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Abstract: Timely and accurate monitoring has the potential to streamline crop management, harvest
planning, and processing in the growing table beet industry of New York state. We used unmanned
aerial system (UAS) combined with a multispectral imager to monitor table beet (Beta vulgaris
ssp. vulgaris) canopies in New York during the 2018 and 2019 growing seasons. We assessed the
optimal pairing of a reflectance band or vegetation index with canopy area to predict table beet yield
components of small sample plots using leave-one-out cross-validation. The most promising models
were for table beet root count and mass using imagery taken during emergence and canopy closure,
respectively. We created augmented plots, composed of random combinations of the study plots,
to further exploit the importance of early canopy growth area. We achieved a R2 = 0.70 and root
mean squared error (RMSE) of 84 roots (~24%) for root count, using 2018 emergence imagery. The
same model resulted in a RMSE of 127 roots (~35%) when tested on the unseen 2019 data. Harvested
root mass was best modeled with canopy closing imagery, with a R2 = 0.89 and RMSE = 6700 kg/ha
using 2018 data. We applied the model to the 2019 full-field imagery and found an average yield of
41,000 kg/ha (~40,000 kg/ha average for upstate New York). This study demonstrates the potential
for table beet yield models using a combination of radiometric and canopy structure data obtained
at early growth stages. Additional imagery of these early growth stages is vital to develop a robust
and generalized model of table beet root yield that can handle imagery captured at slightly different
growth stages between seasons.

Keywords: multispectral; precision agriculture; table beet; unmanned aerial system; yield prediction

1. Introduction

New York is a sentinel center of production for table beet (Beta vulgaris spp. vulgaris:
Family Chenopodiaceae) in the USA, ranking second behind Wisconsin [1], and is under-
going exponential industry growth. The table beet industry in New York is diverse in
enterprise size and scale, ranging from small, diversified growers that supply farm markets
and roadside stands to broad-acre fields up to approximately 45 ha in size. Broad-acre
production is for processing into cans and jars, direct fresh market sales, and feedstock as
value-added beet products, such as snack packs and juices. The growth of the industry
is fueled by an enhanced awareness of the health benefits of consuming table beets and
beet-based products. These well-documented effects range from nutritional intervention
to disease mitigation [2]. The most commonly reported physiological changes associated
with table beet consumption include improvements in cardiovascular health and sugar
metabolism attributed to the rich source of dietary nitrate [3,4], the antioxidant and anti-
inflammatory effects of betalains [5], and the potential to improve stamina in exercise [6].
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Red table beets are also grown as the main source of betacyanins, which are the basis of
coloring used in food products [7].

Crop yield is generally defined as the ratio of the mass of a harvested crop to the
physical area of land used for production [8]. Depending on the crop and its end market, a
farmer may need to consider multiple yield parameters relevant to their potential financial
returns. In the case of table beets, the number of roots, and the percentage of roots falling
in specific shoulder diameter ranges are of particular interest, in addition to the standard
kilograms per hectare yield. Logistically, table beet roots of various sizes are used for
different products, with distinct processing and packaging needs. This motivates the
stakeholders, hoping to meet yield and beet diameter distribution targets, to obtain early
crop management inputs which may be relevant to strategic planning, a reduction in waste,
maximization of financial gain, and potential within-season intervention.

Precision agriculture methods have been developed to monitor and manage crops at
small scales in the last several decades, focusing on in-field applications of farm inputs,
rather than prescribing uniform treatments across an entire field [9]. The utility of crop
yield modeling for management is to provide farmers with clearly actionable decision-
making information concerning their fields, with model inputs sourced from data obtained
with minimal cost and effort [10]. These can be data pertaining to the in-field spatial soil,
water, nutrient, and topographic conditions for the crop, and local weather information.
While such inputs pertain to the ingredients for a variety of plant growth outcomes, we
can also use satellite, airborne, or unmanned aerial system (UAS) imagery to incorporate
the radiometric and structural properties of the resulting crop canopies. Applications
of remote sensing include biomass and yield estimation, monitoring of vegetation vigor,
drought stress, and crop phenological development [11]. The most thorough assessment of
in-field crop conditions would ideally contain all sources of information related to the base
determinants of crop growth, supplemented with remote sensing imagery. However, in
situ observations can be costly, time consuming, and destructive, thus prohibiting broader
adoption [12]. An UAS equipped with an affordable multispectral camera, on the other
hand, can rapidly and non-destructively obtain full-field imagery for use as predictor
variables in crop yield modeling.

UAS and airborne multispectral imagery and vegetation indices derived from combi-
nations of two or more select bands, to enhance the contribution of vegetation properties,
have been used for yield prediction in a variety of crop scenarios, including rice [13,14],
maize/corn [15,16] and wheat [17]. For example, Zhou et al. [18] found that indices from
multispectral imagery were correlated (R2 > 0.7) with rice grain yield at various growth
stages. Models using data from different epochs may rely on different vegetation indices
and reflectance bands as primary inputs, as found in similar modeling studies of corn [16]
and sugar beet [19] yield. A multitemporal approach can also allow for the determination
of an optimal timing and growth stage for imagery collection [18,20].

Remote sensing of root crops, including sugar beet (also B. vulgaris ssp. vulgaris), has
also shown potential for success of UAS-based yield estimation of table beets. Bu et al. [21]
found that RapidEye satellite imagery could be used to predict sugar beet root yield
comparably to common ground-based sensors, but concluded that a UAS sensing approach
may be necessary due to the lack of available satellite imagery coinciding with clear
skies. Olson et al. [19,20] more recently found that pairing of UAS-derived multispectral
vegetation indices and canopy height can provide improved sugar beet yield predictions
when compared to vegetation indices alone. Their modeling used imagery from multiple
growth stages across two different seasons at two different sites. This study also found that
the significance of canopy height diminished in seasons with lower rainfall, and modeling
results of both vegetation indices and canopy height were inconsistent between growing
seasons and sites. The predictive ability of both vegetation indices, canopy height, and
a combination thereof was found to be significant only in certain growth stages and the
optimal growth stage was not always consistent between the two seasons and sites [20].
The best sugar beet root yield model was for combined NDVI and crop height at one site in
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2017, with an R2 = 0.816, during the sugarbeet V10 growth stage (approximately 28 June
in western Minnesota) [19].

Canopy area is especially important for imagery obtained at early growth stages
before the neighboring canopies have merged. Canopy height is also important but can
be difficult to assess before the plants are several centimeters in height, depending on the
ground sample distance (GSD) of the imagery. Overall, the early stages are well suited to
assess the vigor of early crop growth via both the average radiometric properties of the
canopy and the extent of the canopy growth in terms of canopy area and/or height [22–25].

In this work, we exclusively investigate the predictive power of UAS multispectral
imagery for table beet yield components (root mass, count, and shoulder diameter size
distributions) at harvest. This is a challenging research task, since, for many crops with
aboveground fruits, the health or yield can be directly estimated with imagery, but for
root vegetables, we can only infer their yield with imagery exclusively via their canopy
structure and reflectance. We build on previous work by creating area-augmented data
from our experimental plots in order to exploit the importance of structural metrics derived
from imagery and to evaluate model performance on independent data.

2. Materials and Methods
2.1. Study Area

The Rochester Institute of Technology UAS and Cornell University agronomy teams
collected multispectral imagery and ground truth agronomic data from table beet fields
located in Batavia, New York, USA during July and August of 2018 and 2019 (see Figure 1).
The commercial fields contained table beet cv. Merlin, planted in accordance with typical
industry management practices, i.e., twin rows with approximately 10 cm between-plant
spacing and ~60 cm between-row spacing.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 20 
 

 

and sites [20]. The best sugar beet root yield model was for combined NDVI and crop 

height at one site in 2017, with an �� = 0.816, during the sugarbeet V10 growth stage 

(approximately 28 June in western Minnesota) [19]. 

Canopy area is especially important for imagery obtained at early growth stages be-

fore the neighboring canopies have merged. Canopy height is also important but can be 

difficult to assess before the plants are several centimeters in height, depending on the 

ground sample distance (GSD) of the imagery. Overall, the early stages are well suited to 

assess the vigor of early crop growth via both the average radiometric properties of the 

canopy and the extent of the canopy growth in terms of canopy area and/or height [22–

25]. 

In this work, we exclusively investigate the predictive power of UAS multispectral 

imagery for table beet yield components (root mass, count, and shoulder diameter size 

distributions) at harvest. This is a challenging research task, since, for many crops with 

aboveground fruits, the health or yield can be directly estimated with imagery, but for 

root vegetables, we can only infer their yield with imagery exclusively via their canopy 

structure and reflectance. We build on previous work by creating area-augmented data 

from our experimental plots in order to exploit the importance of structural metrics de-

rived from imagery and to evaluate model performance on independent data. 

2. Materials and Methods 

2.1. Study Area 

The Rochester Institute of Technology UAS and Cornell University agronomy teams 

collected multispectral imagery and ground truth agronomic data from table beet fields 

located in Batavia, New York, USA during July and August of 2018 and 2019 (see Figure 

1). The commercial fields contained table beet cv. Merlin, planted in accordance with typ-

ical industry management practices, i.e., twin rows with approximately 10 cm between-

plant spacing and ~60 cm between-row spacing. 

 

Figure 1. The 2018 and 2019 table beet field site locations in Batavia, New York, USA. Lower left 

map data: Google, Maxar Technologies. 

2.2. Data Collection 

Fifty 3 m long plots were marked soon after crop emergence (5 July 2018), as well as 

20, 1.5 m long plots during the following season (15 July 2019). Four and two data collec-

tions of agronomic ground truth and UAS canopy reflectance data were collected in 2018 

and 2019, respectively. An additional ground truth harvest collection, without imagery, 

Figure 1. The 2018 and 2019 table beet field site locations in Batavia, New York, USA. Lower left map
data: Google, Maxar Technologies.

2.2. Data Collection

Fifty 3 m long plots were marked soon after crop emergence (5 July 2018), as well as 20,
1.5 m long plots during the following season (15 July 2019). Four and two data collections
of agronomic ground truth and UAS canopy reflectance data were collected in 2018 and
2019, respectively. An additional ground truth harvest collection, without imagery, was
also conducted in 2019. Crop stands were assessed for both years by counting the plants
in the entire length of each of the double-row plots on each occasion. Canopy reflectance
imagery were obtained as close as possible to the ground truth collection dates via a DJI
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Matrice 100 UAS vehicle, mounted with a MicaSense RedEdge-M five-band multispectral
visible-near-infrared (VNIR) camera system. Due to instrument availability, canopy re-
flectance imagery was obtained using a DJI Matrice 600 UAS equipped with a Headwall
Photonics Nano-Hyperspec imaging spectrometer (272 spectral bands; 400–1000 nm) for
the second observation in 2018, in lieu of the multispectral imagery. At harvest, in addition
to plant/root counts, a number of yield parameters were collected in the 2018 season by
hand removal of all plants within the plots (Table 1). These included root number, root
mass (kg), root shoulder diameters (mm), and the dry weight of the foliage separated from
the roots. Foliage was weighed in the field and a subsample (approximately 10% of the
total weight) was dried at 60 ◦C for 48 h to calculate dry weight. Roots over 20 mm in
diameter were counted and weighed, and returned to Geneva, NY for storage at 10 ◦C for
up to 10 days, until shoulder diameters were measured using digital calipers (Mitutoyo,
USA). Only root count was conducted for the 2019 harvest.

Table 1. Temporal sequence of data collection in the table beet fields in New York, USA in 2018
and 2019.

Year/Assessment Ground Truth UAS Canopy
Reflectance Altitude 1 (m) GSD 2 (cm)

2018:

1—Emergence Stand Count
(July 5)

2 Multispectral
(July 9) 14, 27 1, 2

2—Canopy Closing Stand Count
(July 20–22)

2 Hyperspectral
(July 27) 57, 49 3.5, 2.5

3—Canopy Closed Stand Count
(August 6)

2 Multispectral
(August 9) 22, 35 1.5, 2.5

4—Harvest

Stand Count
(August 20)

and Yield Data
(August 24)

2 Multispectral
(August 24) 30, 45 2, 3

2019:

1—Emergence Stand Count
(July 15)

3 Multispectral
(July 16) 14, 12, 7 1, 0.75, 0.5

2—Canopy Closing Stand Count
(July 24)

3 Multispectral
(July 24) 14, 12, 7 1, 0.75, 0.5

3—Harvest Stand Count
(August 16) None

1 Altitude for individual flights. 2 Ground sample distance (GSD) for individual flights.

The MicaSense RedEdge-M camera captured images in five narrowband spectral
channels (blue, green, red, red edge, and near-infrared [26]; Table 2). The flight ground
sample distances ranged from 0.5 to 10 cm/pixel. We down-sampled the hyperspectral
imaging canopy reflectance spectra for each pixel to simulate the standard multispectral
imagery for the second observation in 2018. We integrated the pixel spectra, multiplied
with a Gaussian of peak central wavelength and full width at half maximum (FWHM) to
down-sample the spectra (Table 2).

Table 2. MicaSense RedEdge-M camera spectral bands used for quantifying reflectance from table
beet canopies in New York, USA, 2018 and 2019.

Band Name Center Wavelength (nm) Bandwidth FWHM 1 (nm)

Blue 475 20
Green 560 20
Red 668 10

Red Edge 717 10
Near Infrared 840 40

1 Full width at half maximum—FWHM.
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2.3. Data Preprocessing

We registered, orthorectified, and calibrated all UAS multispectral imagery obtained
with the MicaSense camera using the Pix4D software (V.4.4.12) [27]. The software pro-
cessing ingests the raw frames from each spectral band and outputs co-registered and
radiometrically-corrected reflectance orthomosaics. GPS ground control points were de-
ployed in the fields for manual identification of tie-points to verify and improve band and
image registration.

The calibration procedure for the MicaSense camera uses sensor and image specific
metadata parameters for conversion from raw digital counts to radiance (W/m2/sr/nm).
These include parameters for a vignette correction function, radiometric calibration co-
efficients, sensor gain, exposure time, and black level values [28,29]. Additionally, the
MicaSense camera was paired with a 5-band downwelling light sensor (DLS 2) to capture
the downwelling radiance in sync with the radiance imagery of the crop canopy [30]. The
Pix4D software uses the primary camera parameters, sun irradiance measured with DLS,
and sun angle from the DLS inertial measurement unit for radiometric correction [29]. We
then stacked the resulting reflectance mosaics for each band into one multispectral image,
using ENVI software (V.5.5) [31].

The 2018 observations with hyperspectral imagery were pre-processed for orthorectifi-
cation and radiance calibration/conversion using Headwall’s Hyperspec III SpectralView
software [32]. The spectral imagery captured black, dark gray, light gray, and white cal-
ibration panels deployed on the north side of the 2018 site. We extracted the calibration
panel spectra using ENVI (V.5.5 [31]). The panels have well-characterized ground truth
reflectance spectra that were used to convert the pre-processed radiance flight imagery
into reflectance. We used the Empirical Line Method (ELM) tool in ENVI [33] to deter-
mine the relationship between the calibration panel UAS radiance spectra and their true
reflectance spectra and determined linear coefficients to convert between radiance and re-
flectance at each wavelength. This process removes both solar irradiance and atmospheric
path radiance.

Plots in the field were marked with red plates to rapidly locate and define regions
of interest (ROIs) for each plot using ENVI. The plots differ in pixel dimensions for each
set of imagery, depending on the ground sample distance of the UAS-based MicaSense
imagery. We extracted 5-band plot images from each of the ROIs and used the Spectral
Python library SPy (V.0.20) [34] to import the ENVI-formatted plot images to NumPy
Arrays in Python for further analysis. Figure 2 displays a sample of the extracted plot
imagery from the 9 July 2018 flight (shortly following crop emergence). We noted that plots
41, 42, 43, and 46 exhibited substantial weed growth at this stage and were removed from
the analysis. Additionally, plot 27 had an anomalously high recorded foliage mass (>2× of
other plots) and was removed as an outlier/erroneous recording. The next step required
accurate identification of vegetation pixels for further analysis.

2.4. Canopy Pixel Segmentation

Several methods may be used to identify the pixels containing vegetation in plot
imagery. We clearly distinguished the crop canopy from background soil, prior to the
growth reaching a state of overlapped row canopies, due to the high spatial resolution
of the UAS imagery. Common classification practices include applying an appropriate
threshold to the spectral angle map (SAM) of an endmember spectrum [35] or using
k-means clustering to identify and classify spectral endmembers [36]. However, band
reflectance can change substantially with canopy growth, causing these methods to provide
inconsistent results amongst the various datasets. We thus opted for a relatively simple
VI threshold to identify vegetation pixels in each plot. Similar to Barzin et al. [16], we
determined that while a Normalized Difference Vegetation Index (NDVI) threshold is
commonly used for soil masking [37,38], it is not capable of producing a consistent result
amongst the imagery from varying growth stages using a single threshold value. We used
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the triangular vegetation index (TVI), because the TVI of the canopy exhibited a limited
variation over the cropping season compared to NDVI.
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The traditional formula for TVI, introduced by Broge and Leblanc [39], incorporates
the green, red, and NIR bands as:

TVI =
1
2
[
120
(
ρNIR − ρgreen

)
− 200

(
ρred − ρgreen

)]
(1)

with reflectances ρgreen = 550 nm, ρred = 670 nm, and ρNIR = 750 nm. This index essen-
tially measures the area of the triangle, as defined by the peak green and red absorption
trough, due to chlorophyll absorption, and the NIR plateau (inter-cellular leaf structure)
in vegetation spectra [39]. We used the green, red, and red edge bands for vegetation
classification (Table 2). The traditional TVI values are, therefore, expected to represent an
increase in the triangular area as the canopy grows and NIR reflectance increases with
more layers of vegetation. We chose to use the red edge band, instead of NIR, in order
to limit the difference in the index between growth stages. The median reflectance for
each band in all plot canopy imagery from 2018 are shown in Figure 3 (left) along with
the complete average spectra (right). The canopy near-infrared reflectance is clearly the
most variable throughout the growing season. The red edge band reflectance observed
here only decreases slightly over the cropping season, as the red edge inflection point
shifts to longer wavelengths with an increase in vegetation density [40]. This choice is
convenient for the purpose of classification, since it allows use of a consistent threshold
for every dataset. Other common indices, like NDVI, increase for canopy-level sensing
throughout the growing season and require an adjustment to the threshold for each dataset
to consistently classify all vegetation appropriately.
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Figure 3. (Left) Median blue, green, red, red edge, and near-infrared reflectance of each plot’s canopy pixels (background
soil masked out) from table beet plots in New York in 2018. The vertical dashed lines separate the data in terms of the
growth epochs observed in the 2018 season. (Right) The average and standard deviation of all individual plot median
reflectance measurements are shown alongside the range of the individual measurements (X’s).

We included a comparison of the TVI threshold, SAM, k-means, and NDVI threshold
methods on a sample plot over the course of the 2018 season to further reinforce our choice
of the modified TVI for classification (Figure 4). The plot’s RGB composite and vegetation
classification masks of each method are shown for each growth stage. The k-means and
SAM masks were determined using the kmeans and msam [35] functions in the SPy library.
The NDVI and SAM methods both classified the entire plot image as vegetation in the
two final observations, but a stricter (higher) threshold for either method failed to classify
the first observation’s vegetation pixels, due to the less-developed canopy. The k-means
method is strongly dependent on the number of clusters chosen. In the later observations,
it was optimal to use fewer clusters, because vegetation covered nearly the entire plot area,
resulting in less spectral diversity. However, in early observations there was more variation
in the plot image due to increased soil visibility. The image from 9 July 2018 required at
least three clusters to properly classify only vegetation cover as actual vegetation. Thus,
these three methods failed to classify the plot imagery of all four growth stages using a
standard set of method parameters. Only the TVI threshold effectively classified all four
growth stage images with a single threshold value for all four sets of imagery.
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Figure 4. Table beet vegetation classification for four observations of the 2018 plot # 17 using TVI >
7.5 threshold, k-means (two clusters), vegetation-endmember (average of all plot vegetation spectra)
SAM > 0.85 threshold (normalized between 0 and 1, where 1 corresponds to a perfect match), and
NDVI > 0.5 threshold. The binary vegetation classification masks display vegetation pixels as white
and the background soil and shadow as black.
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2.5. Feature Choice

Using the vegetation classification masks for each plot, we calculated a range of
statistical and morphological features. To avoid overfitting issues caused by small sample
sizes with high dimensionality [41], we limited our study to individual reflectance bands or
biophysically-sensible VI features and single radiometric features paired with canopy area.
We tested only VIs known to exhibit a priori phenological correlations with crop vigor,
and from these constructed our final models only with those features exhibiting optimal
posteriori correlations.

In addition to the five-band multispectral imagery, we calculated several VI images
for each plot (Table 3; Figure 5). The indices used here were specifically chosen to capture
different aspects of the plots’ spectra via incorporation of different combinations of the
five camera bands. The basic Difference Vegetation Index (DVI) effectively separates the
vegetation from the soil, but is sensitive to background soil reflectance [42]. We also
included the similar Green Difference Vegetation Index (GDVI), designed for predicting
nitrogen requirements in corn [43]. The most commonly-used vegetation index, NDVI,
is related to canopy structure, Leaf Area Index (LAI), and photosynthesis [44], but is
adversely sensitive to the background soil, atmospheric conditions, and shadowing. The
Enhanced Vegetation Index (EVI) [45] attempts to correct for the soil and atmospheric
effects in NDVI and offers more contrast in developed canopies, where NDVI may saturate
due to a higher Leaf Area Index (LAI). The Modified Soil Adjusted Vegetation Index 2
(MSAVI2) [46] reduces noise due to soil and increases the dynamic range of the canopy
signal, while the Green Chlorophyll Index (GCI) provides a better relation to chlorophyll
content than NDVI [47]. The Modified Triangular Vegetation Index (MTVI), used for
LAI estimation [48], is slightly different from the TVI we used earlier for vegetation
classification, effectively swapping the NIR band for the red edge. We included the Visible-
Band Difference Vegetation Index (VDVI) [49], which incorporates the blue, green, and red
channels, to assess the effectiveness of using only visible channels. Finally, we included the
Red Edge Normalized Difference Vegetation Index (RENDVI) [50] to capture variation in
the vegetation spectra along the red edge.

Table 3. Select vegetation indices used in this study.

Index Name Formula

DVI Difference Vegetation Index [42] NIR − R
GDVI Green Difference Vegetation Index [43] NIR − G
NDVI Normalized Difference Vegetation Index [44] NIR − R

NIR + R
EVI Enhanced Vegetation Index [45] 2.5(NIR − R)

NIR + 6R − 7.5B + 1

MSAVI2 Modified Soil Adjusted Vegetation Index 2 [46] 2NIR + 1 −
√
(2NIR + 1)2 − 8(NIR − R)

2
GCI Green Chlorophyll Index [47] NIR

G − 1
MTVI Modified Triangular Vegetation Index [48] 1.2[1.2(NIR − G) − 2.5(R − G)]
VDVI Visible-Band Difference Vegetation Index [51] 2G − R − B

2G + R + B

RENDVI Red Edge Normalized Difference Vegetation
Index [50]

NIR − RE
NIR + RE

We next determined the median reflectance of each band and median value of each
VI for the vegetation-classified pixels in each plot. Although the pixel reflectance of each
band did not deviate significantly from a Gaussian distribution, we used the median in lieu
of the mean to eliminate the potential of an anomalous pixel skewing a plot’s reflectance
or index values. We calculated the physical area of vegetation pixels for each plot, by
multiplying the number of TVI > 7.5 threshold vegetation-classified pixels by the squared
ground sampling distance. This yielded 15 total features (five bands, nine indices, and one
area) for each plot to be used in data analysis for each growth stage imagery set.



Remote Sens. 2021, 13, 2180 9 of 19

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

Table 3. Select vegetation indices used in this study. 

Index Name Formula 

DVI Difference Vegetation Index [42] ��� − � 

GDVI Green Difference Vegetation Index [43] ��� − � 

NDVI 
Normalized Difference Vegetation Index 

[44] 

��� − �

��� + �
 

EVI Enhanced Vegetation Index [45] 
2.5(��� − �)

��� + 6� − 7.5� + 1
 

MSAVI2 
Modified Soil Adjusted Vegetation In-

dex 2 [46] 
2��� + 1 − �(2��� + 1)� − 8(��� − �)

2
 

GCI Green Chlorophyll Index [47] 
���

�
− 1 

MTVI 
Modified Triangular Vegetation Index 

[48] 
1.2[1.2(��� − �) − 2.5(� − �)] 

VDVI 
Visible-Band Difference Vegetation In-

dex [51] 

2� − � − �

2� + � + �
 

RENDVI 
Red Edge Normalized Difference Vege-

tation Index [50] 

��� − ��

��� + ��
 

 

Figure 5. Grayscale multispectral bands and vegetation indices for imagery collected in a table beet 

field on 16 July 2019 (example plot 16) in Batavia, New York. 

We next determined the median reflectance of each band and median value of each 

VI for the vegetation-classified pixels in each plot. Although the pixel reflectance of each 

band did not deviate significantly from a Gaussian distribution, we used the median in 

lieu of the mean to eliminate the potential of an anomalous pixel skewing a plot’s reflec-

tance or index values. We calculated the physical area of vegetation pixels for each plot, 

by multiplying the number of TVI > 7.5 threshold vegetation-classified pixels by the 

squared ground sampling distance. This yielded 15 total features (five bands, nine indices, 

and one area) for each plot to be used in data analysis for each growth stage imagery set. 

2.6. Data Analysis 

We investigated multiple linear regression (MLR) models using individual radio-

metric features combined with canopy area to model the various yield parameters with 

datasets from each growth stage. We used leave-one-out cross-validation (LOOCV) �� 

and ���� for each MLR model (scikit-learn version 0.21.3) to determine the best-per-

Figure 5. Grayscale multispectral bands and vegetation indices for imagery collected in a table beet
field on 16 July 2019 (example plot 16) in Batavia, New York.

2.6. Data Analysis

We investigated multiple linear regression (MLR) models using individual radiometric
features combined with canopy area to model the various yield parameters with datasets
from each growth stage. We used leave-one-out cross-validation (LOOCV) R2 and RMSE
for each MLR model (scikit-learn version 0.21.3) to determine the best-performing growth
stage and radiometric feature for each yield component. We also summarize LOOCV results
for individual feature linear models of canopy area and the best-performing radiometric
feature for comparison with the optimal MLR model. Finally, we built upon the most
promising growth stage models by including additional augmented plots with larger areas.

We created augmented area plots for the emergence and canopy closing growth
stages using the original N plots. An additional N plots (the double set) consisted of two
randomly-chosen and combined plots from the original set, and a third set of N plots (the
triple set) consisted of a randomly-chosen combination of three original plots. This yielded
three times as many plots at each growth stage, with enhanced canopy area variability. The
radiometric data were extracted from these double and triple plots in the same manner
as the original plot data. While the original plot models naturally favored canopy area in
some cases, the use of augmented area plots forced the area feature to be most important.
We repeated the LOOCV assessment of individual radiometric features paired with canopy
area using the area-augmented models for the previously identified optimal growth stage.
We applied the final root count model to the 2019 plots nearest in growth stage for direct
testing and the root mass model to the whole field for a final coarse assessment of the
model’s performance on unseen data, comparing the outcome to a standard yield estimate
in terms of kg/ha for this region.

Prior to using MLR, we centered and scaled the dataset by removing the mean and
scaling to unit variance, so that the variety of scalar value ranges of the individual input
features did not skew the model coefficients higher for certain features [52]. In addition to
reporting LOOCV we provided visual assessments of model performance (measurements
vs. predictions) by training models with the optimal feature combination using 90% of
the plot samples in the selected dataset. We also report RMSE for the 10% testing data
prediction of these models.
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3. Results
3.1. Table Beet Root Count

The LOOCV scores for root count modeled with the standard plot imagery from each
growth stage are compiled in Table 4. The highest R2 and lowest RMSE were found for
the emergence imagery. The canopy area (R2 = 0.23, RMSE = 25 roots) alone was
only slightly informative at this growth stage and did not improve the predictive ability
of the NIR band (R2 = 0.40, RMSE = 22 roots) when combined in the MLR model
(R2 = 0.38, RMSE = 22 roots). The optimal RMSE of 22 roots is 13% of the mean root
count across all plots.

Table 4. Table beet root count growth stage and band/VI assessment report with leave-one-out
cross-validation R2 and root mean squared error (RMSE) for the best pairing of a radiometric feature
with canopy area MLR model and the linear regression scores of the individual features in 2018.

Band/VI + Area Area Band/VI

Growth Stage Best Band/VI R2 RMSE
(Roots) R2 RMSE

(Roots) R2 RMSE
(Roots)

Emergence NIR 0.38 22 0.23 25 0.4 22
Closing NIR 0.03 28 −0.04 29 0.04 28
Closed VDVI 0.11 27 −0.02 29 0.11 27
Harvest NIR 0.26 24 0.23 25 0.14 26

The LOOCV scores for each band and VI paired with canopy area are shown in
Figure 6 for the area-augmented emergence imagery. The VIs generally outperformed
the individual reflectance bands, and nearly all combinations provided an improvement
to the canopy area alone (R2 = 0.65, RMSE = 91 roots). The best pair was DVI and
canopy area with R2 = 0.70 and RMSE = 84 roots (24% of the mean root count for all
area-augmented plots). A sample of DVI + Area prediction vs. measured root counts is
shown in the left panel of Figure 7 using 90% training and 10% testing data. While the
radiometric features individually provided little predictive ability for the area-augmented
dataset, their combination with canopy area clearly provides an improvement on area alone.
The predictions for larger augmented plots are promising and distributed normally, but
the predictions of the original plots are skewed to overpredicting in the majority of cases.
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Figure 6. The area-augmented table beet root count R2 (left) and RMSE (right) leave-one-out cross-validation performance
(y-axis) for individual multiple linear regression models. Each model consists of one reflectance band or vegetation index
shown on the x-axis combined with canopy area. The DVI paired with table beet canopy area was the best-performing
model with R2 = 0.70 and RMSE = 84 roots.
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Figure 7. Measured vs. predicted table beet root count for the 2018 emergence DVI + Area multiple linear regression model,
based on area-augmented imagery (left). The model is trained with 90% (red) and tested with the remaining 10% (green)
area augmented study plot imagery. RMSE are displayed for the training data using leave-one-out cross-validation and for
the unseen test data. The DVI + Area model is trained with 100% of the 2018 emergence imagery and tested to predict the
root count (blue) for 100% of the 2019 area-augmented study plot imagery occurring closest to emergence (right).

We further trained the DVI + Area model using the 2018 area-augmented emergence
imagery and tested on the area-augmented imagery from 2019 obtained on 16 July, closest
to emergence for that season. The predictions for this model are shown in the right panel
of Figure 7. The model underpredicts several of the larger augmented plots with an
RMSE = 127 roots or 35% of the mean root count for the 2019 area-augmented plots.

3.2. Beet Root Mass 2018

The LOOCV scores for root mass modeled with the standard plot imagery from each
growth stage are compiled in Table 5. The highest R2 and lowest RMSE were found
for the canopy closing imagery. However, the improvements to RMSE between growth
stages were minimal. The canopy area (R2 = 0.36, RMSE = 0.9 kg) alone was most
informative at the canopy closing growth stage while VDVI (R2 = −0.03, RMSE = 1.2
kg) when combined in the MLR model (R2 = 0.37, RMSE = 0.9 kg) provided meager
improvement. The optimal RMSE of 0.9 kg is 10% of the mean root mass for all plots (or
approximately 4800 kg/hectare).

Table 5. Table beet root mass growth stage and band/VI assessment report with leave-one-out
cross-validation R2 and root mean squared error (RMSE) for the best pairing of a radiometric feature
with canopy area MLR model and the linear regression scores of the individual features in New York
in 2018.

Band/VI + Area Area Band/VI

Growth Stage Best Band/VI R2 RMSE
(kg) R2 RMSE

(Roots) R2 RMSE
(Roots)

Emergence RE 0.20 1.0 0.16 1.1 −0.01 1.2
Closing VDVI 0.37 0.9 0.36 0.9 −0.03 1.2
Closed MSAVI2 0.22 1.0 0.0 1.1 0.24 1.0
Harvest R 0.18 1.0 −0.01 1.2 0.11 1.1
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The LOOCV scores for each band and VI paired with canopy area are shown in
Figure 8 for the area-augmented canopy closing imagery. The best pairing was VDVI and
canopy area, but all reflectance bands and VIs offered no improvement to canopy area alone
(R2 = 0.89, RMSE = 2.5 kg per area-augmented plot or approximately 6700 kg/hectare).
The total root mass amongst the plots exhibited less variation than the root count and
appear as three distinct clusters after augmentation-original plots, double combo-plots,
and triple-combo plots (Figure 9). Capturing the relationship between radiometric data
and root mass may require plots with a broader range of root mass.
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Figure 8. The area-augmented table beet root mass R2 (left) and RMSE (right) leave-one-out cross-validation performance
(y-axis) for individual multiple linear regression models. Each model consists of one reflectance band or vegetation index
shown on the x-axis combined with canopy area. The VDVI paired with canopy area was the best-performing model with
R2 = 0.89 and RMSE = 2.5 kg. However, the vertical axis scaling shown for both plots indicates that the radiometric data
provide no significant improvement to the table beet root mass model derived from the area-augmented imagery.
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Figure 9. Measured vs. predicted table beet root mass for the 2018 canopy closing VDVI + Area
multiple linear regression model based on area-augmented plot imagery. The model is trained with
90% (red) and tested with the remaining 10% (green) area-augmented study plot imagery. RMSE are
displayed for the training data using leave-one-out cross-validation and for the unseen test data.

The average attainable table beet root yield in New York is estimated at 40,000 kg/hectare
(J. Henderson, personal communication). We, therefore, applied our area-augmented table beet
root mass model to new data for a large section (~0.3 ha) of the 2019 field imagery to assess
the yield for the entire image coverage. Again, the 2019 data used here did not coincide with
the exact growth stage of the 2018 canopy closing dataset used to build the area-augmented
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beet root mass model. Regardless, the results of our model applied to the 2019 field are
shown in Figure 10. We predicted a total yield of 41,000 kg/ha, where the average grid cell
(~4 m2) had table beet roots totaling 17 ± 2.5 kg, by tallying the root mass from each grid
cell and dividing by the total area. Considering the differences in the canopy growth used
to construct and test the model, this performance should merely be taken as a moderate
prediction, rather than proof of concept.
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Figure 10. An evaluation of the area-augmented 2018 table beet root mass model on the independent
augmented area plot imagery, taken on 16 July 2019. Since we do not have ground truth root mass
data for the 2019 plots, we applied the model to the whole field for an approximate assessment. An
RGB composite (top) of a large portion of the 2019 field serves as context for the 2 × 2 m grid of the
field with the table beet root mass model.

3.3. Beet Root Diameter 2018

The LOOCV scores for root mass modeled with the standard plot imagery from
each growth stage are compiled in Table 6. While the emergence data had the highest
correlations to root diameter the correlations were lower than for root count and mass. The
NIR band was most correlated with root diameter (R2 = 0.22, RMSE = 3.2 mm), but
the canopy area (R2 = 0.02, RMSE = 3.5 mm) offered no improvement in the combined
MLR model (R2 = 0.22, RMSE = 3.2 mm). The average root diameter was not explored
further in this study with area-augmented imagery because the average root diameter does
not scale in the same manner as table beet root count and mass.

Table 6. Table beet root diameter growth stage and band/VI assessment report with leave-one-out
cross-validation R2 and root mean squared error (RMSE) for the best pairing of a radiometric feature
with canopy area MLR model and the linear regression scores of the individual features in New York
in 2018.

Band/VI + Area Area Band/VI

Growth Stage Best Band/VI R2 RMSE
(mm) R2 RMSE

(mm) R2 RMSE
(mm)

Emergence NIR 0.22 3.2 0.02 3.5 0.22 3.2
Closing NIR 0.08 3.4 0.0 3.6 −0.01 3.6
Closed VDVI −0.04 3.6 −0.05 3.7 −0.01 3.6
Harvest R 0.18 3.2 0.14 3.3 0.08 3.4

The average root diameter exhibited poor correlation with radiometric features and
the canopy area. However, when we separate the table root counts into standard diameter
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ranges (John Henderson, private communication), the three diameter ranges nearest the
center of the diameter distribution (10–25 mm, 25–44 mm, and 44–63 mm), had the highest
NIR + Area MLR model correlations (LOOCV R2 = 0.24, 0.37, and 0.26, respectively) with
emergence plot imagery. This is expected, as they make up the largest percentages of the
total root count. We show the percentage of roots falling in each of the processing diameter
ranges in Figure 11, along with target percentages. The actual numbers from the test plots
indicated over-production of smaller diameter and less production of larger diameter beets.
Additional emergence data may be used to develop a root size distribution model in the
future, but currently the low numbers for the 63–75 mm range prevent meaningful size
distribution modeling in the three ranges that are key to a typical grower target.
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 Band/VI + Area Area Band/VI 

Growth Stage Best Band/VI �� ���� (g) �� ���� (g) �� ���� (g) 

Emergence NDVI 0.18 69 0.19 68 0.09 73 

Closing VDVI 0.26 65 0.21 68 0 76 
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Figure 11. The median percentage of all 2018 plots’ table beet roots, falling in each diameter range,
are plotted in green inside of a box spanning the inter quantile range (IQR). Outliers are marked with
black open circles and fall outside the error bars located at Quantile 3 + 1.5 IQR (above) and Quantile
1–1.5 IQR (below). The optimal percentages of table beet roots falling in each range, as provided by
Love Beets USA (a commercial beet grower), is plotted with red filled circles.

3.4. Foliage Mass 2018

The LOOCV scores for root mass modeled with the standard plot imagery from
each growth stage are compiled in Table 7. The harvest growth stage provided the best
correlation with the dry weight of foliage. The combination of VIs and canopy area
produced the best MLR model (R2 = 0.32, RMSE = 63 g), but neither the individual
RENDVI (R2 = 0.06, RMSE = 74 g) or canopy area (R2 = 0.13, RMSE = 71 g) model
had comparable performance.

Table 7. Table beet growth stage and band/VI assessment report with leave-one-out cross-validation
R2 and root mean squared error (RMSE) for the best pairing of a radiometric feature with canopy
area MLR model and the linear regression scores of the individual features in New York in 2018.

Band/VI + Area Area Band/VI

Growth Stage Best Band/VI R2 RMSE (g) R2 RMSE (g) R2 RMSE (g)

Emergence NDVI 0.18 69 0.19 68 0.09 73
Closing VDVI 0.26 65 0.21 68 0 76
Closed EVI 0.2 68 0.03 75 0.21 67.4
Harvest RENDVI 0.32 63 0.13 71 0.06 74
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The canopy area for all plots varied by the smallest margin at harvest (0.35 m2).
Ultimately, all plots from 2018 reached maximum canopy area by the canopy-closed growth
stage. Therefore, the canopy area loses value for predicting yield components. Moreover,
any variation explained by canopy area at later growth stages is likely due to differences in
pixel shading of the plots, rather than actual area. Later growth stage models should rely
most heavily on the radiometric features, but these also reach a point of saturation or lack of
variation between plots in most cases, as a function of closed-canopy table beets. It has been
shown that typical red-near-infrared vegetation indices, such as NDVI, saturate at high
Leaf Area Index (LAI) values [53]. Although we did not measure LAI explicitly, it is likely
that closed canopies result in a reduction in predictive power for such red-near-infrared
vegetation indices.

We did not test foliage models on the 2019 data, because we did not obtain imagery
of the canopy-closed and harvest growth stages or gather the foliage mass ground truth
for that year. Additionally, measured foliage mass was only modestly correlated with
root mass and root count (R2 = 0.38 and 0.23, respectively). We see limited value in the
development of a precise foliar biomass model without first expanding our dataset to more
clearly exploit any potential relationship between foliar biomass and root yield.

4. Discussion

The performance of the 2018 area-augmented root count and mass models assessed on
the 2019 data is promising, especially considering the slight differences in growth stages,
in both cases. In fact, the median DVI values for the 2019 plots ranged from 0.28 to 0.49
compared to 0.20 to 0.32 in 2018, indicating that the earliest 2019 imagery captured a more
advanced stage of canopy growth than the 2018 emergence data used to develop the root
count model. Additionally, the smallest plots used to construct the model were twice as
long as the 2019 plots. We thus recommend that additional imagery, collected on several
days following emergence, could help pinpoint an optimal time to capture imagery for
table beet root count predictions. Alternatively, more data may allow the use of a temporal
feature representing the growth stage in our prediction model.

Similarly, there is significant potential to develop improved root mass models with
additional data collected at different days during the emergence and canopy closing growth
stages. Even though the Band/VI + Area root mass models did not improve upon the
Area-only model, using the radiometric properties of the canopy to quantify area before
closure is an effective method to predict table beet root yield.

The physical size of the canopy growth arguably should have the strongest correlation
with yield, when measured close to harvest. However, by the canopy-closed growth
stage observations in 2018, every plot canopy had merged with neighboring rows, thereby
resulting in virtually identical canopy area. The radiometric (image) data also lacked the
significant variability needed to predict a variety of root yield components for the plots by
the canopy-closed growth stage. In other words, it appears that eventually the plots reach
a state of maturity where they become less distinguishable in terms of vegetated area and
their radiometric properties. This finding also has been demonstrated in previous studies,
where especially red-NIR vegetation indices saturate and thus become less sensitive under
high Leaf Area Index (LAI) or canopy-closed scenarios [53,54].

The need for early growth stage imagery is highlighted by Figure 12, where we show
the radiometric variance of each input feature for the 2018 study, divided by the mean
of the feature for each of the growth stages. The emergence and canopy closing growth
stages exhibited the highest ratio of feature variance, normalized by the mean. Many of the
radiometric features showed minimal variance (<2%) across plots. All of the canopy-closed
and harvest stage radiometric features exhibited minimal variation amongst the plots. The
canopy area showed the clearest trend of decreasing variation as the canopy grew into the
between-row space. We, therefore, contend that monitoring the early growth stages more
closely and determining when each plot reaches maturity may be more relevant to root
development and ultimately, yield component prediction.
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Figure 12. There was limited radiometric variability for each New York table beet growth stage in
2018. The cumulative experimental plot variance is divided by the mean of each radiometric feature
and canopy area. The emergence and canopy closing growth stages exhibited the most variable
features amongst the full set of plots, reinforcing the modeling results.

The inclusion of 3D structural features, such as canopy heights from either light detec-
tion and ranging (LiDAR) or via image-based structure-from-motion (photogrammetry)
may improve predictions for future studies. We might effectively exploit the imaging data
to determine both canopy area and height, supplemented with the radiometric data when
it is most variable early in the season to provide early predictions. Even if the canopy area
and vegetation indices have reached saturation, canopy height may continue to exhibit
variability between plots at the later growth stages and provide a more direct measure of
the foliar biomass.

In addition to acquiring imagery more frequently, ground truth data should be ob-
tained from a larger sample size. A larger number of smaller scale samples covering an
identical area could be accomplished with equivalent sampling labor to reach a higher base
sample size. The area-augmented procedure used here could then be applied to model
scalable yield components. A future study may also use hyperspectral data derived from
an UAS or handheld spectrometer, with the goal of determining a set of spectral bands
that exhibit optimal association with yield components [55], thereby improving upon the
multispectral bands used in this study.

Plots with obvious visual evidence of weeds were removed as outliers before regres-
sion modeling. We, therefore, would need to incorporate a method for identifying and
mapping weeds between rows in the early growth stages, as implemented by Pérez-Ortiz
et al. [56] for sunflower crops, if we were to apply our models to a table beet field. An early,
targeted elimination of weeds in problem areas may prevent the low root yields that we
observed in four test plots that contained obvious examples of weed growth between rows
in the emergence 2018 imagery (i.e., plots 41–43 and 46; Figure 2).

5. Conclusions

We evaluated the use of five-band visible-near-infrared UAS imagery to assess New
York table beet root yield (root count and mass) across four airborne campaigns spanning
the 2018 cropping season. Overall, our investigations of table beet root yield uncovered
the need to obtain additional data, at different times throughout the early growth stages,
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and to prioritize flight plans for also obtaining canopy heights from our imagery using
structure-from-motion (photogrammetry) or LiDAR data. We observed modest predictive
ability for both the root count (R2 = 0.38, RMSE = 22 roots) and root mass models
(R2 = 0.37, RMSE = 0.9 kg) using UAS multispectral imagery. However, extending
2018 single-year models to independent data, e.g., full 2019 field or 2019 plot-level im-
agery, was successful after incorporating area-augmented plots (vegetation coverage/plot).
These models took advantage of the obvious relationship between canopy area and root
yield/count.

In reality, any application of a crop yield model based on radiometric information from
satellites, UAS, or over-the-row tractor equipment needs to be robust to a multitude of scales
and conditions. A model developed solely from radiometric data of a standard plot size
likely will not be ideal if the goal is to apply these results in the field. Our area-augmented
modeling demonstrates potential to create a model robust to this shortcoming by using a
combination of radiometric and spatial (coverage or structural) data. We thus recommend
that more data from an array of growth stages and seasons be included in future studies to
develop more confidence in the operational UAS-based yield modeling applications.
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