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Abstract: Explicit spatial information about crop types on smallholder farms is important for the
development of local precision agriculture. However, due to highly fragmented and heterogeneous
cropland landscapes, fine-scale mapping of smallholder crops, based on low- and medium-resolution
satellite images and relying on a single machine learning (ML) classifier, generally fails to achieve
satisfactory performance. This paper develops an ensemble ML-based framework to improve the
accuracy of parcel-level smallholder crop mapping from very high spatial resolution (VHSR) images.
A typical smallholder agricultural area in central China covered by WorldView-2 images is selected
to demonstrate our approach. This approach involves the task of distinguishing eight crop-level
agricultural land use types. To this end, six widely used individual ML classifiers are evaluated. We
further improved their performance by independently implementing bagging and stacking ensemble
learning (EL) techniques. The results show that the bagging models improved the performance of
unstable classifiers, but these improvements are limited. In contrast, the stacking models perform
better, and the Stacking #2 model (overall accuracy = 83.91%, kappa = 0.812), which integrates the
three best-performing individual classifiers, performs the best of all of the built models and improves
the classwise accuracy of almost all of the land use types. Since classification performance can be
significantly improved without adding costly data collection, stacking-ensemble mapping approaches
are valuable for the spatial management of complex agricultural areas. We also demonstrate that
using geometric and textural features extracted from VHSR images can improve the accuracy of
parcel-level smallholder crop mapping. The proposed framework shows the great potential of
combining EL technology with VHSR imagery for accurate mapping of smallholder crops, which
could facilitate the development of parcel-level crop identification systems in countries dominated
by smallholder agriculture.

Keywords: crop classification; smallholder farms; land parcel; geographic object-based image analy-
sis (GEOBIA); machine learning; stacking; bagging; WorldView-2

1. Introduction

Smallholder farms with small plots (typically ≤2 ha) and complex cropping prac-
tices are the most common and important forms of agriculture worldwide, accounting
for approximately 87% of the world’s existing agricultural land and producing 70–80% of
the world’s food [1,2]. Although smallholder farming systems vary greatly in different
countries and agricultural regions, they are generally characterized by limited farmland,
decentralized management, and a low input-output ratio [3–6]. The existence of these
characteristics makes these systems particularly vulnerable to global climate and environ-
mental changes, explosive population growth, and market turmoil, posing serious threats
to community food security and sustainable livelihoods [7–9]. In this context, timely and
accurate mapping and monitoring of crop patterns on smallholder farms are critical for
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scientists and planners in developing effective strategies to address these threats [5,6,10].
Recent advances in high-resolution earth observations have provided new possibilities for
mapping complex smallholder agricultural landscapes [11–13].

Fine-scale remote sensing (RS) mapping of smallholder crops remains challenging,
due to the high fragmentation and heterogeneity of agricultural landscapes. Over the past
decade, many studies have been conducted using RS technology to objectively identify and
map crop types and planting intensity at national, regional, and other spatial scales [14–18].
Despite its diverse uses, RS technology has not been widely used in parcel-level small-
holder crop mapping, which is critical to better predicting grain yields and determining
area-based subsidies [19–21]. Especially for some developing countries dominated by
smallholder agriculture, such as Bangladesh and China, RS is urgently needed to establish
their own parcel-level crop identification systems to support the development of local pre-
cision agriculture [5,22]. However, the following complex practical conditions render the
application of RS technology in this particular field extremely challenging. First, parcels on
smallholder farms are generally small and are accompanied by complex planting patterns.
Second, multiple crops are planted in one area, and even the same crop can be planted
and harvested on different dates. Third, there might be intercropping and mixed cropping,
resulting in more than one crop being planted in the same parcel in the same season.
The aforementioned complex factors make traditional medium- or low-spatial-resolution
satellite images, such as those from the Moderate Resolution Imaging Spectroradiometer
(MODIS) and Landsat sensors, unreliable for fine-scale mapping of crop planting patterns
on smallholder farms [16]. Fortunately, various very high spatial resolution (VHSR) satel-
lite platforms (e.g., WorldView, Gaofen, and RapidEye) have emerged that can provide
meter-level and even submeter-level resolutions, making it possible to map parcel-level
smallholder crops [23,24].

VHSR images allow one to use geographic object-based image analysis (GEOBIA)
technology [25,26], thus paving the way for parcel-level mapping of smallholder crops.
In VHSR image analysis, the object to be identified is generally much larger than pixel
size [27,28]. Unlike pixel-based methods, GEOBIA treats the basic target unit as an image
object rather than a single pixel, more in line with the requirements of VHSR image
analysis [12,26,29]. Furthermore, GEOBIA performs image segmentation to construct a
polygon network of homogeneous objects that, in the case of crop classification, matches the
parcel boundaries [27,30]. Although the advantages of VHSR images that favor GEOBIA
have been enumerated, the rich information in VHSR images leads to higher intraclass
variation and lower interclass differences. Specifically, agricultural landscapes, especially
smallholder farms, are covered by complex and diverse land use categories; hence, the
spectral, shape, and texture features of these landscapes on VHSR images change over
time and space, leading to greater internal variability [12,23]. To effectively address this
problem, classification methods with good predictive ability and robustness should be
considered in VHSR image analysis [24].

Parallel to the advancements in VHSR satellite imagery, the development, and ap-
plication of machine learning algorithms (MLAs) for performing image classification has
gradually become a focus in the RS field [31]. MLAs have been increasingly used in RS-
based crop mapping, due to their rapid learning and adaptation to nonlinearity [29,32,33].
Obviously, a variety of crop classification models have been developed based on various
MLAs, such as models based on decision trees, artificial neural networks, support vector
machines (SVMs), and the k-nearest neighbors algorithm (k-NN) [32,34,35]. However, these
models generally rely on a single MLA-based classifier and are prone to overfitting with
limited training data [36,37]. Especially in complex agricultural areas, the accuracy of crop
mapping based on a single classifier is often limited [32,38,39]. For instance, Zhang et al. [5]
built several models by implementing individual SVM classifiers on different image fea-
tures to distinguish smallholder crop types from WorldView-2 (WV2) images, and the
accuracy of these models was less than 80%. In addition, there is no overall optimal MLA
for crop classification modeling, and the best MLA generally depends on the objective of
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the classification task, the details of the problem, and the data structure used [31]. Cur-
rently, increasing attention is being paid to further improving the existing applications of
individual MLAs using ensemble learning (EL) techniques [37,39].

The use of EL technology to improve the accuracy of smallholder crop mapping with
VHSR images remains to be further explored. EL is defined as a collection of methods that
improves prediction performance by training multiple classifiers and summarizing their
output [40]. Empirically, EL methods tend to perform better than a single classifier in most
cases unless the individual classifiers involved in the ensemble fail to provide sufficient
diversity of generalization patterns [36,41]. Various EL methods have been proposed, which
can generally be divided into two categories: Homogeneous and heterogeneous ensemble
methods [40]. The former combine multiple instances of the same MLA trained on several
random subsets of the original training dataset; an example is bagging methods [42]. The
latter combine several different individual MLAs trained on the same dataset; an example
is stacking methods [43]. In practice, the random forest (RF) algorithm based on decision
trees, as a typical example of the ready-made bagging method, has been widely used in
crop mapping [12,21,33]. However, bagging methods based on other MLAs have rarely
been compared and tested for crop classification. In recent years, stacking methods have
gradually been used to improve grain yield prediction and land use and land cover (LULC)
classification. For example, Feng et al. [37] improved the accuracy of yield prediction
in the United States using a stacking model combining RF, SVM, and k-NN classifiers.
Man et al. [39] improved the land cover classification in frequently cloud-covered areas
by constructing an ensemble model combining five individual classifiers. In summary,
although EL methods have been increasingly used to improve LULC mapping, studies
focusing on their potential to improve the fine-scale mapping of smallholder crops from
VHSR images have been rare.

Therefore, this study aims to develop an ensemble machine learning-based framework
to improve parcel-level crop mapping on smallholder farms from VHSR images. Our
experiments were conducted on WV2 images from a typical smallholder agricultural area
in central China. Six widely used classifiers with different basic ideas, namely, multinomial
logistic regression (MLR), naive Bayes (NB) classifier, classification and regression tree
(CART), backpropagation neural networks (BP-NN), k-NN, and SVM classifiers, were
considered base classifiers. Bagging and stacking are typical examples of homogeneous
and heterogeneous EL techniques, respectively, and therefore, were chosen to combine
base classifiers. The specific objectives are to: (1) Explore how to build an appropriate
ensemble model to achieve fine mapping of smallholder crops; (2) assess and compare
the effects of bagging and stacking in improving the performance of individual classifiers;
and (3) analyze the impact of parcel-level spatial information (e.g., textural and geometric
features) extracted from VHSR images on the performance of the EL-based model.

2. Materials and Process
2.1. Study Site

The study site covers approximately 602.71 ha, 59.5% of which is occupied by farmland
in the suburbs of Wuhan, Hubei Province, China (Figure 1). Located in the transition zone
from the plains to the mountains and approximately 76 km northeast of downtown Wuhan,
it is a typical smallholder agricultural area characterized by household-operated farms
and fragmented agricultural landscapes. Cropland parcels here are generally small in
size; among all of the parcels, 78.5% are smaller than 0.067 ha, while only 8.96% are larger
than 0.1 ha [5]. With an elevation of 34–58 m, the terrain here slopes from the northeast
to the southwest. The area has a subtropical monsoon climate, and the average monthly
temperature ranges from 3.8 ◦C in January to 28.5 ◦C in July. The perennial average rainfall
is 1269 mm, with extremely high annual variability. The river network system in this area
is relatively developed. Abundant water resources and the warm, humid climate make it
possible to grow a variety of crops throughout the year. From June to August of each year,
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cotton, rice, and other minor crops, such as peanuts, lotus, soybeans, sweet potatoes, and
sesame, are planted here at the same time.
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Considering the completeness of the parcel boundary, the area within the red line was used for subsequent analysis.

2.2. Data and Preprocessing
2.2.1. WorldView-2 Imagery

WV2 multispectral satellite images covering the site were collected on July 13, 2013,
under clear skies (Figure 1). Every July, all of the crops reach their maximum growth,
allowing for better discrimination of the crop types. In terms of the spectral resolution,
WV2 can acquire images in eight spectral bands from the shorter wavelength of visible
light to the near-infrared (NIR) band, namely, the four standard color bands (i.e., the
blue (0.45–0.51 µm), green (0.51–0.58 µm), red (0.63–0.69 µm), and NIR1 (0.77–0.895 µm)
bands) and four new bands (i.e., the coastal (0.40–0.45 µm), yellow (0.59–0.63 µm), red-edge
(0.71–0.75 µm), and NIR2 (0.86–1.04 µm) bands). Figure 1 shows the true-color image of
the experimental data, consisting of red, green, and blue bands. The spatial resolution of
this sensor ranges from 0.5 m in the panchromatic band to 2 m in the multispectral band,
with a radiometric resolution of 11 bits and a revisit period of 1.1 days.

The WV2 image was preprocessed on the ENVI 5.3 Classic® platform, including the
following steps. First, radiance calibration was conducted to convert the digital number
values into surface spectral reflectance values. Second, the atmospheric correction was
performed using the fast line-of-sight atmospheric analysis of the spectral hypercubes
module provided in ENVI 5.3 to produce top-of-canopy reflectance values. Then, the
multispectral and panchromatic data were fused using the principal components spectral
sharpening method. Finally, a polynomial model combining the ground control points
and nearest-neighbor resampling methods was used to geometrically correct the fused
0.5-m-resolution image.

2.2.2. Parcel Boundary Vector Data

The spatial unit for this mapping task is the parcel in which the same crop is generally
planted. Therefore, a vector database needs to be created that contains all of the parcel
objects of the site. Parcel objects were identified and digitized on the screen using WV-2
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images combined with expert knowledge and verified on site to ensure their accuracy and
authenticity. Altogether, digitization resulted in 7441 cropland parcels, corresponding to
359.50 ha, accounting for approximately 59.5% of the site area, with an average parcel area
of 0.048 ha and a median parcel area of 0.037 ha [5]. To process cropland pixels only, a mask
of the agricultural area was created from the parcel boundary vector layer.

2.2.3. Ground-Truth Data

Field crop type data are critical for constructing sample datasets for crop classifica-
tion modeling. From July to August 2015, extensive field observations were conducted
throughout the study site. To match the ground observation data with the satellite imagery,
only parcels with consistent land use types for the same period in 2013 and 2015 were
collected. The land use information in 2013 was obtained through interviews with local
farmers, showing that consistent crop types between adjacent years were common. The
types of crops grown on these parcels and their field photos were recorded. In the end, a
total of 1242 cropland parcels marked with land use types were obtained, which are widely
distributed and scattered (Figure 1) and could reflect the ground truth of the entire study
site. Table 1 shows the different land use types and the number of parcels for each type.
Furthermore, these parcels were randomly divided into training and validation sets at
a ratio of 7:3. The former was used for model training, while the latter was used as an
independent dataset for accuracy assessment.

Table 1. Overview of the ground-truth data.

Types (Code)
Number of Parcels

Total Area (ha) Average Parcel Size (ha)
Training (70%) Validation (30%) Total

Abandoned cropland (AC) 66 28 94 6.87 0.073
Bare paddy fields (BPFs) 78 34 112 7.24 0.065
Bare upland fields (BUFs) 95 41 136 4.52 0.033

Cotton 189 81 270 11.57 0.043
Lotus 67 29 96 13.37 0.139

Other crops (OCs) 115 49 164 4.85 0.030
Peanuts 92 40 132 3.16 0.024

Rice 167 71 238 15.10 0.063
Total 869 373 1242 66.68 ——

Eight crop-level agricultural land use types were recorded during the field visit.
Figure 2a illustrates an example of a WV2 image in RGB color mode for each land use type.
Visually, there are obvious differences in the texture and hue features of the images among
these land use types, providing key information for the subsequent construction of feature
spaces to distinguish the crop types. Figure 2b,c show field photos of two common crops
(rice and cotton), which account for the majority of the crops grown at the site. The ‘other
crops’ (OCs) category generally includes sesame, soybeans, and sweet potatoes, which
are classified into one category, due to their exceedingly small amount of cultivation. In
addition, a small amount of abandoned cropland (AC) and some bare croplands were
identified during the field visit. The latter include upland fields with bare soil and paddy
fields covered with little water, but almost no crops. For the completeness of the crop-level
agricultural land use classification system, we included ‘AC’, ‘bare upland fields (BUFs)’
and ‘bare paddy fields (BPFs)’ in the crop mapping system. The LULC types not observed
as cropland, such as rural residential land, woodland, grassland, and water bodies, are
classified as noncropland and are masked out in the image.
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3. Experimental Design and Methods
3.1. Crop Mapping Framework

The proposed crop mapping approach follows the GEOBIA framework, which mainly
involves four steps (Figure 3). First, image preprocessing was performed to eliminate
atmospheric extinction, geometric distortion, and other uncertainties (see Section 2.2).
Second, the WV2 image was segmented using the parcel boundary vector data, and a
series of image features were extracted; then, Pearson’s correlation coefficient (r) and SVM
recursive feature elimination (SVM-RFE) were successively applied to the initial feature
set to eliminate redundant variables. Third, six widely used individual classifiers were
trained using the optimal features with class labels, and then the bagging and stacking
methods were applied separately to the individual classifiers to enhance their prediction
performance. Fourth, the crop mapping accuracy was evaluated by calculating a confusion
matrix based on independent verification data.
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3.2. Feature Space Construction
3.2.1. Image Segmentation

Segmentation is related to the final quality of the ultimate thematic map, and is, there-
fore, a key aspect of GEOBIA. The best method is to segment the scene into objects that
map features of interest in the real world [44,45]. Various image segmentation algorithms
have been developed, some of which can be implemented in the form of tools or software,
for instance, the multiscale segmentation algorithm provided by the eCognition platform.
However, image objects automatically obtained based on these algorithms often fail to
match real-world objects [30]. The mapping goal of this study focused at the parcel level to
carry out crop mapping. Therefore, we used the parcel boundary vector data obtained by
manual digitization to segment the WV-2 image, rather than using the existing segmenta-
tion algorithm to automatically partition the image. Image segmentation was performed
on the eCognition 9.0 platform, allowing vector data to be imported for segmentation.
The resulting image objects were spatially and quantitatively consistent with the cropland
parcels acquired by manual digitization.

3.2.2. Feature Extraction and Selection

Image spectral information is widely used as a key variable to distinguish crop types;
however, using textural and geometric features of image objects in VHSR image analysis is
becoming increasingly popular [46–48]. To investigate whether using these spatial features
can help to distinguish smallholder crop types at the parcel, in addition to 13 spectral
features, 7 geometric features and 8 textural features were also extracted, based on previous
studies (Table 2). Feature extraction was performed on the eCognition 9.0 platform, which
provides a variety of feature variables, including all of the above types. Among them, the
geometric features were generated by calculating the pixel rows of the image object, and
the textural features were extracted based on the omnidirectional gray-level cooccurrence
matrix (GLCM). Formulas for calculating textural features are provided in Appendix A.
Regarding the spectral features, in addition to the average value of the object spectrum,
as well as the maximum difference and brightness, three vegetation indices were also
calculated, namely, the ratio vegetation index (RVI, Equation (1)), normalized difference
vegetation index (NDVI, Equation (2)) and enhanced vegetation index (EVI, Equation (3)).
The RVI, NDVI, and EVI indices were calculated from the blue, red, and NIR1 spectral
bands of the WV2 images using Equations (1)–(3), respectively.

RVI =
NIR1
Red

(1)

NDVI =
NIR1− Red
NIR1 + Red

(2)

EVI = 2.5× NIR1− Red
NIR1 + 6× Red− 7.5× Blue + 1

(3)

Table 2. Variables used for crop classification derived from the different types of image features.

Type Subtype Variables References

Spectral features

Mean Coastal, blue, green, yellow, red, red-edge, NIR1, and NIR2 bands [12]

Maximum difference Maximum difference (Max-Diff) [48]

Brightness Brightness [12]

Indices NDVI, RVI, and EVI [49–51]

Geometric features —— Area, border length (Bor. Len.), length, length/width (L/W),
width, density, and shape index (Sha. Ind.) [5,48]

Textural features GLCM
Homogeneity (G-hom), contrast, dissimilarity, entropy, ang. 2nd
moment (G-ASM), mean (G-mean), standard deviation (G-SD),

and correlation (G-cor)
[12,46]
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Feature selection aims to reduce the interference of redundant variables by selecting a
subset of the existing features [52,53]. In this study, a combination strategy of ‘Pearson’s r
and SVM-RFE’ was adopted. The feature selection task was performed in the following
two steps. (1) Collinearity variable elimination based on a Pearson’s r threshold [54]. To
weaken the effect of variable collinearity on model performance, the highly correlated
variables were identified and removed by calculating Pearson’s r between each pair of
existing features [55]. As a result, 11 variables with Pearson’s r greater than 0.9 or less
than −0.9 were identified and removed, and the remaining 17 variables were retained
(Figure 4a). (2) Target-related variable optimization based on the SVM-RFE method. As
a popular wrapper-based feature selection algorithm, SVM-RFE uses the weight of the
decision boundary as a metric to assess relevant features. This method performed well
in similar studies [37], and was, therefore, adopted by us. A detailed introduction can
be found in the report by Guyon et al. [56]. We applied SVM-RFE to the training data
containing the 17 variables selected above, and evaluated the accuracy of the model using
5-fold cross-validation. As shown in Figure 4b, with the increase in the number of variables,
the accuracy initially improves rapidly, tends to be stable when there are five variables,
and finally reaches the maximum when there are 15 variables. Therefore, these 15 variables
include six spectral features (Coastal, NIR2, NDVI, Red, Max-Diff, and EVI), five textural
features (G-SD, G-mean, G-ASM, G-hom, and G-cor), and four geometric features (Area,
Sha. Ind., Width, and Bor. Len.), which were ultimately determined as the optimal variables.
The feature selection procedure was realized in the R 3.6.1 environment [57].
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Figure 4. Initially, variables were selected via pairwise Pearson’s r between −0.9 and 0.9 (a). Fifteen variables were
ultimately selected through further execution of the SVM-RFE method (b). G-ASM, GLCM ang. 2nd moment; G-cor, GLCM
correlation; G-hom, GLCM homogeneity; G-mean, GLCM mean; G-SD, GLCM standard deviation; Bor. Len., border length;
Sha. Ind., shape index; L/W, length/width; Max-Diff, maximum difference.

3.3. Ensemble Classification
3.3.1. Bagging and Stacking Methods

EL techniques, involving constructing and combining multiple classifiers [40], have
been shown to generate better prediction or classification performance and achieve better
generalization [37,39,58]. In this study, bagging and stacking were selected to combine
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individual classifiers, which are typical examples of homogeneous and heterogeneous EL
methods, respectively. The basic ideas of the two EL methods are described below.

Bagging, short for bootstrap aggregation, generates an ensemble model by combining
multiple instances of the same MLA trained on a series of random subsets of the original
training data [42]. Specifically, for a full training dataset N, bagging uses the bootstrap
sampling strategy to extract m sets of training subsets from N; then, m subsets are used
to train the same MLA and generate m well-trained classifiers; finally, the results of these
classifiers are aggregated by a voting strategy to form the final output prediction. Overall,
bagging reduces the variance of the base classifier error by introducing randomness into
ensemble modeling. In practice, bagging also works well with limited training data [55].
In addition, Zhou [40] suggested that bagging could enhance the performance of classifiers
sensitive to small disturbances in the training set and avoid overfitting.

Stacking is another typical EL method that improves classification performance by
combining multiple individual classifiers of different types [43]. In stacking, the individual
classifiers participating in the combination are called base classifiers and are at level 0,
and the classifier used to combine them is called the meta-classifier and is at level 1.
The outline of the stacking method is as follows [59]. First, level 0 classifiers are trained
separately using the original training dataset; then, a new dataset is generated, with the
outputs of level 0 classifiers as the features and the original true classes still as the true
classes; finally, the new dataset is used to train level 1 classifier and learn the prediction
combination from level 0 classifier, thereby achieving an improved classification accuracy.
Base classifiers with excellent performance and various types help the stacking model to
perform well [43]. Therefore, six widely used individual classifiers with different basic
ideas were selected to generate stacking models. Meta-classifiers are often simple and can
provide a smooth interpretation of the predictions made by the base classifiers. As such,
linear or logistic regression classifiers are often used as meta-classifiers [37]; although this
practice is common, it is not required [55]. In this study, six individual classifiers were
tested in turn, and the best meta-classifier was determined according to their performance.

3.3.2. Machine Learning Classifiers

Six widely used individual classifiers were selected as the base classifiers of the
ensemble model, namely, BP-NN, CART, k-NN, MLR, NB, and SVM classifiers. EL models
tend to perform better when the individual classifiers involved in the ensemble provide
sufficient diversity of generalization patterns. That is, base classifiers must generally
be accurate, and they should make mistakes in different instances. The six individual
classifiers mentioned above have different basic ideas and are widely used, so they are
selected as base classifiers to build EL models. These classifiers have their own merits
and drawbacks, due to different working principles. For instance, as a statistical classifier
based on Bayes’ theorem, the NB classifier is easy to understand and implement, but it
assumes that the input variables are independent [60]. The SVM classifier is a kernel-
based supervised learning method that predicts unknown values by finding the regression
hyperplane closest to all of the training sets. It can achieve good performance with fewer
training data and is not easy to overfit, but is rather sensitive to kernel function selection
and training parameter configuration [61]. Therefore, it is expected that the classification
performance can be improved by integrating these individual classifiers. Our experiments
were performed on the Waikato Environment for Knowledge Analysis (WEKA), an open-
source machine learning and data mining platform that provides all of the aforementioned
classifiers, as well as bagging and stacking methods [62].

3.4. Accuracy Assessment

All of the constructed models were run and validated separately to evaluate their
performance in the accuracy of thematic maps. For each model, by constructing a con-
fusion matrix, standard accuracy indicators, namely, the overall accuracy (OA), user’s
accuracy (UA), producer’s accuracy (PA), and kappa coefficient (kappa), were calculated
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(Equations (4)–(7)) [63]. Additionally, the classwise F-score (F, Equation (8)) was calculated
from the harmonic mean of the PA and UA [64]. Considering the multiclass classification
task, the weighted-average F-score (weighted-F, Equation (9)) was also calculated and
presented. Regarding the performance comparison between the models, McNemar’s test
(Equation (10)) was used to detect the statistical significance of the accuracy differences
between pairs of models [65].

OA =
n

∑
i=1

pii/p (4)

UA(i) = pii/pi+ (5)

PA(i) = pii/p+i (6)

kappa =
(∑n

i=1 pii)/p− (∑n
i=1 pi+p+i)/p2

1− (∑n
i=1 pi+p+i)/p2 (7)

F(i) =
2×UA(i)× PA(i)

UA(i) + PA(i)
(8)

weighted− F = ∑n
i=1

p+i
p

F(i) (9)

χ2 =
( fAB − fBA)

2

fAB + fBA
(10)

where n and p represent the total number of classes and sample instances, respectively; pii
represents the number of correctly classified instances of the ith class; pi+ represents the
number of instances classified into the ith class; p+i represents the number of measured
instances of the ith class; and fAB represents the number of instances that are incorrectly
predicted by classifier A and correctly predicted by classifier B and vice versa for fBA.

4. Implementation and Results
4.1. Model Performance Evaluation and Comparison
4.1.1. Performance of the Individual Classifiers

Table 3 and Figure 5a summarize the performance of the six individual classifiers.
The parameter profiles for these classifiers in WEKA format are provided in Appendix B.
The results show that the performance of all of the individual classifiers is generally good,
with the OA ranging from 75.07% to 80.70%, kappa ranging from 0.707 to 0.775, and the
weighted-F ranging from 0.752 to 0.808. Specifically, the SVM classifier performed the
best, followed by the MLR, CART, NB, and BP-NN classifiers, while the k-NN classifier
performed the worst. Combined with the results of McNemar’s test, it can be concluded
that the SVM classifier is significantly superior to other classifiers except for the MLR
classifier (Figure 5d). Due to its insensitivity to the dimensionality of the sample space, the
SVM classifier has been reported to be the most reliable of many off-the-shelf classifiers [66].
The performance of the MLR classifier is close to that of the SVM classifier. Previous studies
have shown that MLR with the built-in LogitBoost algorithm also achieves satisfactory
performance, since it allows certain inputs to be pruned by early stopping, thereby avoiding
overfitting [32]. Therefore, it is not surprising that the SVM and MLR classifiers are the
two best individual classifiers in our experiments.

Table 3. Overall accuracies, kappa values, and weighted-average F-scores of the six classifiers.

BP-NN CART k-NN MLR NB SVM

OA (%) 76.41 78.02 75.07 79.36 77.21 80.70
Kappa 0.725 0.743 0.707 0.759 0.734 0.775

Weighted-F 0.765 0.776 0.752 0.792 0.773 0.808
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4.1.2. Performance of the Bagging Models

The bagging method using the default parameters in WEKA (Appendix B) was sep-
arately applied to the six trained individual classifiers. The classifiers after bagging are
represented as B_BP-NN, B_CART, B_k-NN, B_MLR, B_NB, and B_SVM. The results show
that the effect of bagging varies by the classifier (Table 4 and Figure 5b). Compared with the
performance before bagging, the classification accuracy of B_BP-NN, B_CART, and B_NB
was significantly improved (Figure 5d). Among them, B_BP-NN underwent the greatest
improvement, and its OA increased from 76.41% to 79.89%; moreover, B_CART, and B_NB
also achieved better performances, although the improvement in accuracy was small, and
their OAs increased from 78.02% and 77.21% to 79.89% and 78.55%, respectively. These
experimental results indicate that the bagging method is particularly useful for improving
the performance of neural networks or tree-based classifiers, consistent with the findings
of Kim and Kang [67]. In contrast, compared with the performance before bagging, the
classification accuracy of B_k-NN, B_MLR, and B_SVM decreased slightly, but the decrease
was not significant (Figure 5d). The OA and kappa values of B_SVM were still greater than
those with the other bagging models (Table 4). Nevertheless, the results of McNemar’s
test show that, except for B_k-NN, there was no significant difference in accuracy between
B_SVM and the other bagging models (Figure 5d). In short, these experiments on the WV2
dataset show that, although bagging can moderately improve the performance of unstable
classifiers, the improvement is limited, narrowing only the accuracy gap between the ‘bad’
classifiers and the ‘good’ classifiers. Therefore, we attempted to use the stacking EL method
to improve the accuracy of crop mapping.

Table 4. Overall accuracies, kappa values, and weighted-average F-scores of the bagging models.

B_BP-NN B_CART B_k-NN B_MLR B_NB B_SVM

OA (%) 79.89 79.89 73.46 78.82 78.55 80.16
Kappa 0.766 0.764 0.688 0.753 0.750 0.769

Weighted-F 0.799 0.797 0.738 0.787 0.786 0.804
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4.1.3. Performance of the Stacking Models

After several experiments, the SVM was determined to be the best meta-classifier
to integrate individual classifiers. We first sorted the individual classifiers in descending
order of OA (i.e., SVM > MLR > CART > NB > BP-NN > k-NN) and then combined them
into five combinations: #1: SVM + MLR; #2: SVM + MLR + CART; #3: SVM + MLR +
CART + NB; #4: SVM + MLR + CART + NB + BP-NN; #5: SVM + MLR + CART + NB +
BP-NN + k-NN. Subsequently, six individual classifiers were tested separately as meta-
classifiers to implement the stack method to relearn the predictions from #1 to #5. A total
of 30 models were generated, and their accuracy evaluations are presented in Appendix C.
We found that the SVM as a meta-classifier ensured the most accurate results. The five
stacking models with the SVM as the meta-classifier are denoted as: Stacking #1 to #5.
Appendix B provides the detailed parameter configurations for the five stacking models.

The performance of the five stacking models are shown in Table 5 and Figure 5c. The re-
sults show that the classification accuracy of Stacking #1 (OA = 82.04%, and kappa = 0.790)
was already greater than that of the SVM and MLR classifiers (Table 3). After the CART
classifier was added (Stacking #2), the OA and kappa values increased to 83.91% and
0.812, respectively. However, the accuracy could not be further improved and declined
somewhat after the NB and BP-NN classifiers were successively added to the stacking
models (i.e., Stackings #3 and #4). Stacking #5 is an ensemble of all of the individual
classifiers, and its performance was better than those of Stacking #1 and Stacking #4, but
slightly worse than those of Stacking #2 and Stacking #3.

Table 5. Overall accuracies, kappa values, and weighted-average F-scores of the stacking models
(meta-classifier = SVM).

Stacking #1 Stacking #2 Stacking #3 Stacking #4 Stacking #5

OA (%) 82.04 83.91 83.11 80.97 82.57
Kappa 0.790 0.812 0.803 0.778 0.796

Weighted-F 0.821 0.839 0.830 0.807 0.824

4.1.4. Comparison of the Stacking with Other Models

The accuracy evaluation results showed that the stacking models using the SVM as
the meta-classifier were superior to all of the individual classifiers and bagging models.
Specifically, the OA and kappa values of all of the five stacking models were higher than
those of all of the bagging models (Tables 4 and 5). The Stacking #2 and B_SVM models
performed the best in the stacking and bagging models, respectively, while the OA and
kappa values of the former were 3.75% and 0.043 greater than those of the latter, respectively.
Furthermore, in terms of McNemar’s test results, the Stacking #2 model was significantly
better than all of the bagging models, including the B_SVM (Figure 5d).

Compared with the performance of the SVM, MLR, and CART classifiers, the OA
and kappa values of the Stacking #2 model increased by 3.21% to 5.89% and 0.037 to
0.069, respectively (Tables 3 and 5). Table 6 shows the specific accuracy index comparison
between the Stacking #2 model and the three individual classifiers. The Stacking #2 model
improved the F-score of all of the land use types except rice. Specifically, for AC, BPFs,
BUFs, cotton, and lotus, both their PAs and UAs were improved by the Stacking #2 model;
moreover, the PA of peanuts and the UA of OCs were also improved.

Overall, the Stacking #2 model showed a statistically significant advantage in accuracy
over all of the other models (Figure 5d). Therefore, the Stacking #2 model could be used to
generate the final crop type distribution map.

4.1.5. Comparison under Different Feature Sets

To analyze the effect of geometric and textural features on the EL-based parcel-level
crop classification, we ran the Stacking #2 model on the four subsets of the optimal feature
set and compared their classification performance (Table 7). Compared with using the
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full optimal feature set, the OA was reduced from 83.91% to 76.68%, and the kappa value
was reduced from 0.812 to 0.727 when using only the spectral features. Judging from the
classwise accuracy, textural and geometric features improved the accuracy of almost all of
the land use types. In particular, the improvement was most pronounced in the peanut
category, for which the F-score increased from 28.57% to 66.67%. In addition, compared
with using only the spectral features, the crop classification accuracy was improved more
significantly by adding geometric features than by adding textural features. Specifically,
the addition of textural features improved only the F-scores of the AC, BPF, peanut, and
rice parcels, while the addition of geometric features improved the F-scores of all of the
land use types.

Table 6. Overall accuracies and classwise accuracies obtained by the Stacking #2 model and the SVM, MLR, and
CART classifiers.

Stacking #2 SVM MLR CART

UA (%) PA (%) F (%) UA (%) PA (%) F (%) UA (%) PA (%) F (%) UA (%) PA (%) F (%)
AC 67.74 75.00 71.19 60.00 75.00 66.67 64.52 71.43 67.80 64.00 57.14 60.38
BPFs 88.24 88.24 88.24 83.33 88.24 85.71 81.82 79.41 80.60 74.36 85.29 79.45
BUFs 97.44 92.68 95.00 95.00 92.68 93.83 90.48 92.68 91.57 95.00 92.68 93.83
Cotton 86.05 91.36 88.62 85.00 83.95 84.47 82.14 85.19 83.64 80.49 81.48 80.98
Lotus 100.00 96.55 98.25 96.15 86.21 90.91 84.38 93.10 88.52 82.14 79.31 80.70
OCs 75.00 67.35 70.97 72.09 63.27 67.39 69.77 61.22 65.22 63.79 75.51 69.16
Peanuts 65.85 67.50 66.67 64.29 67.50 65.85 62.50 62.50 62.50 66.67 45.00 53.73
Rice 88.57 87.32 87.94 85.92 85.92 85.92 88.24 84.51 86.33 86.49 90.14 88.28
OA (%) 83.91 80.70 79.36 78.02

Note: The bolded values represent the greatest accuracies among the four models. The shaded values indicate the greatest accuracies
among only the three individual classifiers. OA, overall accuracy; UA, user’s accuracy; PA, producer’s accuracy; F, F-score.

Table 7. Overall accuracies, kappa values, and classwise accuracies generated by the Stacking #2 model with different input
feature sets.

SGTF-Stacking #2 SGF-Stacking #2 STF-Stacking #2 SF-Stacking #2

UA (%) PA (%) F (%) UA (%) PA (%) F (%) UA (%) PA (%) F (%) UA (%) PA (%) F (%)

AC 67.74 75.00 71.19 63.33 67.86 65.52 56.76 75.00 64.62 51.35 67.86 58.46
BPFs 88.24 88.24 88.24 86.11 91.18 88.57 90.63 85.29 87.88 85.29 85.29 85.29
BUFs 97.44 92.68 95.00 97.30 87.80 92.31 86.36 92.68 89.41 94.74 87.80 91.14
Cotton 86.05 91.36 88.62 83.72 88.89 86.23 81.18 85.19 83.13 80.46 86.42 83.33
Lotus 100.00 96.55 98.25 100.00 96.55 98.25 96.30 89.66 92.86 96.55 96.55 96.55
OCs 75.00 67.35 70.97 72.09 63.27 67.39 61.22 61.22 61.22 55.22 75.51 63.79
Peanuts 65.85 67.50 66.67 62.22 70.00 65.88 58.62 42.50 49.28 50.00 20.00 28.57
Rice 88.57 87.32 87.94 89.71 85.92 87.77 88.57 87.32 87.94 90.77 83.10 86.76
OA (%) 83.91 82.04 78.28 76.68
Kappa 0.812 0.790 0.746 0.727

Note: The bolded values represent the greatest accuracies. SGTF, spectral, geometric, and textural features; SGF, spectral and geometric
features; STF, spectral and textural features; SF, spectral features.

4.2. Predicted Crop Type Maps
4.2.1. Spatial Pattern of the Crop Types

In all of the crop maps predicted by the Stacking #2 model and the three classifiers
involved in the model, cotton and rice crops dominated the study site (Figure 6a–d).
According to the statistics of the optimal predicted map (Figure 6a), the proportions of
rice, cotton, lotus, peanuts, and OCs in the entire cropland area are 27.70%, 37.67%, 5.38%,
2.59%, and 5.25%, respectively. In addition, the BUF, BPF, and AC amounts cannot be
ignored, accounting for 8.27%, 4.45%, and 8.69%, respectively. Judging from the spatial
distribution, rice is concentrated in the southwestern part of the site, where water sources
are abundant and easy to irrigate, while cotton is mainly concentrated in the northern and
eastern parts, which have a higher terrain. Peanuts and OCs are commonly interlaced
with cotton. There are relatively few lotus parcels, which are scattered in the middle of the
site. We also found that AC parcels are mainly located in the northeastern part of the site,
where the parcels are easy to abandon, likely because of the high terrain and inconvenient
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irrigation. In short, various crops are scattered over broken farmland, which is a typical
portrayal of smallholder farms in central China.
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Figure 6. Crop type distribution predicted by the Stacking #2 (a), SVM (b), MLR (c) and CART (d) classifiers.

4.2.2. Agreement Analysis of the Prediction Maps

The positions of agreement and disagreement in terms of the predictions of the four
classifiers are shown in Figure 7a. Of the 7441 parcels, the class allocations agreed upon
by the four classifiers accounted for the majority, approximately 74.77% (Figure 7b). For
approximately 18.09% of the parcels, three of the four classifiers agreed on their predictions.
There were two cases in which only two classifiers agreed on the class allocations, expressed
as AABB (4.19%) and AABC (2.65%). The former means that two of the four classifiers
agree with A, and the other two agree with B; the latter means that two classifiers agree
with A, and the other two classifiers disagree with A and with each other. In addition,
there is an extremely small proportion of parcels for which the predictions of the four
classifiers disagree with each other. These disagreements mostly occurred in the complex
planting areas in the eastern part of the site. The agreement map of the selected area and
the corresponding WV2 image are presented in Figure 7c, and the corresponding partial
crop maps are shown in Figure 7d.
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4.2.3. Error Analysis of the Prediction Maps

The confusion between peanuts and OCs was the main source of error in the crop
prediction maps. Figure 8 is a visual display of errors generated by Stacking #2 and the
other three individual classifiers. Of all of the predictions made by the four classifiers,
the most serious confusion occurred between peanuts and OCs. The consequence of
this confusion was the low F-scores of peanuts (53.73–66.67%) and OCs (65.22–70.97%)
(Table 6). In addition, in the predicted crop map, AC was easily confused with land
use types other than BUFs and peanut fields. Fortunately, this confusion was effectively
reduced by implementing the stacking method, and the F-score of AC increased from
60.38% to 71.19% (Table 6). The crop confusion mentioned above was partly caused by the
complex cropping practices of smallholder farms. Especially for peanuts, sesame, sweet
potatoes, and other minor crops, their growth cycles in the study site were remarkably
similar, and intercropping patterns generally existed among these crops. Therefore, it was
difficult to distinguish peanuts from OCs. Regarding AC, although these parcels have been
consciously abandoned by farmers, some parcels still have sparse crops growing naturally,
due to residual seeds, which might explain why it is confused with other land use types.
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5. Discussions
5.1. Advantages of the Stacking Ensemble

By combining multiple individual classifiers of different types using the stacking
method, the mapping accuracy of parcel-level smallholder crops was improved. Specifically,
compared with the performance of the individual classifiers, the OA of the Stacking #2
model, which uses the SVM as a meta-classifier to integrate the three best-performing
individual classifiers, increased by 3.21% to 5.89% (Table 6), and the classwise accuracy
was also improved for almost all of the land use types. These improvements are due to
the stacking model relearning the predictions of the individual classifiers [43]. One can
note that the performance of these three individual classifiers varies with the land use type
(Table 6). Specifically, the SVM classifier performed well on the BPF, BUF, cotton, lotus,
and peanut parcels; MLR performed well on AC; and CART performed well on the BUF,
OC, and rice parcels. In general, it is precisely because of the high-level and differentiated
performance of the individual classifiers involved in the integration that the stacking model
has outstanding performance.

In the existing studies, there is generally no clear method to determine the appropriate
meta-classifier. In practice, majority voting strategies [39], linear regression [37], and
stochastic gradient boosting [55] algorithms have all been used as meta-classifiers to
combine individual classifiers. In this study, six commonly used individual classifiers
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were tested, and the SVM was found to perform best as a meta-classifier. In short, there
is no universal optimal meta-classifier, and it often depends on the data structure used
and should be determined by extensive comparative experiments. Individual classifiers
with the best predictive performance, such as the SVM in this study, or classifiers with the
simplest basic ideas, such as linear or logistic regression, can be preferred as meta-classifiers
for stacking models.

Determining the appropriate base classifiers is another key to causing the stacking
method to perform well. Previous studies have shown that sufficiency and diversity are
two important criteria for selecting the appropriate base classifiers [59], indicating that
each base classifier should have good predictive ability, and the dependence between
them should be minimized to provide complementary information [37]. In this study, six
individual classifiers were added to the stacking learner one by one in descending order of
classification accuracy. With the successive addition of base classifiers, the performance
of the stacking model changed from improvement to deterioration (see Table 5). In the
end, the SVM, MLR, and CART were identified as the best base classifiers because the
Stacking #2 model integrating them had the optimal performance. Moreover, we also found
that the stacking model that uses the SVM as a meta-classifier and combines all of the
individual classifiers has no obvious advantage in classification accuracy. Of all of the five
stacking models, the best-performing model integrates the best three individual classifiers
(Stacking #2), not the model that combines all six classifiers (Stacking #5). Therefore, when
building a stacking model, one should be cautious when introducing base classifiers and
should not include all of the available classifiers. In this context, combining the available
individual classifiers in descending order of accuracy and comparing the performance of the
constructed stacking models could be an effective way to determine the best base classifiers.

5.2. Effect of the Bagging Ensemble

The behavior of the bagging method varies depending on the individual classifier.
Many studies have shown that off-the-shelf bagging classifiers, such as the most represen-
tative RF classifier, perform well in image classification examples [12,58]. In this study,
six self-assembled bagging models were generated by applying the bagging method to
the six trained individual classifiers. Through comparative analysis, it was found that
the bagging method slightly improved the performance of the BP-NN, CART, and NB
classifiers. This finding further supports the view that the bagging method can work better
on weak classifiers that are sensitive to disturbances [41,55]. The reason is that by intro-
ducing randomness in the sampling process, bagging can reduce the error variance of the
unstable base classifier [42]. Although the k-NN classifier performed poorly in this study,
the bagging method failed to improve its classification accuracy. This phenomenon might
be due to the insensitivity of the k-NN classifier to disturbances in the training samples [66].
In addition, it was also found that applying the bagging method to the better-performing
SVM and MLR classifiers failed to improve their performance, but rather reduced it. The
reason could be that the B_SVM and B_MLR models overfit the training dataset, especially
for good instances [41].

Whether the tree-based bagging classifier performs better than the kernel-based clas-
sifier remains debatable [55]. The most typical debate is the dispute between the RF and
SVM classifiers [68]. Interestingly, our experiments show that the performance of the
tree-based bagging classifier (i.e., B_CART) is still inferior to that of an SVM with a radial
basis function kernel. However, there are many types of tree-based bagging classifiers, and
a variety of kernel functions are available for the SVM, so similar comparative experiments
must be performed more extensively in the future.

5.3. Contribution of the Spatial Features

Although many studies have shown that the geometric and textural information pro-
vided by VHSR images is very useful for improving the accuracy of crop mapping [12,46];
some studies have reported that the effectiveness of these features is not obvious [69].
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Our experiments demonstrate that the performance of the classifier can be significantly
enhanced using these spatial features in mapping complex agricultural landscapes from
VHSR images. This benefits from using these features can increase the discrimination
dimension of the crop types, thereby better-addressing data variability in complex het-
erogeneous landscapes [12]. For the hard-to-identify peanut, OC, and AC parcels in this
study, their F-scores increased by 38.10%, 7.18%, and 12.73% (Table 7), respectively, after
the geometric and textural features of the image objects were used. Such information could
be helpful for image feature selection in similar parcel-level crop mapping tasks.

5.4. Benefits/Drawbacks of Our Approach

By making full use of the VHSR images and integrating individual classifiers, the accu-
racy of parcel-level smallholder crop mapping has been moderately improved. Specifically,
several ensemble models were built by implementing bagging and stacking methods on
six individual classifiers, and they were applied to the mapping of parcel-level smallholder
crops in central China. Among all the models, the Stacking #2 model, which integrated the
SVM, MLR, and CART classifiers, performed the best. Compared with the performance
of the individual classifiers, the Stacking #2 model improved the classwise accuracy of
almost all of the land use types. Since the classification performance can be significantly
improved without adding costly data collection, the stacking ensemble method is valuable
for accurately mapping smallholder crops. In addition, compared with previous similar
studies at the same study site [5], we achieved greater mapping accuracy with fewer
feature variables through further feature optimization and ensemble classification. The
ensemble machine-learning-based framework proposed in this study could provide an
effective approach for fine-scale crop mapping in similar complex agricultural areas, which
is beneficial to the development of the local RS-based crop identification system.

Although the ensemble models achieve high performance, there is still the potential for
further improving the mapping accuracy of smallholder crops. In this study, the confusion
between peanuts and OCs caused their classification accuracies to be relatively low. Using
EL techniques on individual classifiers, we have moderately improved their classwise
accuracies, but this improvement has not changed their accuracy rankings. In other words,
crops that were easily confused by the individual classifiers were still easily confused by
the ensemble models. While this confusion has been moderately reduced, it has not yet
been completely eliminated. Therefore, the accurate distinction between confusingly minor
crops, such as peanuts and OCs, requires further research. This confusion is often caused
by the complex planting practices in smallholder agricultural areas [70]. Specifically, OCs,
including sweet potatoes, soybeans, sesame, and other minor crops, had the same growing
period as peanuts at this site, and there was generally a certain proportion of intercropping
patterns among them. Therefore, seeking or developing appropriate methods to map this
intercropping pattern, thereby future research should focus on improving the mapping
accuracy of smallholder crops.

The dependence on parcel boundary data limits the application of the proposed
methodological framework in large regions. Automatic extraction of parcel boundary infor-
mation has always been a challenge in the field of agricultural RS [45,71]. Although there
are many automatic and semiautomatic object-oriented image segmentation methods [30],
it remains difficult to use these methods to segment images to extract homogeneous and
complete parcels [44]. Therefore, in this study, we chose to obtain parcel boundary data
through manual digitization. However, this method will generate very large and expensive
workloads in large-area applications. Therefore, for areas where ready-made parcel bound-
ary data are not available, the proposed approach might be suitable only for small-area
applications, such as sampling areas.

6. Conclusions

Timely and accurate mapping of smallholder crops at the parcel level is essential for
predicting grain yields and formulating area-based subsidies. In this study, an ensemble
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machine-learning-based framework was presented to improve the accuracy of parcel-level
smallholder crop mapping from VHSR images. Several ensemble models were built by
applying bagging and stacking approaches separately on six widely used individual classi-
fiers. The comparative experiments showed that the stacking approach was superior to
the bagging approach in improving the mapping accuracy of smallholder crops based on
individual classifiers. The bagging models enhanced the performance of classifiers with
tree structures or neural networks (e.g., CART and BP-NN), but these improvements were
limited in that they narrowed only the accuracy gap between the ‘bad’ classifiers and the
‘good’ classifiers. The stacking models tended to perform better, and the Stacking #2 model,
which uses the SVM as a meta-classifier to integrate the three best-performing individual
classifiers (i.e., SVM, MLR, and CART), performed the best among all of the built models
and improved the classwise accuracy of almost all of the land use types. This ensemble
approach does not require additional costly sampling and specialized equipment, and
improvements in mapping accuracy are clearly valuable for the delicacy management of
smallholder crops. In addition, we also proved that using the spatial features of image
objects can improve the accuracy of parcel-level smallholder crop mapping. In summary,
the proposed framework shows the great potential of combining ensemble learning technol-
ogy with VHSR images for accurate mapping of smallholder crops, which could facilitate
the development of parcel-level crop identification systems in countries dominated by
smallholder agriculture.

Although these experiments focused on smallholder farms in central China, the
methodological framework presented in this study could easily be applied to other simi-
larly complex and heterogeneous agricultural areas. In the future, methods for mapping
intercropping and mixed-cropping patterns need to be developed to improve the classifica-
tion accuracy of smallholder crops. In addition, independent of the classifier integration,
image composition accounting for phenology to support dynamic mapping of smallholder
crops needs further research.
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Appendix A. Texture Metrics

Table A1. Formulas for calculating textural features from gray-level cooccurrence matrix.

No. Texture Measures Formula

1 Homogeneity ∑N−1
i,j=0 (Pi,j/(1 + (i− j)2))

2 Contrast ∑N−1
i,j=0 Pi,j(i− j)2

3 Dissimilarity ∑N−1
i,j=0 Pi,j|i− j|

4 Entropy ∑N−1
i,j=0 Pi,j(− ln Pi,j)
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Table A1. Cont.

No. Texture Measures Formula

5 Ang. 2nd moment ∑N−1
i,j=0 P2

i,j
6 Mean µi = ∑N−1

i,j=0 i(Pi,j); µj = ∑N−1
i,j=0 j(Pi,j)

7 Standard deviation σi =
√

∑N−1
i,j=0 Pi,j(i− µi)

2; σj =
√

∑N−1
i,j=0 Pi,j(j− µj)

2

8 Correlation ∑N−1
i,j=0 Pi,j

[
(i− µi)(j− µj)/σiσj

]
Note: Pi,j = Vi,j/∑N−1

i,j=0 Vi,j, where Vi,j is the value in the cell i, j (row i and column j) of the moving window and
N is the number of columns or rows.

Appendix B. Model’s Parameter Configuration

Below is the download link of the WEKA parameter configuration files for the indi-
vidual classifiers, namely, BP-NN, CART, k-NN, MLR, NB, and SVM:

https://drive.google.com/drive/folders/1d-dU94m3X8THZ09IbG4DWbJMSNxtj8VL
(accessed on 12 March 2021).

Below is the download link of the WEKA parameter configuration files for the bagging
models, namely, B_BP-NN, B_CART, B_k-NN, B_MLR, B_NB, and B_SVM:

https://drive.google.com/drive/folders/1eEUfneno5s-v8BDWCUqN4OgoJO-70o0_
(accessed on 12 March 2021).

Below is the download link of the WEKA parameter configuration files for the Stacking
#1 to #5 models:

https://drive.google.com/drive/folders/1n0c3Rghe4Z1V1oClJ08mhzo0FXC20wYb
(accessed on 12 March 2021).

Appendix C. Comparison under Different Meta-Classifiers

Table A2. Overall accuracies and kappa values of the stacking methods using different meta-classifiers and base classifiers.

Meta-Classifiers

Base Classifiers

#1 #2 #3 #4 #5

OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa

SVM * 82.04 0.790 83.91 0.812 83.11 0.803 80.97 0.778 82.57 0.796
MLR 80.97 0.777 82.04 0.79 79.62 0.762 77.21 0.735 75.07 0.710

CART 74.26 0.699 74.26 0.699 76.14 0.722 75.34 0.712 78.28 0.747
NB 68.36 0.635 78.28 0.747 68.10 0.633 67.29 0.624 67.83 0.630

BP-NN 80.43 0.772 81.50 0.783 80.70 0.774 80.43 0.771 80.16 0.768
k-NN 80.70 0.744 81.23 0.78 80.16 0.768 81.50 0.784 80.70 0.775

Note: #1: SVM + MLR. #2: SVM + MLR + CART. #3: SVM + MLR + CART + NB. #4: SVM + MLR + CART + NB + BP-NN. #5: SVM +
MLR + CART + NB + BP-NN + k-NN. * The SVM was finally determined as the best meta-classifier.
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