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Abstract: The accurate estimation of rice yield using remote sensing (RS) technology is crucially
important for agricultural decision-making. The rice yield estimation model based on the vegetation
index (VI) is commonly used when working with RS methods, however, it is affected by irrelevant
organs and background especially at heading stage. The spectral mixture analysis (SMA) can
quantitatively obtain the abundance information and mitigate the impacts. Furthermore, according
to the spectral variability and information complexity caused by the rice cropping system and canopy
characteristics of reflection and scattering, in this study, the multi-endmember extraction by the pure
pixel index (PPI) and the nonlinear unmixing method based on the bandwise generalized bilinear
mixing model (NU-BGBM) were applied for SMA, and the VIE (VIs recalculated from endmember
spectra) was integrated with abundance data to establish the yield estimation model at heading
stage. In two paddy fields of different cultivation settings, multispectral images were collected
by an unmanned aerial vehicle (UAV) at booting and heading stage. The correlation of several
widely-used VIs and rice yield was tested and weaker at heading stage. In order to improve the yield
estimation accuracy of rice at heading stage, the VIE and foreground abundances from SMA were
combined to develop a linear yield estimation model. The results showed that VIE incorporated with
abundances exhibited a better estimation ability than VI alone or the product of VI and abundances.
In addition, when the structural difference of plants was obvious, the addition of the product of VIF

(VIs recalculated from bilinear endmember spectra) and the corresponding bilinear abundances to
the original product of VIE and abundances, enhanced model reliability. VIs using the near-infrared
bands improved more significantly with the estimation error below 8.1%. This study verified the
validation of the targeted SMA strategy while estimating crop yield by remotely sensed VI, especially
for objects with obvious different spectra and complex structures.

Keywords: rice; yield; remote sensing (RS); spectral mixture analysis (SMA); multiple endmembers;
bilinear mixing model (BMM)

1. Introduction

Rice (Oryza sativa L.) is one of the largest staple food crops in the world, and it feeds
approximately half of the global population [1,2]. Accurate yield estimation can give
references to the adjustment of the pattern of farming of the rice producing areas. Resorting
to the remote sensing (RS) technique, such as unmanned aerial vehicle (UAV) images, the
acquisition of yield in advance, non-destructively and cost-efficiently, benefits for coping
with fluctuations of the grain trade market and ensuring state food security [3–5].
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Vegetation indices (VIs), calculated from the remote sensing spectrum with math-
ematical methods, can reflect the vegetation growth situation as simple and empirical
metrics [6,7]. Additionally, the changes of crops captured by spectral measures, directly
determine their ultimate yield. Therefore, VIs have also exhibited good potential in remote
estimation of crop yield especially at large scales [8,9]. Parametric regression models based
on VIs are by far the oldest and largest group of variable estimation approaches [10],
including simple linear functions and complex non-linear functions in general [11]. Linear
regression between VIs and yield has been proposed to accurately estimate the yield of
many cash crops, such as wheat [12], cotton [13], maize [14], rapeseed [15] etc. Among
them, taking rice as the research objective, a series of studies have been developed to
relate the rice spectra to its final yield. Swain [16] developed a linear regression model
of normalized difference vegetation index (NDVI) of UAV images and rice yield with a
0.728 coefficient of determination (R2) and a 0.458 ton/ha root mean square error (RMSE)
at panicle initiation stage. Siyal et al. [17] observed that there was a positive and strong
relationship with a R2 of 0.940 between rice crop yield (2006 to 2013) and NDVI calculated
from Landsat imagery at the peak of the growing season. Zhou et al. [18] found that the
optimal vegetation index NDVI based on multispectral images showed a linear relationship
with the grain yield and gained a higher R2 value (0.750). Indeed, developing a linear
function based on VIs is a common and widely used approach to estimate rice yield.

However, the utilization of VIs, derived from individual pixels, is affected by back-
ground clutter and irrelevant organs to photosynthesis and production [15,19]. There may
be a considerable discrepancy between pixel sizes of remote sensing images and much
smaller sizes of crop plants, and pixels of interest are frequently a combination of numerous
disparate ground objects [20]. In plant production systems, sensors can capture the entire
canopy, grasses and soil, and VIs, calculated from the spectra of such mixed pixels, may
encompass some unexpected information of the components not relevant to yield [21,22].
This negative influence is more remarkable for rice at heading stage. Paddy rice is the only
crop that needs abundant water in the planting environment [23], and water body, as an
extra ground object, still exists at heading stage and constitutes the background together
with soil. Moreover, panicles of rice plants gradually distribute in the closed rice canopy at
this stage. A range of previous studies have found that the uneven emergence of panicle is
associated with poor estimation ability at heading stage [18,24,25]. As noted that spectral
mixture analysis (SMA) can effectively provide complementary information up to the
subpixel level and mitigate the impact of other ground objects, the need to quantitatively
decompose or unmix, has been gradually recognized while establishing a VI-based rice
yield estimation model [22,26].

Specifically, the vegetal state of rice in field cannot be neglected from estimating the
yield, but there are rarely SMA approaches fitting rice characteristics at heading stage.
In the actual production, there is not a uniform rice variety or farming practice as usual.
Multi-variety cultivars and different managements indicate the great diversity of growth
rate, morphological structure, physicochemical parameter, phenology, etc. in the same
period [23,27,28], especially at the late growth stage, as shown in Figure 1. Inevitably,
this makes identified differences in the spectra of rice plants in remote sensing images
over wide areas. Consequently, the spectral variability of the foreground is enhanced
and obvious in remote sensing images of paddy fields. In addition, rice plants inherently
have high spectral complexity, owing to the complicated processes of electromagnetic
propagation and their parameterization, which will finally bias the application of RS [29].
When rice steps into the heading stage, crisscrossed leaves cover water and soil partially
or completely, however, due to the high transmission of rice leaves, mainly in the near-
infrared (NIR) range, multiple reflection and scattering of light rays occur in the scene. Ray
and Murray [30] and Prasad et al. [31] have confirmed that even near 100% plant cover, the
background influences the observed spectra due to NIR light penetrating the canopy and
interacting with the background. The data of sensor incoming light interacting with all the
objects within inescapably contain complex information. Therefore, the unique reflectance
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characteristics of rice plants in remote sensing images, induced by the cropping system
and complex space structure, demand to be considered in the process of SMA.

Figure 1. The field images of different rice varieties at heading stage: (a) Longyou-518; (b) Tianlong-
660; (c) Liangyou-1128; and (d) unnamed cultivar.

In view of the above-mentioned problem of paddy rice, we successively considered
the two important steps of SMA. In the first step, a mixed pixel was decomposed into a
collection of constituent spectra or endmembers, and there was a need to find endmembers
which could effectively cope with the spectral variability and represent rice components.
Normally, endmember extraction algorithms (EEAs) are employed in this step, which
are more adaptive and dynamic than field measurement. Representative EEAs include
the pure pixel index (PPI) [32], N-finder algorithm (N-FINDR) [33], vertex component
analysis (VCA) [34], etc. Endmember extraction plays an important role in the two-step
strategy, but the spectral-based EEAs without considering spectral variability usually
result in unmixing errors [35]. To minimize the effect of spectral variability of the same
objects, the multiple-endmember extraction strategy has been adopted in several fields, for
example, the discrimination of tree species [36] and mineral detection [37]. In the second
step, an appropriate unmixing model, developed for multiple reflection and scattering
in paddy fields, was demanded to derive a set of corresponding fractions or abundances,
that indicate the proportion of each endmember present in the pixel. There are two typical
unmixing models, one is the linear mixing model (LMM), and the other is the nonlinear
mixing model (NLMM). The LMM is a simple and widely used model, which assumes
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that the light reaching the pixel interacts with just one material [38]. Based on the LMM,
the bilinear mixing model (BMM), one of NLMMs, further considers second interactions
between components and is more applicable to multiple-level and hybrid scenes such
as vegetated terrain, with low model complexity and scene parameter dependence [21].
A range of novel BMMs have been proposed and applied in SMA, and experiments on
synthetic datasets or real spectral images have been conducted to demonstrate the efficiency
and advantages of BMMs in some scenes, including forest/grassland ecotone [39], mining
site [40], city [41], etc. Current researches have proved the combination of abundance
data and VIs can improve the estimation of crop yield, but for rice, there is still room
for improving the application effect of SMA [15,22]. So in this study, we integrated a
multi-endmember extraction strategy and a BMM to investigate a novel method of rice
yield estimation, according to the properties of paddy rice.

The motivation of this research was to assess what a complementary role subpixel
information played on the spectral characteristics VIs reflected in yield estimation, accord-
ing to the characteristics of rice at heading stage. After obtaining multi-band images by
an UAV system at heading stage, this study explored to improve a VI-based approach for
rice yield estimation by combining with adaptive endmember and abundance information
acquired from the multi-endmember extraction strategy and a BMM. The feasibility of the
approach was verified in two paddy fields of various settings, which represented the most
probable situations of foreground variability in practice.

2. Materials and Methods
2.1. Study Area

The first study area was located in the Multi-Variety Hybrid Rice Experiment and
Research Base of Wuhan University, in the southeast of Lingshui City, Hainan Province,
China (18◦31′47.1′′N, 110◦3′34.9′′E), as shown in Figure 2a. Forty two varieties of hybrid
rice were planted in the 42 plots and the size of each plot was about 70 m2. The varieties
were typical cultivars in southern China, such as Luoyou-8, Hongyou-3348, Zhenyou-6,
etc. In order to ensure that cultivars were the only variable in this study area, the field
management for these plots was similar, including fertilizer supply (12 kg/ha) and planting
density (around 20 plants/m2). In our study, the seedlings were transplanted on 5 January
2018, and UAV flights were conducted at booting stage (18 March 2018) and heading stage
(1 April 2018) of rice growth. Each UAV flight was arranged to obtain the images of all rice
plots between 10:00 and 14:00.

The second study area was located in the Rice Experiment and Research Base of Huazhong
Agricultural University, Wuxue City, Hubei Province, China (30◦6′42′′N, 115◦35′21′′E), as
shown in Figure 2c. At this paddy field, a single variety hybrid rice, Shenliangyou-584, was
cultivated in 24 plots and the size of each plot was about 20 m2. The field management for
these plots were similar except for the fertilizer supply. Eight levels of nitrogen fertilizer
(0, 3, 5.5, 8.5, 11, 14, 16.5, and 19.5 kg/ha) were utilized, and the planting density was
about 15 plants/m2. At booting stage (13 August 2015) and heading stage (29 August 2015),
UAV flights were conducted to collect panoramic images of the study area between 10:00
and 14:00.

2.2. Yield Data Collection

At maturity, all the rice plants in each plot were harvested and determined the grain
yield manually. After a series of treatments, including cleaning and drying, the seeds were
dry enough whose weight did not change. Then, all the concerning data were measured to
calculate the observed yield y:

y =
10, 000× (1− I)×W×D

15×N
(1)

where I denotes the impurity content, W and D represent the total weight and plant density
in kg, respectively, and N is the number of hills of weighted rice.
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Figure 2. The location of the study site and the regions of interest in each plot. (a,b) Study Area 1 Lingshui and (c,d) Study
Area 2 Wuxue.

2.3. Surface Reflectance and Vegetation Index Derived from UAV Data

The multispectral images of the study area in Study Area 1 (Lingshui) were ac-
quired with a Mini-MCA system (Mini-MCA 12, Tetracam, Inc., Chatsworth, CA, USA)
on 18 March and 1 April 2018, which was displayed in Figure 3a. The light multispectral
camera Mini-MCA consists of an array of twelve independent miniature image sensors.
Each camera imager was equipped with a user-configurable bandpass filter centered at a
wavelength of 490, 520, 550, 570, 670, 680, 700, 720, 800, 850, 900 or 950 nm, respectively,
with a 10 nm bandwidth for the first 10 bands, 20 nm bandwidth for the 900 nm band
and 40 nm bandwidth for the 950 nm band. Additionally, the multispectral images of
Study Area 2 (Wuxue) were acquired with a Mini-MCA system (Mini-MCA 6, Tetracam,
Inc., Chatsworth, CA, USA) on 13 and 19 August 2015, as shown in Figure 3b. The light
multispectral camera Mini-MCA consists of an array of six independent miniature image
sensors. The bandpass filter was centered at a wavelength of 490, 550, 670, 720, 800 or
900 nm, respectively, and the bandwidth was 10 nm. The images of different bands were
co-registered to ensure the objects in the images of twelve or six channels were in a unified
coordinate system and corresponded to the same pixel using the PixelWrench2 software
(Tetracam Inc., Chatsworth, CA, USA).
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Figure 3. The illustration of (a) mini-MCA 12, (b) mini-MCA 6, and (c) UAV.

The Mini-MCA was mounted on a UAV (S1000, SZ DJI Technology, Co., Ltd., Shenzhen,
China) which flew between 10:00 and 14:00 when the changes in the solar zenith angle
were minimal (Figure 3c). The flight was conducted at 200 m above the ground to capture
images with a spatial resolution of 108.33 mm in Study Area 1 (Lingshui), while in Study
Area 2 (Wuxue), the pixel size was around 30 mm for images taken at 60 m approximately.
Images were taken under stable weather conditions during cloud-free periods.

Radiometric calibration was performed using multiple calibration panels with the
relatively constant reflectance in visible to NIR wavelength range, which was 0.03, 0.12,
0.24, 0.36, 0.56 or 0.80, respectively in Study Area 1 (Lingshui) and 0.06, 0.24, 0.48 or 1
in Study Area 2 (Wuxue). The ground targets as a reference for calibration were set near
the rice plots prior to the flight for simultaneous imaging with objects. By referring to
the panels, an empirical linear correction method was applied to transform image digital
numbers (DNs) into surface reflectance ($). The object reflectance can be calculated as:

$λ= Gainλ×DNλ+Offsetλ (2)

where $λ and DNλ denote the surface reflectance and digital number, respectively, at
wavelength λ; Gainλ and Offsetλ represent gain and bias coefficients of the camera at
wavelength λ, respectively. Referring to the DNs in the UAV imagery and actual reflectance
of calibration panels, Gainλ and Offsetλ can be calculated applying the least-square method
and used in radiometric calibration at wavelength λ.

For each rice plot, we respectively defined a maximum rectangle same in shape and
size as the region of interest (ROI) in the UAV image, as shown in Figure 2b,d. Each ROI
included the same number of pixels, and the plot-level VI was retrieved by averaging all
the per-pixel reflectance values within the rectangle. A total of 12 vegetation indices were
selected from the literature as being the most used to characterize the vegetation status, as
displayed in Table 1.

2.4. The Pure Pixel Index Endmember Extraction Method

In paddy fields, leaves, stems, and panicles constitute the canopy of rice as the
foreground of the scene, and the background is mainly comprised of soil and water. Due to
differences in the physicochemical property and spatial complexity, the pure components of
the foreground and background show up as spectral variability and information complexity,
even for the same object. In addition, multiple scattering inevitably occurs in rice fields.
The propagation of light in paddy fields was briefly illustrated in Figure 4.
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Table 1. Vegetation indices tested in this study.

Vegetation Indices Formula Reference

Red-edge Chlorophyll Index (CIrededge) $800/$720 − 1 [42]
Green Chlorophyll Index (CIgreen) $800/$550 − 1 [42]

Normalized Difference Vegetation Index (NDVI) ($800 − $670)/($800 + $670) [43]
Green Normalized Difference Vegetation Index (GNDVI) ($800 − $550)/($800 + $550) [44]

Normalized Difference Red Edge Vegetation Index (NDRE) ($800 − $720)/($800 + $720) [45]
MERIS Terrestrial Chlorophyll Index (MTCI) ($800 − $720)/($720 − $670) [46]

Visible Atmospherically Resistant Index (VARI) ($550 − $670)/($550 + $670) [47]
Photochemical Reflectance Index (PRI) ($520 − $570)/($520 + $570) [48]

Wide Dynamic Range Vegetation Index (WDRVI) (α × $800 − $670)/(α × $800 + $670) α = 0.2 [49]
Optimized Soil Adjusted Vegetation Index (OSAVI) (1 + 0.16) ($800 − $720)/($800 + $720 + 0.16) [50]

Enhanced Vegetation Index (EVI) 2.5($800 − $670)/($800 + 6$670 − 7.5$490 + 1) [51]
Two-band Enhanced Vegetation Index (EVI2) 2.5($800 − $670)/($800 + 2.4$670 + 1) [52]
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In this study, the PPI method was employed to implement the semi-automatic extrac-
tion of endmembers in ENVI 5.3 (Exelis Visual Information Solutions Inc., Boulder, CO,
USA). It assumed that all mixed pixels were located inside a simplex while the endmembers
were located at the vertex of the simplex [53]. With the intention of easing computational
complexity, masking (Figure 5a) and dimension reduction were carried out successively.
All the pixels in the data space were projected onto randomly generated unit vectors, and
the endmembers were likely to be projected on both ends of the unit vectors. The number
of times a data value resulted as an extremum point when projected onto both ends of the
vector was recorded as the purity index. The higher the purity index of a pixel was, the
greater probability the pixel had to be an endmember. The high PPI count pixels within the
threshold were screened (Figure 5b) and enumerated in n-Dimensional Visualizer (Figure
5c). According to the clusters, the sample areas were delineated manually and the average
spectrum of the pixels in a sample area was the spectrum of an endmember (Figure 5d).
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Figure 5. The procedure of PPI: (a) Masking; (b) setting threshold; (c) enumerating pixels in n-Dimensional Visualizer; and
(d) outputting endmember spectra.

2.5. NU-BGBM Bilinear Spectral Mixture Analysis

In order to estimate the abundances of endmembers extracted in Section 2.4 in an
image pixel, we used MATLAB (MATLAB 2016a, MathWorks, Inc., Natick, MA, USA) to
derive a novel bilinear unmixing method, the nonlinear unmixing method based on the
bandwise generalized bilinear model (NU-BGBM) [54].

The LMM assumes that the reflectance y of one pixel in the imagery is a linear
combination of endmembers E with their relative proportions a. On this basis, the BMM
takes second-order scattering between different endmembers into consideration, which
means adding an additional second-order interaction term to the LMM as follows:

y = Ea+
M−1

∑
i=1

M

∑
j=i+1

bi,jei � ej+n (3)

where a is the abundance vector, bi,j is the number of nonlinearities between the endmember
ei and ej, � is the Hadamard product operation, M is the number of endmembers, and n
denotes the noise in imagery.
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The generalized bilinear model (GBM) sets the nonlinear coefficient bi,j = γi,jaiaj, and
the constraints imposed on the GBM can be written as:

ai ≥ 0,∀i = 1, . . . , M
γi,j= 0,∀i, j = 1, . . . , M, i ≥ j

0 ≤ γi,j ≤ 1, ∀i, j = 1, . . . , M, i < j
(4)

The real remote sensing image usually has strong signature variability [55], and
the abundances may not meet the abundance sum-to-one constraint (ASC) in practice, so
Li et al. [54] do not explicitly impose the condition for unmixing in NU-BGBM. Considering
the fact that the remote sensing images in the real world are usually degraded by mixed
noise [56], the NU-BGBM further subdivides the noise of imagery into the sparse noise S
and dense Gaussian noise N, and solves with the alternative direction method of multipliers
(ADMM). Mathematically, the NU-BGBM can be expressed as follows:

Y = EA + FB + S + N
A ≥ 0, 0 ≤ B ≤ C

(5)

where Y denotes the pixel matrix with a total of P column vectors (the number of pixels
in the image), E and F are the endmember matrix and the bilinear endmember matrix
respectively, and correspondingly, A and B are the abundance matrix and the bilinear
abundance matrix, C(i,j),k = Ai,kAj,k(k∈{1, . . . ,P}), and S and N denote the two types of
noise matrix.

In addition, to solve the matrix equation, the unmixing model limits of the number of
endmembers must be less than or equal to the number of bands.

We applied the NU-BGBM to obtain abundance images of foreground and background,
as shown in Figure 6, taking the endmembers extracted by the PPI method as input
(Figure 5d). The average value of each ROI in the foreground abundance image (Figure 6a)
represented the plot-level foreground abundance.
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2.6. Data Analysis between UAV Data and Rice Yield

In this study, the correlations between the image data and the final yield were assessed
and analyzed. We employed the Pearson correlation coefficient (r) to statistically analyze
correlation and built linear models to compare R2 and RMSE. Firstly, a normal correlation
analysis on the rice yield data and VIs at booting and heading stage was conducted.
The difference between these two rice growth stages was discussed and analyzed. For
improving the correlation of yield and VIs effectively, the relationship between (1) yield
vs. VI, (2) yield vs. VI × A, (3) yield vs. VIE × A, (4) yield vs. (VIE × A + VIF × B) were
evaluated successively, where VIE and VIF, respectively represented the VIs which were
recalculated from endmember spectra and bilinear endmember spectra (the Hadamard
product of endmember reflectance) obtained in Section 2.4 (Figure 5d), with the subscripts
E and F specially marked.
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VI × A is a common approach to combine abundances and VIs [15,22]. In this paper,
from the point of view of physics, we considered that the spectral properties of a mixed
pixel were determined by each component (VIE) and corresponding abundance fraction
(A). Therefore, the spectral characteristic of the foreground in an image (VIforeground) could
be described by VIEforeground and Aforeground, which respectively denoted the VIE and A of
the foreground endmembers. The equation was as follows:

VIforeground= AforegroundVIEforeground (6)

From the point of view of mathematics, we regarded the BMM as a simple math
calculation equation whose independent variable was e and dependent variable was y.
Taking three endmembers as an example, Equation (5) could be rewritten as:

yi= ai1e1+ai2e2+ai3e3+bi1e1�e2+bi2e1�e3+bi3e2�e3+si+ni (7)

where yi denoted the ith pixel and e1, e2, and e3 were the three endmember spectra within
the instantaneous field of view (IFOV). We considered that the equation was also reasonable
when the endmembers were replaced by the VIs calculated from it. Thus, VIyi could be
calculated as follows:

VIyi
= ai1VIe1+ai2VIe2+ai3VIe3+bi1VIe1�e2+bi2VIe1�e3+bi3VIe2�e3+si

′+ni
′ (8)

The equation represented the complex relationship between the spectral properties
of mixed pixels and ground objects. In this case, the terms related to foreground were
summed up as VIforeground:

VIforeground= AforegroundVIEforeground+α× BforegroundVIFforeground (9)

where VIFforeground and Bforeground, respectively denoted the VIF and B of the foreground
endmembers; α = 1, when Fforeground was the product of two foreground endmembers;
and α = 0.5, when Fforeground was the product of one foreground endmember and one
background endmember. In order to keep the simplicity of symbols, the A, VIE, and VIF in
the text all represented data related to foreground endmembers.

2.7. Algorithm Establishment Using Leave One Out Cross-Validation

In view of the small number of experimental samples in this paper, we used a leave
one out cross-validation method to establish the final yield estimation model. Leave one
out cross-validation is one of the most widely applied cross validation methods in model
establishment and validation for the full use of experimental data [57]. It selects one of the
N samples as the verification set, and the remaining N-1 samples as the training set. The
training and validating process is repeated N times, and the coefficients and accuracy of
the final algorithm are produced as:

Coef =
∑N

i=1 Coefi

N
; R2 =

∑N
i=1 R2

i
N

; RMSE =

√
∑N

i=1 E2
i

N
(10)

where Coef denotes the coefficients of the algorithm; R2 and RMSE are the average of
coefficients of determination and estimation error (Ei), respectively; N = 42 in Lingshui
City and N = 23 in Wuxue City (one of the rice yield data was obviously wrong).

3. Results
3.1. Correlations of Vegetation Index with Yield

In Table 2, the Pearson correlation coefficients of VIs with yield at heading stage
were generally lower than that at booting stage in both of the two study areas. Among
the tested indices, NDVI and GNDVI had relatively stable and high Pearson correlation
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coefficients. In Study Area 1 (Lingshui), all r values were less than 0.340 at heading stage,
while at booting stage, most r values were more than 0.400. EVI and EVI2 showed an
extremely weak correlation, and PRI had a negative correlation with yield. In Study Area 2
(Wuxue), PRI was not calculated owing to the lack of reflectance in 520 and 570 nm, and the
Pearson correlation coefficient of VARI with yield at heading stage was abnormal. Except
the two, most indices showed strong correlations with rice yield with r exceeding 0.700 at
booting stage and below 0.700 at heading stage. On the whole, most VIs showed a weaker
correlation with rice yield at heading stage than that at booting stage.

Table 2. The Pearson correlation coefficients of VI with yield at booting stage and heading stage.

Growth Stage
Study Area 1 (Lingshui) Study Area 2 (Wuxue)

Booting Stage Heading Stage Booting Stage Heading Stage

CIrededge 0.404 0.296 0.747 0.654
CIgreen 0.515 0.308 0.700 0.473
NDVI 0.486 0.336 0.741 0.661

GNDVI 0.527 0.326 0.746 0.645
NDRE 0.401 0.288 0.745 0.684
MTCI 0.404 0.288 0.747 0.663
VARI 0.482 0.299 0.497 −0.385
PRI −0.275 −0.263 - -

WDRVI 0.486 0.327 0.737 0.648
OSAVI 0.469 0.259 0.734 0.710

EVI 0.258 −0.019 0.651 0.587
EVI2 0.349 0.016 0.660 0.631

3.2. Relationship between Foreground Abundance Data and Rice Yield

As shown in Figure 5c, for the image of rice at heading stage, the high PPI pixels
enumerated in the n-Dimensional Visualizer mainly belonged to two clusters—one was
elongated and on a large scale, and the other was on the contrary. The larger cluster
consisted of pixels with a higher probability of being foreground endmembers. There
were significant spectral differences of pixels at both ends of the larger cluster. Thus, to
alleviate the adverse effects of the differences, for data from Study Area 1 (Lingshui), we
tried to manually delineate this scene component into one to six sample sections, as shown
in Figure 7, clustering pixels with a more similar spectrum together. Correspondingly,
we output one to six foreground endmembers and one background endmember, and the
spectra were displayed in Figure 8.

The six results in Figure 8 were inputted in the NU-BGBM, respectively, and the sum
of each foreground abundance fraction was regarded as the foreground abundance of the
delineating sample strategy, designated as A1, A2, A3, A4, A5, and A6. We compared the
Pearson correlation coefficients of the six abundance values with yield. Moreover, in the
processing, a RMSE parameter calculated in NU-BGBM, which denoted the accuracy of
unmixing, was also referenced. The two types of parameters were listed in Table 3. In Study
Area 1 (Lingshui), at heading stage, while extracting five foreground endmembers, the
unmixing accuracy reached the highest (RMSE was below 0.009 kg/m2) and the correlation
of A5 and yield was the strongest (r was 0.474).
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Table 3. The Pearson correlation coefficients of yield and the foreground abundances and the accuracy
of NU-BGBM under different inputs.

Number of
Foreground
Endmember

Study Area 1 (Lingshui) Study Area 2 (Wuxue)

Pearson Correlation
Coefficients

RMSE
(kg/m2)

Pearson Correlation
Coefficients

RMSE
(kg/m2)

One −0.098 0.0107 0.691 0.0288
Two 0.208 0.0093 0.759 0.0276

Three 0.171 0.0091 0.756 0.0280
Four 0.191 0.0090 0.760 0.0271
Five 0.474 0.0087 0.752 0.0280
Six 0.179 0.0088 - -

Figure 7. The sketch images of the six kinds of delineating sample strategies in the n-Dimensional Visualizer. (a) One fore-
ground and one background; (b) two foregrounds and one background; (c) three foregrounds and one background; (d) four
foregrounds and one background; (e) five foregrounds and one background; and (f) six foregrounds and one background.

For Study Area 2 (Wuxue), we manually delineated the scene component into one to
five sample sections, owing to the restrictive condition of the NU-BGBM, and then input
the five results into the unmixing model. Table 3 also showed the Pearson correlation
coefficients of yield and the foreground abundance and the accuracy of NU-BGBM under
the five strategies. While extracting four foreground endmembers, the unmixing accuracy
was the highest (RMSE = 0.027 kg/m2) and the correlation of A4 and yield was the strongest
(r = 0.760).
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Figure 8. The output endmember spectra of the six strategies. (a) One foreground and one background; (b) two foregrounds
and one background; (c) three foregrounds and one background; (d) four foregrounds and one background; (e) five
foregrounds and one background; and (f) six foregrounds and one background.

3.3. Spectral Mixture Analysis in Rice Field

According to Table 3, we chose the optimal endmember combination and output the fi-
nal abundance images of both study areas using NU-BGBM, respectively in Figures 9 and 10.
There were evident spectral differences between foreground and background, and the in-
put foreground endmembers had various reflectance, especially in Green, Red edge, and
NIR range, as shown in Figure 8. Correspondingly, there were significant differences that
existed in the abundance images of foreground and background. Each rice plot was bright
to varying degrees in the foreground abundance images. Additionally, in the background
abundance image, generally, pixels in rice plots had visibly lower values than that in the
other region. However, pixels near the ridges in Figure 9a and in some plots in Figure 10e
had a non-zero value, which indicated that the model might not unmix with an extremely
ideal effect. In addition, the maximum value of background abundance was too large
(about 35), while that of foreground abundance was near 1.5.

3.4. Rice Yield Estimation Using Vegetation Index and Abundance Data

To take full advantage of the endmember spectral variability and describe the contribu-
tion of different foreground components, we calculated VIE × A and (VIE × A + VIF × B)
as new indices, further highlighting the foreground information at heading stage. The
correlations with yield were compared to VI and VI × A, measured by the Pearson corre-
lation coefficients, as shown in Table 4. During processing, in view of the non-singleness
of foreground endmembers, the VI × A was the product sum of the VI and abundances
of each foreground endmember, so were VIE × A and (VIE × A + VIF × B). As results,
generally, after combined with abundances, twelve VIs produced relatively higher Pearson
correlation coefficients than VIs alone. Of particular note was the more obvious improve-
ment while using VIE than directly multiplying A by VI. For the rice yield of Study Area
1 (Lingshui), the (VIE × A + VIF × B) showed the strongest correlation among all four
products, and the r value of (NDREE × A + NDREF × B) reached the highest (0.558),
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however, the r values of (VIE × A + VIF × B) and yield of Study Area 2 (Wuxue) were
generally lower than that of VIE × A, and the maximum r value was 0.760 (NDVIE × A).

Figure 9. The abundance images of (a–e) five foreground and (f) one background endmembers of Study Area 1.
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Figure 10. The abundance images of (a–d) five foreground and (e) one background endmembers of Study Area 2.
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Table 4. The Pearson correlation coefficients of yield with VI, VI × A, VIE × A, and (VIE × A + VIF × B) at heading stage.

Study Area 1 (Lingshui) Study Area 2 (Wuxue)

VI VI × A VIE × A VIE × A + VIF × B VI VI × A VIE × A VIE × A + VIF × B

CIrededge 0.296 0.346 0.490 0.540 0.654 0.670 0.755 0.696
CIgreen 0.308 0.345 0.437 0.501 0.473 0.497 0.632 0.532
NDVI 0.336 0.453 0.485 0.532 0.661 0.742 0.760 0.748

GNDVI 0.326 0.442 0.503 0.547 0.645 0.734 0.759 0.746
NDRE 0.288 0.383 0.516 0.558 0.684 0.712 0.759 0.743
MTCI 0.288 0.349 0.501 0.547 0.663 0.681 0.759 0.710
VARI 0.299 0.356 0.500 0.530 −0.385 −0.114 0.668 0.660
PRI −0.263 −0.317 −0.406 −0.438 - - - -

WDRVI 0.327 0.393 0.508 0.546 0.648 0.684 0.758 0.743
OSAVI 0.259 0.363 0.499 0.548 0.710 0.719 0.759 0.749

EVI −0.019 0.248 0.290 0.339 0.587 0.735 0.741 0.740
EVI2 0.016 0.272 0.318 0.367 0.631 0.737 0.723 0.725

For further analysis, regression analysis had been used between yield and the four
VI products and the results were shown in Figure 11. We developed four linear relation-
ships using 42 and 23 samples, respectively and gained R2 and RMSE. Among the four
independent variables, VIE × A showed more satisfactory fitting results in both two study
areas, in stark contrast to VI. For all tested indices, using the product of NDREE, MTCIE,
and OSAVIE, and abundances to regress with rice yield was more accurate with higher R2

values and lower RMSE.
The statistical results in Study Area 1 (Figure 11a) showed that it helped estimate the yield

through taking the bilinear term into consideration. In addition, (NDREE × A + NDREF × B)
had the best goodness of fit with yield (R2 was 0.312), and the biggest increase was on the
R2 of OSAVI (from 0.067 to 0.300). The optimal RMSE decreased from 0.073 kg/m2 (VI) to
0.064 kg/m2 (VIE × A + VIF × B), which represented a reduction of 12%.

For the result in Study Area 2 (Figure 11b), the addition of VIF × B reduced the
estimation ability of VIE × A. NDVIE × A, NDREE × A, and OSAVIE × A had the best
fitting result with yield (R2 was 0.577), and R2 of VARI improved from 0.149 to 0.446 with a
most extent. The RMSE decreased from 0.030 kg/m2 (VI) to 0.027 kg/m2 (VIE × A), with a
reduction of 10%.

Using the optimal products of the two indices NDRE and OSAVI, the leave one out
cross-validation was utilized to build the final rice yield estimation model. For the two
study areas, the specific estimation formulas and the goodness of fit between the estimated
yield and measured yield were obtained and respectively shown in Figure 12a,b.
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Figure 11. The R2 and RMSE of yield with VI, VI × A, VIE × A, and (VIE × A + VIF × B) of (a) Study Area 1 Lingshui and
(b) Study Area 2 Wuxue at heading stage.
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4. Discussion

This study was carried out to improve the estimation ability of VIs for rice yield at
heading stage based on remote sensing images. Using the quantity abundance information
and qualitative spectral information of each mixed composition obtained from SMA, our
results showed the development of the accuracy of rice yield estimated at heading stage.

In this study, there were 42 varieties of hybrid rice cultivated in the 42 plots with
a similar field management in Study Area 1 (Lingshui), and in Study Area 2 (Wuxue),
there were eight levels of nitrogen fertilizer of one single variety of rice. These two
settings represented possible planting situations in daily life and productions, and multiple
varieties might generate more significant spectral diversity, affecting the linear grain yield
model [58,59]. We obtained the UAV data both at booting stage and heading stage. Results
in Table 2 revealed the correlation between 12 representative VIs and the yield was weaker
at heading stage than that at booting stage. The cause of this was probably that the
emergence of panicle could lead to changes in canopy reflectance, and the VIs were also
affected [18]. Reliably, the predictive ability for yield decreased during the heading stage
based on UAV imagery data. Consequently, SMA was utilized to improve the predictive
ability of VI in rice yield estimation at heading stage.

The spectral variability for rice plants was intuitively presented on one UAV imagery
and direct-viewing as a large cluster in the PPI processing. It was noted that extracting only
one single endmember spectrum for the scene component resulted in a poor correlation of
foreground abundances with yield, as shown in Table 3. Additionally, highly correlated
endmembers could cause error in spectral mixture models [60]. Therefore, the multiple
endmember extraction based on the PPI approach was tested. We extracted multiple
foreground endmembers depending on the value of RMSE in NU-BGBM. When the RMSE
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of unmixing model reached the minimum, the input endmembers and correspondingly
output abundance images were selected and applied in our follow-up experiment.

In the process of unmixing, we used a bilinear mixing model NU-BGBM to account
for the interaction of second scattering of photons over the multi-level and hybrid scene.
Aimed at rice plants, with a complex three-dimensional structure and relatively high
transmission [61,62], it was more suitable for unmixing by the BMM than the LMM,
especially at heading stage, when the differences of rice characters were enlarged and
the canopy closure caused the similar abundance values of foreground. The Pearson
correlation coefficients had been also calculated from yield and the VI products derived
from the results of the fully constrained least squares (FCLS) linear SMA [63], and were
listed in Table 5. By comparison with Table 4, for multi-variety hybrid rice plots in Study
Area 1 (Lingshui), significantly, the abundances obtained by the LMM did not play a
supplementary role in the relationship between VI and yield, most likely due to the
abundance saturation phenomenon under the ASC (the values were closed to 1). In
contrast, the NU-BGBM relatively weakened the saturation and obtained higher Pearson
correlation coefficients. Similarly, the NU-BGBM performed better for single plantation
rice plots in Study Area 2 (Wuxue), while the FCLS also had a slight improvement. To have
an integrative consideration, the NU-BGBM had a more profound physical meaning and
higher precision, and owned obvious superiority in a multi-variety hybrid scene.

Table 5. The Pearson correlation coefficients of yield with VI and VI × A at heading stage.

Study Area 1 (Lingshui) Study Area 2 (Wuxue)

VI VI × A VI VI × A

CIrededge 0.296 0.252 0.654 0.677
CIgreen 0.308 0.284 0.473 0.504
NDVI 0.336 0.069 0.661 0.612

GNDVI 0.326 0.150 0.645 0.737
NDRE 0.288 0.196 0.684 0.714
MTCI 0.288 0.239 0.663 0.689
VARI 0.299 0.254 −0.385 −0.298
PRI −0.263 −0.262 - -

WDRVI 0.327 0.224 0.648 0.668
OSAVI 0.259 0.154 0.710 0.712

EVI −0.019 −0.037 0.587 0.538
EVI2 0.016 −0.020 0.631 0.568

In addition to model errors, influence factors on the unmixing effect mainly include
observation noise, environmental conditions, and input endmember spectra [38]. At
heading stage, rice plants were in the utmost luxuriance and almost entirely covered the
paddy field. With the restriction of spatial resolution, pixels near ridges were universally
composed of soil and water and might be shaded by weeds and rice leaves, causing the
unideal performance of unmixing in this region in Figure 9a. The situation was visibly
alleviated in Study Area 2 (Wuxue) with a higher spatial resolution (Figure 10a). Moreover,
areal fractions of bare soil could be overestimated in all unmixing models due to the
increased radiance of bare soil resulting from side scattering of NIR radiation by adjacent
plants [64]. In addition, there were suspected unmixing errors occurring in Figure 10e.
To exclude the applicability of NU-BGBM, we output the background abundance image
by FCLS and found that the image was similar to Figure 10e. Therefore, the reason for
this was that the input endmembers were limited by the purity of pixels in the image
and influenced the unmixing results, and the relatively high RMSEs of the NU-BGBM
in Study Area 2 (Wuxue) in Table 3 also proved this. Without the limitation of ASC, it
was normal for the NU-BGBM to output abundance values larger than 1. The exception
values near 35 in background abundance images occurred near ridges. We compared the
input background endmember spectrum and the image reflectance near ridges, and found
that the spectral shapes of the two were similar but the values of the latter were higher.
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Considering the previous analysis, we thought it was the input background endmember
that caused the unideal result of the background abundance images. Nevertheless, we paid
more attention to the unmixing results of the rice plots in the foreground abundance images,
which directly participated in subsequent processing. As shown in Figures 9 and 10, the
abundance images of the foreground were relatively reasonable. Different plots and
different levels of canopies displayed obvious brightness heterogeneity, respectively. All
the foreground components together constituted rice plants and contributed to the final
rice spectrum.

Each pixel is composed of the reflectance of foreground and background in the paddy
fields. VIs, directly derived from image spectra, always mix background information. In
the purpose of eliminating the interference of background and making good use of the
spectral difference of several foreground endmembers, VIE and VIF were proposed to
combine with corresponding abundance data. VIE represented the spectral characteristics
of every endmember, and VIF further reflected the information of bilinear interactions
about foreground endmembers on the basis of VIE. In addition, each foreground compo-
nent fraction, A and B, denoted the contribution of every endmember to the whole pixel
reflectance. The product sums of VIE (VIF) and A (B) of all the foreground endmembers
were the final synthetical parameter which depicted the pure spectral features and subpixel
spatial information on rice plants, as Equations (6) and (9). Compared with the traditional
combination method VI × A, the novel VIE × A and (VIE × A + VIF × B) provided better
estimation results of yield apparently in Figure 11. Additionally, the utilization of VIE
and VIF enhanced the stability of VI-based models as a safeguard against the abnormal
spectrum from UAV, which was a conclusion drawn from VARI of Study Area 2 (Wuxue)
at heading stage in Figure 13.
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In the visible spectrum (400–700 nm), leaf reflectance is mainly affected by photosyn-
thetic pigments, and in the NIR domain (700–1300 nm), the magnitude of reflectance is
governed by the cell arrangement mode and vegetation structure [65]. Plants differently
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managed in terms of fertilization will change chlorophyll contents and reflectances more in
red and green wavelengths [66], while the diversity of spatial structure and morphological
character among rice cultivars is relatively more significant, as shown in Figure 1. There-
fore, the spectral difference of canopy was mainly in the visible range for Study Area 2
(Wuxue), and in the NIR range for Study Area 1 (Lingshui), with the UAV spectral data
as a reference. Primarily, second-scattering occurs in the NIR, with high transmittance
of leaves, while nonlinear influences are minimal in the visible region [31,64]. The BMM,
further taking second-order scattering into consideration, has the probability of achieving
better results in multi-variety paddy plots. Additionally, the greater difference of spectral
signature among rice varieties than that among rice at different fertile levels leads to a
more significant spectral variability. Thus, the effects of our method, mainly based on
the multi-endmember strategy and the BMM, varied in different experimental settings.
The NU-BGBM further considered the spatial structure of rice plants and then gained the
additional bilinear endmember vegetation index matrix VIF and abundance matrix B. What
function of VIF × B had depended on the hierarchy and stereospecificity in the scene? It
could be observed from Figure 11a that the addition of VIF × B helped estimate the rice
yield in the complex space environment. In addition, for rice plots with a small structural
difference in Study Area 2 (Figure 11b), the consideration of secondary reflections played
an opposite role in the correlation of VIE × A and yield, inducing the model distortion.
Therefore, it was considered that the more obvious the heterogeneity of rice plants was,
which meant the more significant structural difference of plants was, the better effectiveness
the NU-BGBM had.

The vast majority of VIs performed better goodness of fit in the relationship of the
final VI product and yield. The obvious improvement could verify the effectiveness of the
proposed method, with the increase of around 0.2 of R2 in the two study areas. Among
them, the performance of VIs using spectral bands in the NIR enhanced most significantly.
The products of NDRE and OSAVI produced stable and optimal estimation both in the
two study areas, and then the one out cross-validation approach was utilized, as shown in
Figure 12a,b. The combination of NDREE (OSAVIE) and abundances could more accurately
estimate the rice yield at heading stage, increasing the R2 values to 0.3 from 0.1 in Study
Area 1 and to 0.6 from 0.4 in Study Area 2. For the same rice plots in Study Area 2 (Wuxue),
Duan et al. [22] used the product of VI and abundances calculated from field measured
spectra to estimate the yield for rice at heading stage, and the R2 also reached 0.6.

For in-season rice grain assessment, the booting stage might be the optimal time
using remote sensing data [18,61,67], and Table 2 also confirmed the opinion. To validate
the effectiveness of our method, we processed and analyzed data at booting stage and
gained the results. The optimal R2 of Study Area 1 (Lingshui) and Study Area 2 (Wuxue),
respectively were 0.292 (NDREE ×A + NDREF × B) and 0.558 (MTCIE ×A), and the RMSEs
of the two areas did not decline evidently (about 2%), which indicated that the method still
improved the estimation ability of VIs at booting stage but was less effective than that at
heading stage. With the insignificant difference of rice plants, the slight enhancement at this
stage further confirmed the pertinence of our method, which aimed at the dynamic growth
situation of various rice organs and the spectral variability and structural complexity of rice
canopy. Apparently, after our processing of UAV images, the accuracy of yield estimation
at the two stages was at the same level, and the discrimination of heading stage of paddy
rice was easier on account of the relatively significant morphological features.

To be concluded, we extracted multiple foreground endmembers by PPI and then
input endmember spectra in the NU-BGBM, directed against the spectral variability and
complicated spatial structures of rice plants. In the process, the number of output fore-
ground endmember was dependent on the minimal RMSE of the NU-BGBM. VIs were
recalculated from endmember spectra, denoted by VIE, and multiplied with correspond-
ing abundances (VIE × A) to further highlight the foreground. Similarly, VIF × B in
(VIE × A + VIF × B) was calculated from bilinear endmember and abundances, and was
selectively added when rice plants had a sophisticated spatial structure. The products
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finally used at heading stage could achieve a result for yield estimation as good as or better
than that at booting stage. Among all the tested VIE, the products of NDRE and OSAVI had
the highest R2 and the most consistent performances in the two tests. The whole processing
was based on one UAV imagery acquired at heading stage, adaptively and effectively.

5. Conclusions

In this study, we developed a full UAV-based approach to improve the estimation of
rice yield at heading stage using the vegetation index and abundance of multi-endmembers,
with consideration of second-order scattering in paddy plots. Many factors, such as rice
varieties, growth status, etc., result in the spectral variability. In addition, the potential of
VIs for remote estimating yield is interfered obviously by the existence of background and
irrelevant organs, and weakened more for rice with characteristics of strong transmission
and complicated structure. Thus, the PPI was calculated to extract multiple endmembers
and the NU-BGBM was applied to acquire the abundances of the foreground which were
more approximate to the true value. In order to distinguish and amplify the spectral
difference, we proposed a novel parameter VIE, which indicated VIs recalculated from an
endmember spectrum, and then multiplied VIE by the corresponding abundance A. The
simple linear function was established by the sum of VIE ×A of every foreground spectrum
and yield. Moreover, aimed at several cultivars, (VIE × A + VIF × B) would perform better
in yield estimation in the complicated scene, where VIF and B denoted VIs recalculated
from a bilinear endmember spectrum and the corresponding bilinear abundances. The
integration of plot-level VIE (VIF) and abundance information could estimate rice yield
more accurately than using VI alone or VI × A at heading stage. Moreover, the final
estimating accuracy was as reliable as that at booting stage. Among all the test VIs, NDREE
and OSAVIE combined with abundances were the most accurate for yield estimation of rice
under multiple varieties scene or different nitrogen fertilizer treatments with estimation
errors below 8.1%. The strategy of SMA, using multiple endmembers and the BMM, can
improve the accuracy of VI-based rice yield estimation models especially when fields are
under non-homogenous management, and provide a reference for the development of
precision agriculture. In the follow-up study, the automation of the algorithms is worth
considering and the potential of the SMA strategy proposed in this paper for improving
the accuracy of the multi-stage rice yield estimation model is worth exploring.
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