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Abstract: Bridge infrastructures are continuously subject to degradation due to aging and excess
loading, placing users at risk. It has now become a major concern worldwide, where the majority of
bridge infrastructures are approaching their design life. This compels the engineering community
to develop robust methods for continuous monitoring of bridge infrastructures including the loads
passing over them. Here, a moving load identification method based on the explicit form of Newmark-
β method and Generalized Tikhonov Regularization is proposed. Most of the existing studies are
based on the state space method, suffering from the errors of a large discretization and a low sampling
frequency. The accuracy of the proposed method is investigated numerically and experimentally.
The numerical study includes a single simply supported bridge and a three-span continuous bridge,
and the experimental study includes a single-span simply supported bridge installed by sensors.
The effects of factors such as the number of sensors, sensor locations, road roughness, measurement
noise, sampling frequency and vehicle speed are investigated. Results indicate that the method is not
sensitive to sensor placement and sampling frequencies. Furthermore, it is able to identify moving
loads without disruptions when passing through supports of a continuous bridge, where most the
existing methods fail.

Keywords: moving load identification; bridge health monitoring; explicit form of Newmark-β
method; road roughness; generalized Tikhonov regularization; vehicle-bridge interaction system

1. Introduction

Condition assessment of bridge structures based on vibration measurements has
attracted increasing interest among researchers. There are two main types of dynamic
vibration tests: the ambient vibration test and the forced vibration test. When a bridge is
subjected to a moving vehicle exposed to a forced vibration test, there is no need for traffic
interruption and extensive experimental arrangements. Using moving vehicles as exciters
has the potential of inducing structural vibration with a large amplitude and reasonable
signal-to-noise ratio [1–10].

Estimating the moving load is of high importance in structural health monitoring. Di-
rect measurement of the moving load is expensive, difficult and subject to errors; therefore,
indirect identification methods from measured responses are desired, as they are easier
and cheaper to carry out. Weigh-in-Motion (WIM) techniques have been developed to
estimate equivalent static axle loads; however, their results are reliable only if the road
surface is smooth and the vehicle moves at low speeds [11–14]. Chan, et al. [15] carried out
an experimental study to compare four different methods of moving load identification
(Interpretive Method I, Interpretive Method II, Time Domain Method and Frequency-Time
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Domain Method) and concluded that the time domain method is the best for incorporation
in a moving load identification system. Law and Zhu [16] improved the results of moving
load identification at the beginning and end of the beam by Tikhonov regularization, and
investigated the effect of different beam models, as well as the number of moving forces
on the accuracy of moving load identification. However, there are limitations in choosing
the number of sensors and the sampling frequency. Law and Fang [17] developed a new
method of moving load identification in state space based on a dynamic programming
technique to overcome the weakness of having large fluctuations in the identified results;
however, the method was not studied for multi-span continuous bridges. To reduce the
effect of measurement noise, and to consider the efficiency for continuous bridges, Zhu and
Law [18] proposed a generalized orthogonal function approach to obtain the derivatives of
the bridge modal responses. Results indicated that loads were identified at high sampling
frequencies and were sensitive to the number of mode shapes. Furthermore, the error
at two-span continuous bridge was more than the error at the single span bridge, and
loads were identified as zero at mid supports. These are common weaknesses which can
also be seen in references such as [19,20]. Asnachinda, et al. [21] adopted an updated
static component to identify moving loads passing over a multispan continuous bridge
and verified their method numerically and experimentally. Experimental studies showed
increase of identification errors at higher speeds. All of the above studies and the ones
done by Oliva, et al. [22] and Zhou [23], did not consider the effect of road roughness,
few of them were experimentally investigated or studied the efficiency of the method for
continuous bridges.

Wu and Law [24] proposed a novel stochastic moving load identification method in
which statistics of the moving time histories were identified from samples of the structural
responses. Uncertainty in the bridge structural responses due to road surface roughness,
and the effect of measurement noise, and speed were not studied. Furthermore, they did
not consider the modal characteristic of the vehicle, including mass, damping and stiffness,
and the method did not investigate a multispan continuous bridge. Eshkevari, et al. [25]
proposed a simplified vehicle-bridge interaction model for medium to long span bridges
subjected to random traffic, using the implicit form of the Newmark-β method. They
verified their method numerically considering the road roughness and concluded that the
proposed method was very computationally efficient; however when the natural frequency
of the heavy vehicle was close to the fundamental frequency of the bridge, there was a
noticeable error.

Most of the above methods are based on the state space method and their performances
are limited by long sampling duration and large discretization error [26]. State space is
explicit and conditionally stable. However, the Newmark-β method is an implicit method
and it is unconditionally stable [26]. Liu, et al. [26] presented the explicit form of this
implicit method for inverse force identification and verified it by two shear-frame buildings
and a planar truss structure. However, this method was only numerically verified for
force identification. Wang, et al. [27] proposed a state space method based on the Galerkin
weak formulation and compared the method with a conventional state space method and
the explicit form of the Newmark-β method. They verified their results numerically by a
single-span simply supported truss subject to a moving force, but the physical properties
of the vehicle, speed, the road surface roughness and the effect of the number of spans
were not included in their study.

In this paper, the explicit form of Newmark-β method is used to overcome the disad-
vantages of the state space method in identifying moving loads considering road roughness.
Dynamics of the vehicle-bridge interaction system is explained in Section 2 and moving
loads identification formulations are developed in Section 3. In Section 4, a numerical
study is carried out for a single span bridge, and in Section 5 a numerical study is done
on a three-span continuous bridge. In Section 6, an experimental study is conducted on a
single-span bridge. In these studies, the effects of different factors such as measurement
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noise, sensor number and placement, road surface roughness and continuity of bridges are
explored. The results are concluded in Section 7.

2. Dynamics of the Vehicle-Bridge Interaction System
2.1. Road Surface Roughness

Road surface roughness distinctly affects the dynamic responses of both the bridge
and vehicles. ISO 8608 classifies road profiles from A to H according to their degree
of roughness. In agreement with the ISO road roughness surface classification, a road
profile can be calculated by the inverse Fourier transform of the road profile spectrum as
follows [28]:

r(x) =
N

∑
i=1

√
∆n.2k.10−3.(

n0

i.∆n
) cos (2π.i.∆n.x + φi) (1)

where x is a variable from 0 to L, L is the length of the bridge, ∆n = 1/L, N is the number of
data points which is equal to L/B = T × Sampling Frequency, B is the sampling interval, T is
the total time that the vehicle needs to pass the bridge, k is a constant integer increasing from
3 to 9 corresponding to the profiles from class A (very good surface) to class H (very poor
surface), n0 = 0.1 cycles/meter and φi is the random phase angle distributed uniformly
between 0 and 2π. A MATLAB code was created to generate the surface roughness profile.

2.2. Dynamic Model of a Vehicle

As shown in Figure 1, the vehicle-bridge interaction (VBI) system is modelled by a
simply-supported or continuous bridge subject to a moving vehicle [29], which is rep-
resented by a four-degree-of-freedom system. This system was chosen among other
developed systems [13,30–33] since it has a fair simplicity-complexity balance to study the
efficiency of the proposed method. Here, mv and Iv are the mass and the pitch moment of
inertia of the vehicle body, respectively; mw f and mwr are masses of the front and rear axles,
respectively; ks f , ksr, cs f and csr are the linear suspension stiffness and the viscous damping
parameters of the front and rear axles, respectively; kw f , kwr, cw f and cwr are the linear tire
stiffness and the viscous damping parameters, respectively; l f and lr are the axle distances
with respect to the gravity centre of the vehicle body; ρ is the mass per unit length of the
bridge; EI is the flexural stiffness of the bridge, a product of Young’s modulus E and the
moment of inertia I, and yB f , yBr, rB f and rBr are the bridge displacements, and road profile
displacements under the front and rear wheels moving on the bridge, respectively.
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Equation (2) can be simplified into Equation (3) and the vehicle frequency can be 
obtained by Equation (4). 𝑴௩𝒀ሷ ௩ + 𝑪௩𝒀ሶ ௩ + 𝑲௩𝒀௩ = 𝑷௩ (3) 

where 

𝑴௩ =
⎣⎢⎢
⎢⎢⎢
⎡ 𝑚௩𝑙௥ଶ + 𝐼௩𝑙ଶ 𝑚௩𝑙௙𝑙௥ − 𝐼௩𝑙ଶ𝑚௩𝑙௙𝑙௥ − 𝐼௩𝑙ଶ 𝑚௩𝑙௙ଶ + 𝐼௩𝑙ଶ

00 000 0 𝑚௪௙ 00 0 0 𝑚௪௥⎦⎥⎥
⎥⎥⎥
⎤ , 𝒀ሷ ௩ = ⎩⎨

⎧𝑦ሷ௕௙𝑦ሷ௕௥𝑦ሷ௪௙𝑦ሷ௪௥ ⎭⎬
⎫

  

𝑪௩ = ⎣⎢⎢
⎡ 𝑐௩௙   00 𝑐௩௥ −𝑐௩௙    00    −𝑐௩௥−𝑐௩௙ 00 −𝑐௩௥ 𝑐௪௙ + 𝑐௩௙ 00 𝑐௪௥ + 𝑐௩௥⎦⎥⎥

⎤  , 𝒀ሶ ௩ = ⎩⎨
⎧𝑦ሶ௕௙𝑦ሶ௕௥𝑦ሶ௪௙𝑦ሶ௪௥ ⎭⎬

⎫
  

𝑲௩ = ⎣⎢⎢
⎡ 𝑘௩௙   00 𝑘௩௥ −𝑘௩௙    00    −𝑘௩௥−𝑘௩௙ 00 −𝑘௩௥ 𝑘௪௙ + 𝑘௩௙ 00 𝑘௪௥ + 𝑘௩௥⎦⎥⎥

⎤ , 𝒀௩ = ቐ𝑦௕௙𝑦௕௥𝑦௪௙𝑦௪௥ ቑ  

Figure 1. Vehicle-bridge interaction system.

The equation of motion of the vehicle can be rewritten as [29]
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
mv l2

r +Iv
l2

mv l f lr−Iv

l2 0 0
mv l f lr−Iv

l2

mv l2
f +Iv

l2 0 0
0 0 mw f 0
0 0 0 mwr




..
yb f..
ybr..
yw f..
ywr

+
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yb f
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 =


0
0

cw f (
.
yB f +

.
rB f ) + kw f (yB f + rB f )

cwr(
.
yBr +

.
rBr) + kwr(yBr + rBr)


(2)

Equation (2) can be simplified into Equation (3) and the vehicle frequency can be
obtained by Equation (4).

Mv
..
Yv + Cv

.
Yv + KvYv = Pv (3)

where

Mv =


mv l2

r +Iv
l2

mv l f lr−Iv

l2

mv l f lr−Iv

l2

mv l2
f +Iv

l2

0
0

0
0

0 0 mw f 0
0 0 0 mwr

 ,
..
Yv =


..
yb f..
ybr..
yw f..
ywr



Cv =


cv f 0
0 cvr

−cv f 0
0 −cvr

−cv f 0
0 −cvr

cw f + cv f 0
0 cwr + cvr

 ,
.
Yv =


.
yb f.
ybr.
yw f.
ywr


Kv =
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kv f 0
0 kvr

−kv f 0
0 −kvr

−kv f 0
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kw f + kv f 0
0 kwr + kvr
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yb f
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yw f
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

Pv =


0
0

cw f

( .
yB f +

.
rB f

)
+ kw f

(
yB f + rB f

)
cwr
( .
yBr +

.
rBr
)
+ kwr(yBr + rBr)


det(Kv − λMv) = 0 (4)

where λ is an eigenvalue of Kv and Mv.

2.3. Dynamic Model of a Bridge

The equation of motion of abridge subjected to a moving vehicle can be written as:

MB
..
yB + CB

.
yB + KByB = NbFint (5)

where MB, CB, and KB are the bridge mass, damping and stiffness matrices, respectively; yB,
.
yB, and

..
yB are the nodal displacement, velocity, and acceleration vectors, respectively. The

beam bridge is discretised into nel equally spaced elements with nel + 1 nodes. Each node
includes two degrees of freedom (DOFs), rotational and vertical translations. The total
number of DOFs for the bridge is ndo f = 2× (nel + 1).

A half vehicle model with two axles is used in this study and (NbFint)ndof×1 is an
equivalent global load vector at each time instant. The matrix Nb is a ndo f × 2 transfor-
mation matrix that distributes interaction forces (Fint), to equivalent nodal forces, which
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consists of the Hermitian shape function vectors at the DOFs of the beam elements where
interaction forces are acting and zeros for the other entries, given by [34,35].

Nb =

{
0 . . . . 0 . . . . Nb1((x1(t), t) .. . . . 0 .. . . . 0

0 Nb2((x2(t), t) .. . . . 0 .. . . . 0 .. . . . 0 . . . . . . 0

}T

(6)

The Hermitian shape function vector for a load moving on an element (see Figure 2) is
defined as follows:

Nbi =


1− 3× ( xi(t)

l )2 + 2× ( xi(t)
l )3

xi(t)× ( xi(t)
l − 1)2

3× xi(t)2

l − 2× ( xi(t)
l )3

xi(t)× ( xi(t)
l − 1)2 − xi(t)

l

 (7)

where i is the number of the load, x is the location of the load, and l is the element length,
as shown in Figure 2.
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Figure 2. An element under moving load.

Fint =

{
Fint f (t)
Fintr(t)

}
, Fint f (t) and Fintr(t) are the interaction forces acting on the bridge,

which include the static plus dynamic interaction forces between the two axles and the
bridge, specifically:

Fint f = −
[
cw f

( .
yw f −

( .
yB f +

.
rB f

))
+ kw f

(
yw f −

(
yB f + rB f

))]
+ W f

Fintr = −
[
cwr
( .
ywr −

( .
yBr +

.
rBr
))

+ kwr(ywr − (yBr + rBr))
]
+ Wr

(8)

where W f =
(

mv × lr/l + mw f

)
g and Wr =

(
mv × l f /l + mwr

)
g are the static loads at

the front and the rear wheel locations, respectively; yB f , yBr, rB f and rBr are the bridge
displacements and road profile displacements under the front and rear wheel moving on
the bridge, respectively. The bridge displacement under either of the wheels at each time
step can be calculated by

yB f = N′b1yB yBr = N′b2yB (9)

In this study, Rayleigh damping is adopted for the bridge, i.e., CB = αMB + βKB. The
constants α and β can be obtained from α = 2ζw1w2/(w1 + w2) and β = 2ζ/(w1 + w2),
where ζ is the damping ratio, w1 and w2 are the first two natural frequencies respectively.

2.4. Vehicle-Bridge Coupled Model

Assuming that there is no separation between vehicle wheels and bridge surface, the
vehicle and bridge models can be combined as follows:[

MB 0
0 Mv

]{ ..
yB..
Yv

}
+

[
CB 0
0 Cv

]{ .
yB.
Yv

}
+

[
KB 0
0 Kv

]{
yB
Yv

}
=

{
NbFint

Pv

}
(10)

On the right-hand side of Equation (10), there are elements depending on bridge and
vehicle responses which should be moved and coupled with the left-hand side. The final
version of the vehicle-bridge coupled model is shown in Equation (11).

Using the explicit form of the Newmark-β method, Equation (11) can be solved
step-by-step to obtain the dynamic responses of the bridge and the vehicle. Due to the
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interaction of the system with moving loads; the mass, damping and stiffness matrices, as
well as the force vectors of the system, are time-dependent and should be updated at each
time instant. Having the dynamic responses of the bridge, the reference loads Fint can be
calculated from Equation (5) or Equation (8).


MB 0 0 0 0

0 mv l2
r +Iv
l2

mv l f lr−Iv

l2 0 0

0
mv l f lr−Iv

l2

mv l2
f +Iv

l2 0 0
0 0 0 mw f 0
0 0 0 0 mwr





..
yB..
yb f..
ybr..
yw f..
ywr


+



CB−Nb1cw f N′b1 −Nb2cwrN′b2 0 0 0+Nb1cw f 0+Nb2cwr

0 cs f 0 −cs f 0
0 0 csr 0 −csr

0−cw f N′b1 −cs f 0 cw f + cs f 0

0−cwrN′b2 0 −csr 0 cwr + csr





.
yB.
yb f.
ybr.
yw f.
ywr


+



KB−Nb1kw f N′b1 −Nb2kwrN′b2 0 0 0+Nb1kw f 0 + Nb2kwr

0 ks f 0 −ks f 0
0 0 ksr 0 −ksr

0−kw f N′b1 −ks f 0 kw f + ks f 0

0−kwrN′b2 0 −ksr 0 kwr + ksr




yB
yb f
ybr
yw f
ywr

 =



(
Nb1kw f rB f + Nb1cw f

.
rB f + Nb1W f

)
+
(
Nb2kwrrBr + Nb2cwr

.
rBr + Nb2Wr

)
0
0(

cw f
.
rB f

)
+
(

kw f rB f

)(
cwr

.
rBr
)
+ (kwrrBr)


(11)

3. Moving Load Identification Formulations

The Newmark-β method can be applied when establishing a relationship between
output measurements and input loadings. Whenever the external load is known, bridge
responses can be predicted by forward analysis. However, in the real world, moving
vehicles act as external loads and they are unknown. Identifying moving loads is an
inverse problem, requiring calculation of moving loads using response measurements with
a limited number of sensors installed on the bridge. It is an ill-posed least-squares problem.
Here in this study, a known vehicle was considered to verify the accuracy of the generated
method. However, in the practical use of the generated method, it is not necessary to know
the vehicle. By knowing the vehicle dynamic properties, the real interaction forces between
the tires and road surface can be calculated and compared with the identified ones to check
the method’s accuracy.

3.1. Represention of the Explicit Form of the Newmark-β Method for Moving Loads

The equation of motion of any system has a format as follows:

M
..
y + C

.
y + Ky = NF (12)

where mass (M), stiffness (K), damping (C), external force (F), and its influence matrix
(N) can be either time-dependent or constant. The representation of Equation (12) by the
explicit form of the Newmark-β method for the case system is subject to a non-moving
load, and mass, stiffness and damping of the system are constant during time, is proposed
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by Liu et al. [26]. To simulate the response measurements in this study, the method was
extended for a general system where the bridge is subject to a moving load, and the mass,
stiffness, and damping matrices of the general system are time-dependent. Later, the
method was developed to identify moving loads.

In general, the representation of Equation (12) by the explicit form of the Newmark-β
method is as follows: yi+1.

yi+1..
yi+1

 =

 A0
B0
C0


i+1

N(i+1)F +

 Ad Av Aa
Bd Bv Ba
Cd Cv Ca


i+1

 yi.
yi..
yi

 (13)

where
A0i+1 =

(
K̂i+1

)−1,

Adi+1
=
(
K̂i+1

)−1
[

1
β∆t2 Mi+1 +

γ
β∆t Ci+1

]
,

Avi+1 =
(
K̂i+1

)−1
[

1
β∆t Mi+1 +

(
γ
β − 1

)
Ci+1

]
,

Aai+1 =
(
K̂i+1

)−1
[(

1
2β − 1

)
Mi+1 +

∆t
2

(
γ
β − 2

)
Ci+1

]
,

B0i+1 = γ
β∆t
(
K̂i+1

)−1,

Bdi+1
= −γ

β∆t K̂i+1
−1Ki+1,

Bvi+1 = γ
β∆t K̂i+1

−1
[(

β∆t
γ − ∆t

)
Ki+1 +

1
γ∆t Mi+1

]
,

Bai+1 = γ
β∆t K̂i+1

−1
[(

β∆t2

γ − ∆t2

2

)
Ki+1 +

(
1
γ − 1

)
Mi+1

]
,

C0i+1 = γ
β∆t2 K̂i+1

−1,

Cdi+1
= −1

β∆t2 K̂i+1
−1Ki+1,

Cvi+1 = −1
β∆t2 K̂i+1

−1(Ci+1 + ∆tKi+1),

Cai+1 = γ
β∆t2 K̂i+1

−1
[
(γ− 1)∆tCi+1 − β∆t2

(
1

2β − 1
)

Ki+1

]
,

where
K̂i+1 = Ki+1 +

1
β∆t2 Mi+1 +

γ

β∆t
Ci+1

The general recursive relation can be written as: yi.
yi..
yi

 =

 A0
B0
C0


i

N(i)Fi+

 Ad Av Aa
Bd Bv Ba
Cd Cv Ca


i

 yi−1.
yi−1..
yi−1


 yi−1.

yi−1..
yi−1

 =

 A0
B0
C0


i−1

N(i−1)Fi−1+

 Ad Av Aa
Bd Bv Ba
Cd Cv Ca


i−1

 yi−2.
yi−2..
yi−2


 y1.

y1..
y1

 =

 A0
B0
C0


1

N(1)F1+

 Ad Av Aa
Bd Bv Ba
Cd Cv Ca


1

 y0.
y0..
y0


(14)

The generated method can be applied to solve Equation (11) to simultaneously obtain
bridge and vehicle responses.

To identify moving loads from Equation (5), where the mass, stiffness and damping
matrices are constant, Equation (4) can be represented by: yi.

yi..
yi

 =
i−1

∑
j=0

 Ad Av Aa
Bd Bv Ba
Cd Cv Ca

j A0
B0
C0

Ni−jFi−j +

 Ad Av Aa
Bd Bv Ba
Cd Cv Ca

i y0.
y0..
y0

 (15)
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Vector x ∈ Rns×1 denoting the output of the structural system can be presented
as follows:

x = RA
..
y + Rv

.
y + Rdy (16)

where RA , Rv and Rd ∈ Rns×N are the influence matrices that are multiplied by the related
measured responses, ns is the dimension of the measured responses and N is the number
of degrees of freedom of the structure.

Letting R = [Rd Rv Ra], Equation (15) can be represented as follows:

x(ti) =
i−1

∑
j=0

R

 Ad Av Aa
Bd Bv Ba
Cd Cv Ca

j A0
B0
C0

Ni−jFi−j +

 Ad Av Aa
Bd Bv Ba
Cd Cv Ca

i y0.
y0..
y0

 (17)

Assuming zero initial conditions of the structure, the following equation can be
written:

Hk = R×

 Ad Av Aa
Bd Bv Ba
Cd Cv Ca

k A0
B0
C0

 (18)

Equation (17) can then be rewritten in the matrix convolution form in the time duration
from t1 to ttt as:

X = HLF (19)

where tt is the number of time instants and

X =


x(t1)
x(t2)

...
x(ttt)

 , HL =


H0Nb1 0 · · · 0
H1Nb1 H0Nb2 · · · 0
...

Htt−1Nb1

...
Htt−2Nb2

. . .
· · ·

...
H0Nbtt

, and F =


Fint(t1)
Fint(t2)

...
Fint(ttt)

 (20)

where X is the assembled measured acceleration vector, Fint is the assembled unknown
force vector and H is known as the Hankel matrix of the bridge consisting of the system
Markov parameters. It should be highlighted that Nbi

is time-dependent and should be
updated at each time step.

3.2. Regularized Solution for Moving Load Identification

The ordinary least squares solution (LSQ) for Equation (19) would lead to unbounded
solutions because of the presence of noise in the measurements, especially at the entrance
and exit of the bridge. In order to provide a bounded solution, a regularization technique
can be used. Here, in this study, the damped least-squares method known as Tikhonov
regularization [36] was adopted to minimize the function.

min
{
‖ HLF−X ‖2

2 +λ2 ‖ L(F− F0) ‖2
2

}
(21)

where λ is the Tikhonov regularization parameter, F0 is an initial estimation of response
and L is defined below [37,38]:

L =


1 − 2 1

1 − 2 1
. . . . . . . . .
1 − 2 1


(n−2)×n

(22)

where n is the number of samples (number of columns in HL). The generalized cross-
validation (GCV) method was used to find the optimal regularization parameter [37,38].
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3.3. Procedure of Identification Algorithm

In the numerical study, the procedure of moving load identification consists of two
sections, namely: simulating measured responses and identifying moving loads. The main
unknown parameter to be identified is the dynamic moving load. However, since this is
a numerical study, measured responses should be simulated as well. Simulation of the
measured responses is achieved through applying the Newmark-β method and solving
Equation (14) (see Figure 3). Having the simulated measured responses of the bridge at
selected points, moving loads are identified by solving Equation (19) (see Figure 4).
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Known parameters used are:

1. The bridge geometry and its material density,
2. Dynamic characteristics of the vehicle (Mv, Cv, Kv),
3. The vehicle speed v and axle spacing l.
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4. Numerical Study 1: Simply-Supported Single-Span Bridge

In this example, a simply supported single-span bridge with 30 m length subjected
to the moving vehicle is considered. The first five natural frequencies for the simply
supported bridge are 3.9, 15.6, 35.1, 62.5 and 97.6 Hz, and the first four natural frequencies
of the vehicle are 1.63, 2.29, 10.35 and 15.1 Hz, respectively. Tables 1 and 2 list the parameter
values of the vehicle [39] and bridge subsystems, respectively. The effects of the number of
sensors, surface roughness, vehicle speed and measurement noise were investigated

Table 1. Vehicle parameters.

mv = 17735 kg mt1 = 1500 kg Mt2 = 1000 kg
Iv = 1.47E5 Nm2 Ks1 = 2.47E6 N/m Ks2 = 4.23E6 N/m
a1 = 0.519 m Kt1 = 1.75E6 N/m Kt2 = 3.5E6 N/m
a2 = 0.481 m Cs1 = 3E4 N/m/s Cs2 = 4E4 N/m/s
S = 4.27 m Ct1 = 3.9E3 N/m/s Ct2 = 4.3E3 N/m/s

Table 2. Bridge parameters.

L = 30 m EI = 2.5 × 1010 Nm2 ρA = 5 × 103 kg/m Damping ratio for all modes = 0.02

4.1. Effect of the Number of Sensors and Noise Level

The vehicle moves on top of the beam at a constant speed of 15 m/s, the road surface
roughness level is “A” and the sampling frequency is considered as 200 Hz. To investigate
the effect of noise, the calculated responses are polluted with white noise as follows:

y = yreal + Epstd(yreal)Noise (23)



Remote Sens. 2021, 13, 2291 11 of 26

where y is a vector of polluted response, yreal is the vector of real responses, Ep is a noise
level, and Noise is a standard normal distribution vector with zero mean and unit standard
deviation. To quantify the force identification accuracy, a percentage error is defined
as Error =‖ Ftrue − Fid ‖ / ‖ Ftrue ‖ ×100 %, where Ftrue denotes the simulated true
time-varying moving axle loads and Fid is the identified load by the proposed method.

The effects of different sensor placements were investigated as listed in Table 3. In
case S7, seven sensors were equally spaced, and in S6, S5, and S4, one sensor was removed
step by step to see the effect. In the case with three sensors, the third sensor was randomly
placed to consider the case when a part of the bridge is inaccessible to install a sensor.

Table 3. Sensor Placement.

Sensor Case Sensor No. Sensor Location

S3 3 1/3L, 2/3L,4/5L
S4 4 1/8L, 1/4L, 1/2L, 3/4L
S5 5 1/8L, 1/4L, 1/2L, 3/4L, 7/8L
S6 6 1/8L, 1/4L, 1/2L, 5/8L, 3/4L, 7/8L
S7 7 1/8L, 1/4L, 3/8L, 1/2L, 5/8L, 3/4L, 7/8L

The relative percentage errors of identified loads from different sensor placements and
at different noise levels are listed in Table 4. As can be seen in Table 4, without measurement
noise, the identification errors are zero or close to zero, which shows the accuracy of
the method. With noise, results from all sensor placements are slightly affected by the
measurement noise level and the identification accuracy is decreased with the increase of
the noise level. It should be noted that since the road roughness and measurement noise are
being generated randomly at each run of the program, the values of errors can be slightly
more or less than these values. In general, it can be concluded that the method is reliable at
different noise levels and sensor placements.

Table 4. The relative error (%) of the identified forces for different sensor placements.

Sensor Case Noise Level (%) Front Axle Load Rear Axle Load

S3
0 0 0.25
2 2.68 2.8
5 4.19 3.71

S4
0 0 0.23
2 2.3 2.73
5 3.11 3.18

S5
0 0.22 2.9
2 3.03 4.12
5 3.2 4.03

S6
0 0.31 2.42
2 2.78 2.92
5 2.6 3.29

S7
0 0 0.24
2 2.15 2.01
5 3.3 3.85

Figure 5 show the effect of the measurement noise level on moving load identification
results by placements of sensor S7. As can be seen, identified loads fluctuate around
the static load (100 kN). When loads are out of the bridge, the interaction forces are not
identified as zero. This part of time history is excluded in calculating the errors.
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Figure 5. Identified loads at road roughness level A with speed 15 m/s using sensor placement S7.
(a) Rear axle load identification, (b) Front axle load identification.

4.2. Effect of Vehicle Velocity and Road Roughness Level

In this section, the accuracy of the method at different vehicle speeds (10 m/s, 20 m/s,
30 m/s and 40 m/s) and road roughness levels (A, B, and C) is investigated utilizing sensor
placement S7. The sampling frequency is 200 Hz, and measurement noise is 2%. The
relative percentage errors are tabulated in Table 5.

Table 5. The relative error (%) of moving load identification from sensor placement S7.

Speed (m/s) 10 20 30 40

Road roughness A B C A B C A B C A B C
Front axle load 1.1 9.5 12.2 2.2 8.1 - 1.8 8.5 - 1.2 8.9 -
Rear axle load 1.5 6.5 19.6 2.8 9.6 - 2.2 14.3 - 2.4 8.6 -

Based on ISO 8608, driving at high speeds on roads with roughness level C is not
recommended, since it is not comfortable for passengers. Therefore, these cases are not
included in this study.

As can be seen from Table 5, the relative percentage errors at each speed increase
as roads get rougher and are slightly affected by speed at each road roughness level.
Considering that the road roughness and measurement noise are generated randomly at
each run of the program, and error values can be slightly higher or lower than these values,
it can be said that the method is not sensitive to speed. This is investigated further in the
next example and through experimental studies in the laboratory. Identified loads at a
speed of 10 m/s and road roughness level C can be seen in Figure 6. These figures show
identified loads fluctuate around the static values, indicating the accuracy of the method.
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5. Numerical Example 2: Three-Span Continuous Bridge

Most existing studies are not successful when it comes to multi-span continuous
bridges. They fail in identifying loads at the instants when a vehicle enters/exits the bridge
or passes through the mid-supports [19,34,35], and they are not as accurate as for single-
span bridges. The application of the proposed method was studied for a 90 m three-span
bridge with spans of 30 m (see Figure 7). The bridge is discretized into 45 equally spaced
Euler-Bernoulli elements with 91 DOFs and its first five natural frequencies are 3.90, 5.00,
7.30, 15.61 and 17.79 Hz. Other properties of the bridge and the vehicle passing on it are
the same as the numerical example 1 (Tables 1 and 2). The time step in this study is 0.005
sec and six sensors are placed at one-third of each span. The effects of measurement noise,
vehicle speed and road surface roughness were investigated in the following sections.
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5.1. The Effect of Noise Level and Vehicle Speed

In this section, road roughness level “A” is considered, and the accuracy of the method
at different levels of speed (15, 20, 30 and 40 m/s) and noise (0, 2 and 5%), is explored. The
results are tabulated in Table 6 and Figure 8.
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Table 6. Percentage errors of the identified moving loads at different levels of speed and noise.

Speed (m/s) 15 20 30 40

Measurement noise (%) 0 2 5 0 2 5 0 2 5 0 2 5
Front axle load 0.01 3.2 3.4 0.01 2.8 4.8 0.01 2.6 3.1 0.02 2.9 3.6
Rear axle load 0.16 3.5 3.6 0.2 3.6 5.9 0.3 4.6 3.8 0.46 3.8 4.1
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Figure 8. Effect of noise on load identification at road roughness level A and speed of 40 m/s: (a)
rear axle load identification, (b) front axle load identification.

From the above table, it can be seen that the identification accuracy is slightly affected
by adding measurement noise; however, it is not sensitive to increase in the noise level or
vehicle speed, and the error values are in the same range.

From Figure 8 it can be seen that this method is able to identify moving loads without
disruptions when passing through supports, which is not possible by other methods [35].
This is a significant improvement in moving load identification. This is further investigated
in the next sections.

5.2. The Effect of Road Roughness Level and Vehicle Speed

In this section, the accuracy of the method at different road roughness levels (A, B,
and C) as well as different vehicle speeds (15, 20, 30 and 40 m/s) with and without noise
is investigated, and results are tabulated in Tables 7 and 8. It is important to note that
since both road roughness and measurement noise are produced by random functions in
MATLAB, the error values might not be the same at different runs of the program.

Table 7. The relative error (%) of the identified forces at noise 0%.

Speed (m/s) 15 20 30 40

Road roughness A B C A B C A B C A B C
Front axle load 0.01 0.05 0.25 0.01 0.01 - 0.1 0.1 - 0.02 - -
Rear axle load 0.16 0.15 0.13 0.2 0.21 - 0.4 0.3 - 0.46 - -
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Table 8. The relative error (%) of the identified forces at 2% noise.

Speed (m/s) 15 20 30 40

Road roughness A B C A B C A B C A B C
Front axle load 3.2 10.8 32.5 2.8 12.7 - 2.6 9.6 - 2.3 - -
Rear axle load 3.5 11.8 29.2 3.6 18.0 - 4.6 12.4 - 3.4 - -

According to Table 7, when there is no measurement noise, the method is not sensitive
to speed and road roughness level, and errors are very close to zero, showing the accuracy
of the method. However, in the presence of measurement noise (Table 8), the accuracy
of the method is affected at road roughness levels “B” and “C”. Identified loads at a
speed of 15 m/s, road roughness B, and measurement noise of 0% and 5% can be seen in
Figures 9 and 10.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 28 
 

 

Table 8. The relative error (%) of the identified forces at 2% noise. 

Speed (m/s) 15 20 30 40 
Road roughness A B C A B C A B C A B C 
Front axle load 3.2 10.8 32.5 2.8 12.7 - 2.6 9.6 - 2.3 - - 
Rear axle load 3.5 11.8 29.2 3.6 18.0 - 4.6 12.4 - 3.4 - - 

According to Table 7, when there is no measurement noise, the method is not sensi-
tive to speed and road roughness level, and errors are very close to zero, showing the 
accuracy of the method. However, in the presence of measurement noise (Table 8), the 
accuracy of the method is affected at road roughness levels “B” and “C”. Identified loads 
at a speed of 15 m/s, road roughness B, and measurement noise of 0% and 5% can be seen 
in Figures 9 and 10. 

 
(a) 

 
(b) 

Figure 9. Identified loads at road roughness level B, speed 15 m/s and 0% noise: (a) rear axle load 
identification, (b) front axle load identification. 

Figure 9. Identified loads at road roughness level B, speed 15 m/s and 0% noise: (a) rear axle load
identification, (b) front axle load identification.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 28 
 

 

 
(a) 

 
(b) 

Figure 10. Identified loads at road roughness level B, speed 15 m/s and 2% noise: (a) rear axle load 
identification, (b) front axle load identification. 

6. Experimental Study 

6.1. Experimental Test Set-Up and Measurements 
A simply supported steel bridge was designed in the laboratory with the experi-

mental test set up shown in Figure 11. The main beam was 3 m long with a 25 × 100 mm 
uniform cross-section and it was simply supported. There were 3 m leading and trailing 
beams for vehicle acceleration and deceleration. To have a simply supported beam, there 
was a gap between the main beam and the other two beams. The details of support, pho-
toelectric sensor, and the gap between the two beams are shown in Figure 12a. Three pho-
toelectric sensors were equally spaced on the beam to monitor the vehicle entrance/exit 
and measure its speed. The measured density of the beam was 19.7 kg/m and the initial 
young’s modulus was considered as 210 GPa. 

Figure 10. Cont.



Remote Sens. 2021, 13, 2291 16 of 26

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 28 
 

 

 
(a) 

 
(b) 

Figure 10. Identified loads at road roughness level B, speed 15 m/s and 2% noise: (a) rear axle load 
identification, (b) front axle load identification. 

6. Experimental Study 

6.1. Experimental Test Set-Up and Measurements 
A simply supported steel bridge was designed in the laboratory with the experi-

mental test set up shown in Figure 11. The main beam was 3 m long with a 25 × 100 mm 
uniform cross-section and it was simply supported. There were 3 m leading and trailing 
beams for vehicle acceleration and deceleration. To have a simply supported beam, there 
was a gap between the main beam and the other two beams. The details of support, pho-
toelectric sensor, and the gap between the two beams are shown in Figure 12a. Three pho-
toelectric sensors were equally spaced on the beam to monitor the vehicle entrance/exit 
and measure its speed. The measured density of the beam was 19.7 kg/m and the initial 
young’s modulus was considered as 210 GPa. 

Figure 10. Identified loads at road roughness level B, speed 15 m/s and 2% noise: (a) rear axle load
identification, (b) front axle load identification.

6. Experimental Study
6.1. Experimental Test Set-Up and Measurements

A simply supported steel bridge was designed in the laboratory with the experimental
test set up shown in Figure 11. The main beam was 3 m long with a 25 × 100 mm uniform
cross-section and it was simply supported. There were 3 m leading and trailing beams for
vehicle acceleration and deceleration. To have a simply supported beam, there was a gap
between the main beam and the other two beams. The details of support, photoelectric
sensor, and the gap between the two beams are shown in Figure 12a. Three photoelectric
sensors were equally spaced on the beam to monitor the vehicle entrance/exit and measure
its speed. The measured density of the beam was 19.7 kg/m and the initial young’s
modulus was considered as 210 GPa.

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 28 
 

 

. 

 
Figure 11. Experimental set-up of the vehicle-bridge system. 

 
(a) (b) 

Figure 12. (a) Details at the left-hand support of the main beam, (b) the two-axle model vehicle. 

The model vehicle (Figure 12b) had two axles spacing at 30 cm and running on four 
steel wheels wrapped by a rubber band. The model was symmetrical and weighed 4.4 kg. 
A “U” shaped aluminum section was used to guide the vehicle on the beams. The vehicle 
was pulled along the guide by a string connected to an electrical motor. 

Seven strain gauges and accelerometers were evenly distributed underneath the 
main beam. Strain gauges were model FLA-5-11-3LJCT, and accelerometers were piezoe-
lectric model ICP®. A 9-slot data acquisition system model NI PXIe-1078 was used to pro-
cess the signals (Figure 13) connected to LabVIEW as postprocessing software. 

Figure 11. Experimental set-up of the vehicle-bridge system.



Remote Sens. 2021, 13, 2291 17 of 26

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 28 
 

 

. 

 
Figure 11. Experimental set-up of the vehicle-bridge system. 

 
(a) (b) 

Figure 12. (a) Details at the left-hand support of the main beam, (b) the two-axle model vehicle. 

The model vehicle (Figure 12b) had two axles spacing at 30 cm and running on four 
steel wheels wrapped by a rubber band. The model was symmetrical and weighed 4.4 kg. 
A “U” shaped aluminum section was used to guide the vehicle on the beams. The vehicle 
was pulled along the guide by a string connected to an electrical motor. 

Seven strain gauges and accelerometers were evenly distributed underneath the 
main beam. Strain gauges were model FLA-5-11-3LJCT, and accelerometers were piezoe-
lectric model ICP®. A 9-slot data acquisition system model NI PXIe-1078 was used to pro-
cess the signals (Figure 13) connected to LabVIEW as postprocessing software. 

Figure 12. (a) Details at the left-hand support of the main beam, (b) the two-axle model vehicle.

The model vehicle (Figure 12b) had two axles spacing at 30 cm and running on four
steel wheels wrapped by a rubber band. The model was symmetrical and weighed 4.4 kg.
A “U” shaped aluminum section was used to guide the vehicle on the beams. The vehicle
was pulled along the guide by a string connected to an electrical motor.

Seven strain gauges and accelerometers were evenly distributed underneath the main
beam. Strain gauges were model FLA-5-11-3LJCT, and accelerometers were piezoelectric
model ICP®. A 9-slot data acquisition system model NI PXIe-1078 was used to process the
signals (Figure 13) connected to LabVIEW as postprocessing software.

Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 28 
 

 

 
(a) (b) (c) 

Figure 13. (a) Data acquisition system, (b) strain gauge and (c) accelerometer. 

6.2. Modal Test of the Beam 
To identify the dynamic properties of the steel beam, a modal test was carried out. In 

the modal test, an impact hammer was used to excite the beam at a certain reference point, 
and the accelerations of the beam were measured by accelerometers. The impact hammer 
used to excite the beam was a PCB model 086C41 as shown in Figure 14. The reference 
point was located at 0.45 L, and the beam responses were measured by two piezoelectric 
accelerometers at locations 3L/16 and L/2. 

 
Figure 14. Impact hammer. 

The accelerometer installed at location L/2 was able to clearly identify the 1st, 3rd 
and 5th modes, but not 2nd and 4th modes, since it was located on the node point of these 
modes. An accelerometer installed at location 3L/16 was able to clearly identify all first 
five modes. The reference point was chosen at location 0.45 L as none of the first five flex-
ural mode shapes had a node point at location 0.45 L. All these modes were excited 
through this technique and hence could be identified. 

The sampling rate was set at 500 Hz with 35,000 time-domain data points being rec-
orded. The impact force curve of the impact hammer is shown in Figure 15. The proper 
impact force had only one peak with maximum amplitude and minimum duration which 
could excite the main frequencies of the beam. A soft plastic tip (white color) was used for 
excitation. 

 
Figure 15. Hammer impact force. 

Figure 13. (a) Data acquisition system, (b) strain gauge and (c) accelerometer.

6.2. Modal Test of the Beam

To identify the dynamic properties of the steel beam, a modal test was carried out. In
the modal test, an impact hammer was used to excite the beam at a certain reference point,
and the accelerations of the beam were measured by accelerometers. The impact hammer
used to excite the beam was a PCB model 086C41 as shown in Figure 14. The reference
point was located at 0.45 L, and the beam responses were measured by two piezoelectric
accelerometers at locations 3L/16 and L/2.
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The accelerometer installed at location L/2 was able to clearly identify the 1st, 3rd
and 5th modes, but not 2nd and 4th modes, since it was located on the node point of these
modes. An accelerometer installed at location 3L/16 was able to clearly identify all first five
modes. The reference point was chosen at location 0.45 L as none of the first five flexural
mode shapes had a node point at location 0.45 L. All these modes were excited through
this technique and hence could be identified.

The sampling rate was set at 500 Hz with 35,000 time-domain data points being
recorded. The impact force curve of the impact hammer is shown in Figure 15. The proper
impact force had only one peak with maximum amplitude and minimum duration which
could excite the main frequencies of the beam. A soft plastic tip (white color) was used
for excitation.

Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 28 
 

 

 
(a) (b) (c) 

Figure 13. (a) Data acquisition system, (b) strain gauge and (c) accelerometer. 

6.2. Modal Test of the Beam 
To identify the dynamic properties of the steel beam, a modal test was carried out. In 

the modal test, an impact hammer was used to excite the beam at a certain reference point, 
and the accelerations of the beam were measured by accelerometers. The impact hammer 
used to excite the beam was a PCB model 086C41 as shown in Figure 14. The reference 
point was located at 0.45 L, and the beam responses were measured by two piezoelectric 
accelerometers at locations 3L/16 and L/2. 

 
Figure 14. Impact hammer. 

The accelerometer installed at location L/2 was able to clearly identify the 1st, 3rd 
and 5th modes, but not 2nd and 4th modes, since it was located on the node point of these 
modes. An accelerometer installed at location 3L/16 was able to clearly identify all first 
five modes. The reference point was chosen at location 0.45 L as none of the first five flex-
ural mode shapes had a node point at location 0.45 L. All these modes were excited 
through this technique and hence could be identified. 

The sampling rate was set at 500 Hz with 35,000 time-domain data points being rec-
orded. The impact force curve of the impact hammer is shown in Figure 15. The proper 
impact force had only one peak with maximum amplitude and minimum duration which 
could excite the main frequencies of the beam. A soft plastic tip (white color) was used for 
excitation. 

 
Figure 15. Hammer impact force. Figure 15. Hammer impact force.

The acceleration time history at location 3L/16 is shown in Figure 16. It consists of
three parts, namely: before impact, during impact, after impact. The response during the
impact force duration is called forced vibration and the response after impact force is called
free vibration. To find the first five natural frequencies, sixty seconds of the free vibration
signal, including 30,000 data points were considered.
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The free vibration signals in the time domain were converted into the frequency
domain using a Fast Fourier Transform (FFT), as illustrated in Figure 17. In this figure,
distinct frequency peaks are visible describing the first five flexural modes. Some other
picks can also be observed, relating to torsional or transversal modes which cannot be
precisely identified by the current sensor setup.
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The finite element model (FEM) of the bridge beam was created in MATLAB including
8 Euler-Bernoulli beam elements with two degrees-of-freedom at each node. The numerical
natural frequencies from the FEM of the beam, experimental frequencies and the errors
between them, are tabulated in Table 9. The numerical frequencies were found to be very
close to the measured values, confirming the accuracy of the model for the simulation.

Table 9. Calculated and measured natural frequencies of the test beam (Hz).

Modal Frequency 1st 2nd 3rd

Measured 6.27 27 61.17
Calculated 6.48 25.78 57.38

Error 3.34% 4.52% 6.19%

6.3. Signal Processing

To mitigate the effect of measurement noise on the accuracy of the identified loads,
the Chebyshev Polynomial was used to smooth measurements as follows:

ε(x, t) =
N f

∑
i=1

Ti(t)Ci(x) (24)

where
{

Ti(t), i = 1, 2, 3, . . . , N f

}
is the generalized orthogonal function [18], N f is the

number of terms in the generalized orthogonal function, and
{

Ci(x), i = 1, 2, 3, . . . , N f

}
is the vector of coefficients in the expansion expression. N f can affect the accuracy of the
results; therefore, a study is performed to find the best value N f .

6.4. Moving Load Identification Verification

In this section, the effects of the number of terms in the generalized orthogonal
function

(
N f

)
, as well as sensor arrangements, sampling frequency, and vehicle speed

on the accuracy of the moving load identification are experimentally investigated. The
FEM of the beam was created in MATLAB, including 8 Euler-Bernoulli beam elements.
Strain measurements were used as inputs and converted to nodal displacements using the
generalized orthogonal function [18]. To quantify the moving loads’ identification accuracy,
percentage error is defined as:

Reconstructed response error = ||measured response − reconstructed
response|| × 100%/||measured response||

(25)

The reconstructed response can be obtained by inputting the identified loads into the
system and calculating the responses of the beam as a forward analysis. The accurately
identified moving loads should be able to reconstruct the response very close to the mea-
sured one. Another way to check the accuracy of the identified moving load is to compare
it with the related static loads of the vehicle. The identified moving loads fluctuated around
the static loads of the vehicle model.

6.5. The Effect of N f (the Number of Terms in the Generalized Orthogonal Function)

In this test, the test vehicle was pulled over the beam at an average speed of 0.47 m/s.
The sampling frequency was set at 200 Hz and strain measurements from seven strain
gauges were recorded. The number of master DOFs to convert strains to displacement was
considered equal to the number of measured strains. Moving loads were identified by the
Tikhonov regularization technique, and the optimal regularization parameter was obtained
by the L-curve method. Moving loads were identified with different N f ranging from
100 to 800, and the error of reconstructed strain at mid-span was calculated and shown
in Figure 18. The figure shows N f = 283 provides the minimum rating of error (1.75%).
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Here, N f was optimized for each test separately. In Figure 19, the reconstructed strain at
mid-span is compared with the measured strain when N f = 283, showing they match very
closely.
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Figure 18. The effect of N f on the error of the reconstructed strain.
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Figure 19. Measured and reconstructed strain at mid-span.

When N f is smaller, a bigger range of higher frequencies is omitted resulting in
smoother responses and, therefore, smoother identified loads, which are very close to the
static axle loads and cannot precisely show the dynamic parts of responses. When N f is
bigger, a lesser range of higher frequencies is omitted, and noise usually appears in high
frequencies. Hence, an optimized N f removes noise while keeping the dynamic properties
of the response. Comparison of the identified moving loads with N f = 283 and N f = 50 is
shown in Figure 20.
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6.6. The Effect of Different Measurement Arrangements

To investigate the effect of sensor arrangements on identifying moving loads, seven-
teen different cases were studied, as tabulated in Table 10. The vehicle was pulled over the
beam at an average speed of 0.47 m/s, and the sampling frequency was set at 200 Hz.

Table 10. Sensor arrangements.

Case Number Number of Sensors
Sensor Location

L/8 L/4 3L/8 L/2 5L/8 6L/8 7L/8

#1 7 * * * * * * *
#2 3 * * *
#3 3 * * *
#4 3 * * *
#5 3 * * *
#6 4 * * * *
#7 4 * * * *
#8 4 * * * *
#9 4 * * * *

#10 5 * * * * *
#11 5 * * * * *
#12 5 * * * * *
#13 6 * * * * * *
#14 1 *
#15 2 * *
#16 2 * *
#17 2 * *

*. The location with sensor

Strain measurements were smoothed by the Chebyshev polynomial with N f = 283,
and converted into nodal displacements. The Tikhonov regularization method was used
to identify moving loads and the optimal regularization parameter was obtained by the
L-curve method.

Since the true interaction force was not known to investigate the accuracy of identified
axle loads, the strain at mid-span was reconstructed, and percentage errors were calculated
and listed in Table 11. Conclusions from Table 11 are as follows:

Table 11. The percentage error for different sensor arrangements.

Case
Number

Number
of Sensors

The Percentage Error (%)

Strain at
Mid-Span

Average of
Identified Front

Axle Load

Average of
Identified Rear

Axle Load

Average of
Resultant

Identified Load

#1 7 1.75 0.09 0.25 0.08
#2 3 2.97 1.03 2.46 0.72
#3 3 4.79 2.33 3.53 2.93
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Table 11. Cont.

Case
Number

Number
of Sensors

The Percentage Error (%)

Strain at
Mid-Span

Average of
Identified Front

Axle Load

Average of
Identified Rear

Axle Load

Average of
Resultant

Identified Load

#4 3 4.06 1.66 0.35 0.66
#5 3 2.55 3.77 3.87 0.05
#6 4 4.96 4.10 3.8 0.51
#7 4 2.00 4.15 4.38 0.12
#8 4 3.76 0.03 1.02 0.49
#9 4 2.31 0.51 2.56 1.03
#10 5 2.51 0.53 1.16 0.32
#11 5 1.86 0.28 2.12 0.92
#12 5 1.99 0.32 1.55 0.61
#13 6 1.80 0.36 0.66 0.15
#14 1 10.78 0.31 0.65 0.48
#15 2 5.28 1.70 0.04 0.87
#16 2 11.02 1.74 0.18 0.96
#17 2 9.07 8.82 11.87 1.52

• Moving load identification from seven strain gauges provided the best accuracy with
1.75% reconstructed strain error.

• At least three strain gauges were required to identify moving loads in such a way that
reconstructed strain had less than 5% error.

• Sensor placements #1, #2, and #9 to #13, with sensors equally spaced, indicated
increasing the number of sensors increases the accuracy of moving load identification.

Choosing the best sensor placement depends on budget and customer needs. Here,
sensor placement #2 was chosen to investigate the effect of sampling frequency and vehicle
speed on identifying the loads moving over the beam. Front, rear, and resultant identified
loads in sensor placement #2 were compared with axle and total static loads of the car
as shown in Figure 21. It can be seen that both front and rear identified loads fluctuated
around the static axle values (22 N), and the identified resultant load fluctuated around the
total static weight of the vehicle (44 N).

Remote Sens. 2021, 13, x FOR PEER REVIEW 24 of 28 
 

 

Choosing the best sensor placement depends on budget and customer needs. Here, 
sensor placement #2 was chosen to investigate the effect of sampling frequency and vehi-
cle speed on identifying the loads moving over the beam. Front, rear, and resultant iden-
tified loads in sensor placement #2 were compared with axle and total static loads of the 
car as shown in Figure 21. It can be seen that both front and rear identified loads fluctuated 
around the static axle values (22 N), and the identified resultant load fluctuated around 
the total static weight of the vehicle (44 N). 

 
Figure 21. Identified front, rear, and resultant load in comparison with the static axle load and static 
weight of the car (sensor placement #2). 

Large fluctuations can be seen around 0.625 s and 6.25 s in the identified moving 
loads time histories, originating from the 1mm-gap between the beams, which produced 
large impacts when the front/rear axle loads enter/exit the beam. The front/rear axle loads 
were identified as zero when they were not on the beam, showing the accuracy of the 
simulation. The pitching motion of the car can be seen in the time histories. 

6.7. The Effect of Sampling Frequency 
In this section, the effect of sampling frequency on the accuracy of the method is in-

vestigated. The car was pulled over the bridge at an average speed of 0.47 m/s and the 
sampling frequency was set at 600 Hz. To study the effect of different sampling frequen-
cies, recorded data was resampled at 300, 200 and 100 Hz. To analyze the data, sensor 
placement #2 was used and 𝑁௙ was considered equal to 283. 

The identified moving loads at different sampling frequencies are shown in Figure 
22. The accuracy was assessed by analyzing the reconstructed strain error at midspan, 
which is tabulated in Table 12. According to the results, the method was able to identify 
the moving loads with high accuracy at all sampling frequency ranges. Although increas-
ing sampling frequency could very slightly improve the reconstructed strains, it also sig-
nificantly increased the recorded data and prolonged the analysis time which is not desir-
able. 

-50

-30

-10

10

30

50

70

90

0 1 2 3 4 5 6 7

L
oa

d 
(N

)

Time (Sec)

Front identified load
Rear identified load
Resultant identified load
Total static load
Each axle static Load

Figure 21. Identified front, rear, and resultant load in comparison with the static axle load and static
weight of the car (sensor placement #2).

Large fluctuations can be seen around 0.625 s and 6.25 s in the identified moving loads
time histories, originating from the 1mm-gap between the beams, which produced large
impacts when the front/rear axle loads enter/exit the beam. The front/rear axle loads were
identified as zero when they were not on the beam, showing the accuracy of the simulation.
The pitching motion of the car can be seen in the time histories.
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6.7. The Effect of Sampling Frequency

In this section, the effect of sampling frequency on the accuracy of the method is
investigated. The car was pulled over the bridge at an average speed of 0.47 m/s and the
sampling frequency was set at 600 Hz. To study the effect of different sampling frequencies,
recorded data was resampled at 300, 200 and 100 Hz. To analyze the data, sensor placement
#2 was used and N f was considered equal to 283.

The identified moving loads at different sampling frequencies are shown in Figure 22.
The accuracy was assessed by analyzing the reconstructed strain error at midspan, which is
tabulated in Table 12. According to the results, the method was able to identify the moving
loads with high accuracy at all sampling frequency ranges. Although increasing sam-
pling frequency could very slightly improve the reconstructed strains, it also significantly
increased the recorded data and prolonged the analysis time which is not desirable.
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6.8. The Effect of Vehicle Speed

To explore the effect of vehicle speed on the accuracy of moving load identification,
the car was pulled over the bridge at speeds of 0.47, 0.75 and 0.94 m/s, and the sampling
frequency was set at 200 Hz. The electric motor was allowed to work with a minimum
speed of 0.47 m/s and a maximum speed of 0.97 m/s. Rear, front and resultant identified
loads at a speed of 0.75 m/s is shown in Figure 23. The accuracy was assessed by the
percentage errors of the reconstructed strain at midspan which is tabulated in Table 13.
According to the results, the sensitivity of the method to the vehicle speed was insignificant
and negligible.
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Figure 23. Identified front, rear, and resultant load in comparison with the static axle load and static
weight of the vehicle (speed: 0.75 m/s).

Table 13. The percentage error at different levels of speed.

Speed (m/s) 0.47 0.75 0.97

Reconstructed strain
error (%) 2.97 2.83 3.62

7. Conclusions

In this paper, the explicit form of the Newmark-β method was applied to identify
moving loads passing over a bridge, considering road roughness. Response measurements
were simulated by dynamic forward analysis of the vehicle-bridge interaction (VBI) system.
The general form of the explicit form of the Newmark-β method was generated to do this.
A half-car model vehicle, with four degrees of freedom, was adopted in this study and the
Generalized Tikhonov Regularization method was used to provide bounds on the solution.

Results show at least three strain gauges were required to identify moving loads
in such a way that reconstructed strain had less than 5% error. Although increasing the
number of sensors could increase accuracy, the method was not sensitive to this factor.
When there was no measurement noise, the proposed method was not sensitive to speed or
road roughness; however, when there was measurement noise, the identification accuracy
was reduced at road roughness levels “B” and “C”. There was no constraint to identifying
moving loads when the road surface level was “A”.

The proposed method is able to identify moving loads without disruptions when pass-
ing through the supports which is a significant improvement in moving load identification.
It is also reliable in estimating the static load of a moving vehicle.

The use of this method will be extended for simultaneous identification of bridge
structural parameters and moving loads, as well as substructural condition assessment of
bridge structures under moving loads, as will be presented in future publications.
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