure settings that keep 20% information of
the red channel and 80% of the green channel will not result in much CNN performance
reduction. When computational power allows, it is beneficial to keep a high spatial
resolution for detection and segmentation tasks. Sharp images are not required as CNNs
are tolerant to blur until the standard deviation of PSF reaches 5 pixels. Images collected
from a camera with SNR larger than 5 are likely to provide good CNN performance,
indicating that weed mapping can be performed under poor lighting conditions.

Keeping image quality consistent is of vital importance for CNN-based weed map-
ping. In real applications, training image collection should be conducted with the camera
settings the same as the settings expected in the real inference stage. If maintaining quality
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consistency is a challenge, one strategy to make CNN more robust is to collect images
with slight overexposure, Gaussian blur, motion blur or noise for training. Alternatively,
high-quality images can be purposely downgraded to various levels in the training stage, as
proposed by Pei et al. [10]. Light consistency is another important factor to consider. Light
source dramatically influences the appearance of plants and alters the features learnable by
CNNs in the training stage. Colleting training and testing images at the same time of day
with the same cloudiness is recommended when an artificial light source is not available.
If light consistency is not achievable, collecting training images under several lighting
conditions is a favorable workaround.

5. Conclusions

In this study, we simulated the most common image degradations observed in weed
mapping applications through the image formation pipeline and explored the influence
of these degradations on the performance of the three widely used CNN models, Faster
R-CNN, Mask R-CNN and Deeplab-v3, for object detection, instance segmentation, and
semantic segmentation, respectively. The degradations simulated in this study included
resolution reduction, overexposure, Gaussian blur, motion blur, and noise.

Our simulation of image degradation was based on the raw images which inevitably
contain noise and blur. Even though we tried to keep these degradations as little as possible
in the raw images, they cannot be eliminated completely. Thus, the best CNN performance
that can be achieved on perfect images is still unknown. In addition, we only tested weed
mapping when the crops and weeds were still young. How CNNs perform in detecting
and segmenting mature plants still need to be studied. It is also worth mentioning that
we only studied the influence of individual degradations on the CNN performance. The
interaction between different degradations is a topic for future research.
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