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Abstract: Noise radars employ random waveforms in their transmission as compared to traditional
radars. Considered as enhanced Low Probability of Intercept (LPI) radars, they are resilient to
interference and jamming and less vulnerable to adversarial exploitation than conventional radars.
At its simplest, using a random waveform such as bandpass Gaussian noise as a probing signal
provides limited radar performance. After a concise review of a particular noise radar architecture
and related correlation processing, this paper justifies the rationale for having synthetic (tailored)
noise waveforms and proposes the Combined Spectral Shaping and Peak-to-Average Power Reduction
(COSPAR) algorithm, which can be utilized for synthesizing noise-like sequences with a Taylor-
shaped spectrum under correlation sidelobe level constraints and assigned Peak-to-Average-Power-
Ratio (PAPR). Additionally, the Spectral Kurtosis measure is proposed to evaluate the LPI property
of waveforms, and experimental results from field trials are reported.

Keywords: noise radar; noise waveforms; waveform design; PAPR reduction; Low Probability
of Intercept

1. Introduction

Noise radars transmit random signals, as opposed to traditional radars having de-
terministic waveforms. This randomness provides advantages in many ways both for
the civil and military fields. In civilian applications such as automotive radar or marine
navigation, noise radars mitigate mutual interference [1] caused by the density of radars
working in the same area and sharing the same spectrum. From a military perspective,
noise radar possesses good Electronic Protection (EP) attributes with strong immunity
against adversary Electronic Attacks (EA), e.g., jammers, and allows Low Probability of
Intercept (LPI) operation against Electronic Support Measure (ESM) receivers due to the
unpredictable and random nature of its signals [2].

The use of random signals for detecting objects dates back to the late 19th and early
20th centuries. In 1897, Alexandr S. Popov used random pulses in his radio experiments
and reported that ship detection was possible in a bistatic configuration [3], and this was
followed by Christian Huelsmeyer in 1904, where he used noise pulses of a spark generator
to detect the presence of ships with his device named Telemobiloscope, also known as
the “radar precursor” [4,5]. However, at that time, the technology was immature and the
sensing of objects was based on a simple radio detector (called “coherer”) rather than the
coherent reception and correlation of signals.

The pioneering work on the coherent reception of random signals was performed by
R. Bourret in 1957 [6]. His paper is considered to be the first paper on coherent radar using
noise signals. It was followed by B. M. Horton in 1959, who described the theory of using
random noise signal in detail to measure the object range [7].
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Much of the early work included physical delay lines to match the delay of the
reference signal to the object range and thus could only offer limited range. However, this
technique has long been of interest due to the fact that intercept receivers observe only
noise from the transmitting radar. Moreover, the nonrepetitive nature of transmissions
would remove range and Doppler ambiguities on reception. However, due to the technical
difficulties and lack of noise generating apparatus, the noise radar concept was not quite
realizable by radar engineers at that time. In the late 20th century, with the technological
advances in microwave and digital electronics, there was a major shift from analog to digital
and it became possible to generate random signals and perform correlation processing
fully digitally. Over the past three decades, there has been a considerable interest in noise
radar technology and significant progress has been made by research communities [8–10].

Random signals are realizations of a random process either generated physically by
an analog source or digitally by a pseudo random noise generator. Once a realization of
this random process is employed as the modulating code, the radar knows what has been
transmitted and so can detect its presence in the received signal via matched filtering. The
theory of matched filter tells us that noise radars can have similar performance merits in
terms of range and Doppler resolution as conventional radars, i.e., the range resolution
depends on signal bandwidth, and the Doppler resolution depends on coherent integration
time. Another incentive for researchers has been its appropriateness for covert radar as
stealth requirements can be met by low power and long duty-cycle noise waveforms.

Noise radars have many advantages compared to conventional radars [11]. The
distinctive features of noise radars can be listed as follows:

(i) It is impractical for an adversary to intercept and exploit the transmitted signal due
to the unpredictable and random nature of noise signals.

(ii) The mitigation of mutual interference among radars sharing the same spectral band
due to the (quasi) orthogonality of signals.

(iii) The thumbtack shape of its Ambiguity Function allows high resolution both in range
and Doppler space.

Despite these advantages, noise radar comes at a cost of computational burden as it
requires a large bandwidth for processing wideband noise waveforms on return and fast
digitizers to provide a sufficient sampling rate compared to traditional FMCW radars.

Noise radars can operate either in pulsed or continuous wave (CW) mode depending
on the application. However, the use of CW emissions best matches the LPI properties of
the noise signal because of the absence of edge modulations in the signal. No matter which
emission regime is employed, the choice of transmit waveform has a significant effect on the
radar performance. Using a random waveform such as a bandpass Gaussian noise (zero–
mean and unit-variance) provides limited dynamic range (as shown later in Section 1.3)
in radar sensitivity due to its sidelobe level and degrades radar detection performance.
Therefore, noise radars require synthetic waveforms tailored at will to provide adequate
resolution, dynamic range and detection performance.

The objective of this article is to introduce the reader to a particular type of waveform
which can improve the dynamic range while boosting LPI characteristics and ensuring
orthogonality. The remainder of this article is organized as follows. In Section 1 (1.2–1.4),
we introduce the reader to the particular continuous noise radar architecture that we
are interested in and its related correlation processing implementation. In the ensuing
parts, we address the dynamic range problem, correlation sidelobes and leakage effects,
and Peak-to-Average-Power-Ratio (PAPR) considerations, and next, we provide a clear
rationale for the usage of tailored noise waveforms. In Section 2, we present the steps of the
novel Combined Spectral Shaping and Peak-to-Average Power Reduction (COSPAR) waveform
generation method along with a cyclic PAPR reduction procedure. In Section 3, we provide
a discussion on the range resolution and mainlobe broadening for COSPAR signals. Then,
we show the mutual orthogonality of COSPAR signals in Section 4. Next, the Ambiguity
Function and Doppler sensitivity of COSPAR signals are compared with those of a typical
LFM signal in Section 5. After that, we propose the Spectral Kurtosis (SK) measure to assess
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the LPI characteristics of signals and compare the time–frequency distributions of COSPAR
and LFM waveforms in Section 6. In Section 7, we report experimental results obtained
from the field trials. Finally, the article ends with concluding remarks in Section 8.

1.1. Noise Radar Architecture

Before we proceed to tailored noise waveform design, we find it helpful to introduce
the reader to the general system architecture for noise radar technology. This will help the
reader better understand the concept of noise radar technology and its associated signal
processing.

Noise radar emits noise signals, which are generated either by analog noise sources
(temperature-controlled resistors, Zener diodes, gas discharge tubes . . . ) or digital pseudo
random noise generators. Since analog noise sources provide limited performance in terms
of resolution and dynamic range, in this work we are solely interested in digital waveforms
generated synthetically on computing devices such as computers, DSPs or FPGAs. Thus,
we particularly refer to a typical noise radar architecture, shown in Figure 1, with collocated
transmit and receive antennas. In this architecture, the waveform is generated or stored
in a digital device and it is fed to the transmitter by the Digital-to-Analog Converter.
It should be noted that analog filters and signal conditioning components are omitted
in this simplified block diagram. Interested readers may refer to [12] for other types of
architectures.
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In Figure 1, the complex baseband signal (noise waveform) is first generated and
then up-sampled and digitally up-converted (complex-to-real conversion) to the radar
intermediate frequency (IF) band. Next, the digital real IF band signal is driven into the
Digital-to-Analog Converter (DAC) at DAC sampling rate f sDAC. In the analog domain,
the signal is first up-converted by a mixer to the RF band, then amplified by the power
amplifier (PA) and finally transmitted through the antenna. A coherent local oscillator
(LO) provides the RF signal required for up and down conversion. During transmission,
the replica of the transmit signal going into the antenna is tapped by an RF coupler and
down-converted back into the IF band. This signal is used as the matching template in
the correlation processing, hence termed as the “reference signal”. Alternatively, the digital
version of the transmit signal that is stored in the hardware can be used for correlation.
However, the design shown here is notedly preferred in order to include the nonlinear
effects of the transmitter (i.e., imposed on the transmit signal) in the correlation processing
at the expense of an additional downconverter stage. At the receive antenna, the weak
echo signal, which reflects back from the object that we are interested in detecting, is first
amplified by a low noise amplifier in the receiver and then down-converted into the IF
band. As its name implies, this signal is called the “return signal” (or “surveillance signal”).
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Both reference and return signals are sampled by the Analog-to-Digital Converters (ADCs)
at ADC sampling rate f sADC and cross-correlation is computed digitally in the hardware.

In this architecture, it is customary to generate the complex baseband signal at
f sADC/2 sampling rate and set the IF band within the 3rd Nyquist zone of ADCs ( f sADC
to 3 f sADC/2). In this scheme, the ADCs subsample the incoming reference and return
signals and then the spectrum folds over to the 1st Nyquist zone, obviating the need for an
additional digital downconverter before the cross-correlation processing.

The noise radar described here transmits and receives simultaneously and this leads
to an unavoidable leakage into the receiver due to the coupling of collocated antennas.
This leakage is very important in noise radar applications and as such it has an effect on
the dynamic range, which will be discussed later in Section 1.2. Moreover, the noise radar
utilizes a continuous wave (CW) emission, granting covertness with an absence of pulse
edges (which can be easily detected by ESM receivers) in its emissions. The continuous
emission leads to a continuous processing of return signals, necessitating fast and low
latency signal processing in the receiver.

1.2. Correlation Processing and Its Implementation in Spectral Domain

In noise radar, the fundamental way of calculating the cross-correlation is performed
by matched filtering. This procedure is also called “pulse compression” as it compresses the
signal energy into a much narrower correlation mainlobe than the duration of the signal.
The matched filter is known as the optimal linear filter for maximizing the signal-to-noise
ratio (SNR) when the received signal is contaminated by additive white noise [13]. For
this reason, matched filters are widely used in radar, in which a signal known a priori is
transmitted, and the return signal reflected from objects is analyzed for matching copies of
the transmit signal.

In signal processing, a matched filter is derived by correlating a template signal
(delayed and possibly Doppler compensated) with an unknown signal to search for the
existence of the template signal in the unknown signal. This is identical to convolving
the received signal with a conjugated time-reversed version of the transmit signal. In this
respect, we define the continuous time autocorrelation function (ACF) R(τ) of signal x(t)
as the following:

R(τ) =
∫ +∞

−∞
x(t)x∗(t− τ)dt −∞ < τ < ∞ (1)

In practice, considering the discrete time case, the waveform is both time and band
limited. Therefore, from the waveform point of view, there could be two options for the
correlation processing. One is the periodic correlation, which assumes the waveform is
periodic and thus the correlation is calculated via cyclic convolution. The other one assumes
the signal is aperiodic and therefore the correlation is calculated via linear convolution [14].
In our work, we opt for the periodic correlation due to the non-interlaced reception of
signals dictated by the CW operation of noise radar.

For the ease of digital implementation, given the discrete sequence x = {x(n)}N
n=1,

we prefer to use the frequency domain calculation of correlation r = {r(n)}N
n=1, which is

defined as:
r = F−1{F (x) ◦ F ∗(x)} (2)

where F (·), F−1(·), ◦ and (·)∗ denote the Discrete Fourier Transform (DFT), the Inverse
Discrete Fourier Transform (IDFT), the Hadamard Product and Complex Conjugate opera-
tor, respectively. The sequence r is the sampled version of the ACF where r[n]def

=
R(nTs) and

Ts is the sampling period. DFT and IDFTs are obtained by Fast Fourier Transform (FFT)
usually available on digital hardware.

A digital hardware implementation for a periodic correlator is shown as a block
diagram in Figure 2. In the block diagram, all arithmetic operations including complex
conjugation and complex multiplication are performed on digital hardware such as FPGA.
The Hilbert Transform is implemented as an FIR filter structure and FFT/IFFTs are im-
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plemented by Radix-2 or Radix-4 decompositions for the calculation of DFT and IDFT,
respectively. Such an example implementation is shown in [15].
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sampling comb (arbitrary units) at f sADC = 200 MHz. (3) Their convolution and the low frequency alias (2N samples) of
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result with 2N samples (N samples for the decimated case).

In Figure 2, we also illustrate the calculation of a periodic autocorrelation of a signal
and show the power spectrum at each step during low IF sampling and Hilbert filtering.
Here, we consider an exemplary analog IF band (200–300 MHz) signal is being injected to
both ADCs where the sampling rate is f sADC = 200 MSPS. The subsampling process down-
converts the signal from the 3rd Nyquist zone into baseband (DC-100 MHz), generating
a low-pass alias of the IF signal, and then the Hilbert Transform is applied to obtain
the analytic form of the signal in order to keep phase information for the subsequent
Doppler processing. After that, the spectral domain periodic correlation is calculated as in
Equation (2). Alternatively, one can down-sample the complex valued output of the Hilbert
Transform by half to remove the negative frequency components from the spectrum and
to obtain a decimated autocorrelation with a lower number of resource usage for FFTs in
digital hardware (see Figure 2).

That being said, we note that all synthetic waveforms shall be generated in conjunction
with its digital correlator, i.e., the samples of complex baseband signal should be generated
at the sampling rate (e.g., f sADC/2) at which its correlation is computed in the digital
backend. This eliminates the distortion in the ACF sidelobes caused by the sampling rate
mismatches.
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1.3. Dynamic Range of Noise Radar

Having shown the correlation processing implementation, we wish to discuss the
dynamic range requirement for noise radars. There are two important factors affecting the
receiver sensitivity, i.e., the choice of waveform and the system noise bandwidth.

1.3.1. Random Sidelobe Modulations of Noise Signals

In noise radar, when using standard bandpass Gaussian noise as a probing waveform,
the correlation processing of noise signals of duration T and bandwidth B generates “ran-
dom sidelobe modulations” (sometimes called “range sidelobes”) whose mean level “SLLmean”
is equivalent to the time× bandwidth product below the correlation mainlobe peak [12]:

SLLmeandB = −10 log10(B× T) (3)

These “random sidelobe modulations” cover the whole range swath and thus mask the
visibility of weak targets with low radar cross section (RCS), i.e., not only nearby targets
but also those at a great distance. This is also known as the “masking effect”.

On the other hand, considering the unavoidable leakage signal due to antenna cou-
pling, the correlation processing generates a target at zero distance, the range sidelobes
of which roughly define the dynamic range lower bound of the noise radar. This leakage
signal can be regarded as the largest signal (in terms of power) going into the receiver and
therefore cross-correlation calculations are normalized with respect to the peak response
of the leakage signal. Additionally, the receiver gain is adjusted carefully such that the
leakage signal does not saturate the receiver.

1.3.2. Receiver Noise Considerations

Aside from the range sidelobes of the leakage signal, the cross-correlation of the
reference signal with the internal noise of the receiver shall be taken into consideration.
Assuming a receiver gain G and a receiver noise figure F, then the receiver noise power
Pnoise at the input of ADC is given as the following:

PnoisedBW = 10 . log10
(
K× Tsys × B

)
+ GdB + FdB (4)

where K is the Boltzmann constant, Tsys is the system temperature in Kelvin and B is the
receiver bandwidth. Having an antenna isolation level I, then the leakage signal power
Pleakage at the input of ADC is:

PleakagedBW
= PtxdBW − IdB + GdB (5)

where Ptx is the signal power transmitted from the antenna. After that, the signal-to-noise
ratio due to the leakage signal and receiver noise can be defined as the following:

SNRleakage−noise = PleakagedBW
− PnoisedBW = PtxdBW − IdB − 10 log10

(
KTsysB

)
− FdB (6)

Neglecting the quantization noise due to the fixed wordlength of ADCs, finally the
noise floor after correlation processing is defined as:

Noise FloordB = −
{

SNRleakage−noise + 10 log10(B× T)
}

(7)

Assuming a positive valued SNRleakage−noise (Pleakage � Pnoise), this means that when
using a standard Gaussian noise signal as the transmission signal, the dynamic range is
limited by the random sidelobe modulations of the leakage signal rather than the actual
noise floor due to system internal noise (SLLmean > Noise Floor). As a result, an undesirable
sensitivity loss equivalent to SNRleakage−noise (in dBs) occurs. To eliminate the SNR loss, the
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range sidelobes of the noise waveforms shall be lowered at least to the following sidelobe
level (SLL):

SLL < −
{

SNRleakage−noise + 10 log10(B× T)
}

(8)

As a comparison, the dynamic ranges are shown on one-sided correlation plots (up to
lag index 4000) in Figure 3a,b for two cases where bandpass Gaussian noise and tailored
noise signals having the same bandwidth and duration (B = 100 MHz, T = 164.84 µs) are
used, respectively.
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Considering a 100 mW (20 dBm) transmit power with an antenna isolation level of
90 dB gives a leakage power level of −70 dBm at the receiver antenna. Assuming a receiver
bandwidth of 100 MHz and a system temperature of 273 K, then the thermal noise power
is equal to −93.97 dBm. When a typical receiver noise figure of 4 dB is applied, then the
leakage to noise power ratio at the ADC input is:

SNRleakage−noise = Pleakage − Pnoise − F = −70− (−93.97)− 4 ∼= 20 dB
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For both cases, the cross-correlation of the reference signal and thermal noise would
give us a mean noise floor of:

Noise FloordB = −SNRleakage−noise − 10 log10(B× T) = −(20 + 42.14) = −62.14 dB

which is consistent with the histogram shown in Figure 3d. In the case of the Gaussian
noise waveform, the dynamic range of the radar is limited by the range sidelobes of the
transmit signal itself, which has a mean level of −42.14 dB, as shown in Figure 3c. On the
other hand, when a tailored noise waveform is used such as a COSPAR waveform with
−70 dB peak sidelobe level, then the range sidelobes are far lower than Noise FloordB and
as a result, the dynamic range is limited by the system thermal noise floor rather than the
waveform’s range sidelobes. The latter case is desirable in noise radar and the example
provided here explains the dynamic range issue in noise radar and the need for controlling
the range sidelobes of noise waveforms, and this motivates us for the generation of tailored
waveforms with desired correlation sidelobe properties.

1.4. Peak-to-Average Power Ratio

Another important metric in noise radar is the Peak-to-Average Power Ratio (PAPR)
of signals. The PAPR of radiated signal x(t) here represented by its discrete samples
{x(n)}N

n=1 is defined as:

PAPR =
max

n
|x(n)|2

1
N ∑N

n=1|x(n)|
2 (9)

where N = T· fs is the sample number with fs being the sampling frequency.
Signals with constant amplitude envelope (termed as “unimodular”) have a PAPR

level of 1, which makes them ideally power efficient. Exemplary waveforms belonging
to this group can be listed as LFM, Barker and Polyphase codes. Such signals can drive
the power amplifiers near saturation, thereby allowing power maximization during trans-
mission. Any deviation from the unitary amplitude level leads to an energy loss in the
correlation mainlobe, i.e., lowering the peak response level. This can be regarded as SNR
loss, causing a degradation in the detection performance. This inevitable loss is defined as:

SNRloss = −10 log10(PAPR) (10)

The SNRloss versus various PAPR values is shown in Figure 4. In this respect, having
a PAPR < 2 is tolerable in noise radar applications without substantial degradation in
detection performance (SNRloss < 3 dB).
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properties of radiated signals. Therefore, signals with large PAPR necessitate highly linear
converters, and amplifiers with wide dynamic range thus bring additional costs for radar
system designers.

2. The COSPAR (Combined Spectral Shaping and Peak-to-Average Power Ratio
Reduction) Method: General Description

Having shown the particular noise radar architecture and the fundamental periodic
correlation processing scheme, with some important aspects related to noise radar technol-
ogy, here we propose a noise waveform generation method for controlling sidelobes and
an accompanying PAPR reduction technique for SNR maximization and linear amplifier
operation. The noise waveform generation method described here is based on having a
good spectral shape (e.g., a Taylor window function), giving an opportunity to control the
sidelobes in its transformed domain.

It is well known by the Wiener–Khinchin theorem that the Power Spectral Density
(PSD) of a signal is the Fourier transform of its Auto-Correlation Function (ACF). Thus,
the PSD and ACF form a Fourier pair. Using this relation, if one can find a good spectral
shape (square root of PSD) with desired ACF sidelobe properties, then adding an arbitrary
phase spectrum to that spectral shape and taking the inverse Fourier transform leads to a
single realization of a noise-like waveform. Using this technique, it is possible to generate
infinitely many waveforms having the same PSD and ACF by randomizing the phase
term for signal spectra at each realization. In this respect, we resort to the Taylor window
function for the spectral shape synthesis and after each realization we apply our proposed
PAPR reduction method. An illustration of the procedure is shown in Figure 5 and the
steps of the COSPAR method are explained in the following subsections.
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2.1. Step I: Spectral Shape Synthesis

We begin the COSPAR procedure by constructing the spectral shape, which will
provide us the desired correlation properties. For this purpose, we refer to window
functions where designers can adjust the coefficients or window weights to make tradeoffs
between mainlobe width, peak sidelobe level and sidelobe fall-off rate parameters.

Window functions are widely used in digital signal processing for controlling undesir-
able sidelobes or suppressing spectral leakage and Gibbs oscillations. Also called taper or
apodization functions, researchers have developed various window functions throughout
the years to achieve certain sidelobe properties. Thus, there exists an extensive literature
on window functions and they are widely used in applications such as spectral analysis,
beamforming and antenna design [16,17].
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In the COSPAR procedure, we resort to the Taylor window function in particular [18].
Compared to other window functions, the Taylor window offers several advantages for
noise radar waveform desigi

(i) Peak sidelobe level (PSL) can be specified according to desired correlation PSL dictated
by the radar design.

(ii) Near-in sidelobes can be specified for the desired range where constant sidelobe
response is required.

(iii) Tradeoff between mainlobe width and sidelobes does not have a substantial effect on
the radar resolution. The mild broadening of the mainlobe is discussed in Section 3.

(iv) The good roll-off factor and monotonic decrease in the sidelobes beyond the constant
sidelobe zone allow the visibility of weak targets at far range.

In fact, Taylor windows are similar to the Chebyshev window, which is known to
have the narrowest mainlobe for a given sidelobe level; however, the Chebyshev window
comes at a cost such that flat equiripple sidelobes lead to edge discontinuity in the window
function (in our case, the spectral shape), which is not desirable for LPI radar operation.
Avoiding edge discontinuity, the Taylor window allows us to make tradeoffs between the
sidelobe level and the mainlobe width.

Having discussed the good features of the Taylor window, we finally define a parame-
terized discrete Taylor window [19] which is specified by three parameters: N, n and SLL,
where:

(i) N is the number of samples (coefficients) in the Taylor window;
(ii) n is the number of nearly constant-level sidelobes adjacent to the mainlobe;
(iii) SLL is the peak sidelobe level (in dB) relative to the mainlobe peak.

The N-length Taylor window {w(n)}N
n=1 is computed as the sum of a constant and

n− 1 cosine functions according to:

w(n) = Taylor(n, N, sll, n) = 1 + 2
n−1
∑

m=1
Fmcos

[
2πm(n−1− N

2 + 1
2 )

N

]
n = 1, . . . , N (11)

The cosine weights in Equation (11) are determined by:

Fm =

(−1)(m+1) ∏n−1
i=1

[
1−

m2

σ2

α2+(i− 1
2 )

2

]
2 ∏n−1

j = 1
j 6= m

(
1− m2

j2

) (12)

where

α =
ln
(

η +
√

η2 − 1
)

π
(13)

η = 10−
SLL
20 (14)

σ2 =
n2

α2 + (n− 1/2)2 (15)

An exemplary discrete Taylor window with parameters N = 128, n = 20 and
SLL = −70 dB and its Fourier transform are shown in Figure 6. After the generation of
the Taylor window w(n), we use it to generate the spectral shape function G = {G(n)}N

n=1
defined by G(n) =

√
w(n) for n = 0, 1, . . . , N − 1.
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Figure 6. Taylor window and its power spectral density.

2.2. Step II: Signal Synthesis

Having synthesized the spectral shape according to the desired level of correlation
sidelobes in Step I, we have N = BT degrees of freedom, i.e., to choose an arbitrary phase
to construct the signal spectrum X = {X(n)}N

n=1, defined as:

X(n) = G(n)·ejθ(n) =
√

w(n)·ejθ(n) n = 1, 2, . . . , N. (16)

where θ = {θ(n)}N
n=1 is a random vector on (−π,+π) with a probability density function

p(θ) = 1/2π. Then, the baseband complex signal x = {x(n)}N
n=1 is obtained by taking the

Inverse Fourier Transform of X.
An example will illustrate the COSPAR waveform generation procedure up to this

step. Later in Section 2.2 we will show how to reduce the PAPR of the synthesized signal
by optimizing phase samples of the signal spectrum.

Example 1
As a demonstration of the design procedure, let it be desired to create a −60 dB

sidelobe level (SLL) ACF pattern with nearly constant near-in sidelobes of 20 (n). We
wish to transmit and receive a radar waveform with a bandwidth of 100 MHz and a
duration of 163.84 µs. Assuming an ADC sampling rate of 200 MSPS in the receiver, then
this corresponds to a total number of 32,768 samples. Since the signal is real-valued, its
power spectrum is symmetric and therefore we only consider designing the positive side
of the power spectrum. Hence, our waveform design task boils down to a synthesis of a
complex sequence of length 16384. This complex sequence is in fact the complex envelope
representation of the real-valued radar waveform.

Having specified the parameters, we synthesize our spectral shape using Equation (11).
The constant-level sidelobe zone specified by n = 20 corresponds to a distance d = 30 m,
which is defined by d = c

2· f sADC × n where c is the speed of light.
Once we generate the Taylor-shaped magnitude spectrum, we append a random phase

vector to the modulus of the spectrum and then take the IDFT, which leads to a single
realization of the noise signal shown in Figure 7a. The Taylor-shaped power spectrum and
the one-sided autocorrelation of the noise signal are shown in Figure 7b,c, respectively.
We note that the signal has a PAPR = 9.13, which could be regarded considerably high for
linear noise radar operation.
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2.3. Step III: PAPR Reduction Procedure

Post synthesis, the waveforms look like noise as they do not possess a deterministic
structure neither in envelope nor in quadrature and in-phase components. Furthermore,
randomizing the phase term of the modulus of the Taylor-shaped spectrum in Step II, let
us generate an infinite number of distinct noise waveforms with different time–frequency
distributions at each realization. However, in terms of power efficiency, the waveforms
synthesized with this method are far lower than classical waveforms such as LFM or NLFM,
which have constant modulus, i.e., unimodular envelope, over the extent of the signal. By
experiment, signals generated via COSPAR without the PAPR reduction step tend to have
a PAPR value around 8–11.

Now, the question is “how to reduce PAPR without affecting the PSD and ACF envelope of
the signal?” Many PAPR reduction algorithms exist in the literature for wireless commu-
nication, especially for OFDM signals [20,21]. However, these algorithms are not directly
applicable to radar signals as they are developed to maintain the information content (i.e.,
symbols) of the communication signal while optimizing the code. For radar signals, there
exists an alternating projection-based algorithm [22], which provides a suitable and efficient
solution to force the signal to obtain a desired PAPR. This algorithm seeks a tight frame
given a prescribed structure (e.g., PAPR, norm) by projecting a frame which is described by
its spectrum. The solution is found between the intersection of the vectors satisfying the
given PAPR constraint and the vectors having certain spectral constraints. The downside
of this approach is that the final solution has a slightly transformed spectrum and thus
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the good sidelobe properties of ACF are degraded. For this reason, we opt not to use this
approach and, instead, we propose a novel method based on alternating time–frequency
domain projection. In our method, we treat the problem analogous to the Phase Retrieval
problem [23] and our procedure follows the steps for the well-known Gerchberg–Saxton
algorithm [24], which is widely used for recovering the underlying complex signal (e.g.,
image) from Fourier magnitude measurements. In this algorithm, the signal is projected
onto Fourier and object domains iteratively until a specified criterion is met while Fourier
and object domain constraints are applied at each domain, respectively. The procedure is
illustrated in Figure 8.
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In our method, we first initialize the vector with the sequence generated at Step II.
Next, we apply a time domain constraint (i.e., clipping the overshooting sample) and
then project it to the frequency domain whenever clipping occurs on a sample by sample
basis. In the frequency domain, we apply the spectral constraint (i.e., force it to have the
magnitude spectrum obtained in Step I while keeping the modified phase spectrum) and
then we project it back to the time domain. The projection is performed via FFT/IFFT
operations and this alternation is repeated for each overshooting sample in turn in the
entire vector. This iteration continues until a desired stop criterion (e.g., PAPR value or
PAPR improvement) is reached at the end of each pass over the entire vector. It should be
noted that this cyclic iteration proceeds by one sample-by-one sample for each overshooting
sample in order to minimize the regrowth of overshoot and to accelerate the convergence.
However, the stop criterion is checked only once at each time the end of the sequence
is reached. It is observed that the proposed procedure reduces PAPR at each pass over
the entire frame and it converges to a desired PAR level. Consequently, nearly unitary
(PAPR ≈ 1) signals are achievable without altering the PSD and ACF. We provide the
algorithm definition for the PAPR reduction procedure in Algorithm 1 and an example will
illustrate the procedure next.

Example 2
We initialize the PAPR reduction algorithm with x = {x(n)}N

n=1, which is the sequence
obtained in Example 1. The initial PAPR of the sequence is evaluated as 9.13 and we set
our target PAPR to 1.5. It has been shown that the PAPR value drops quickly below 2 after
several passes. As the PAPR value gets close to the target PAPR, improvement decreases
and the rate of convergence slows down. Thus, it is preferable to stop the algorithm
according to an improvement factor (

∣∣∣PAPR(i) − PAPR(i+1)
∣∣∣ < ε) rather than satisfying

an exact PAPR value condition to cut down runtime. The convergence plot is shown in
Figure 9.
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Algorithm 1. PAPR reduction procedure.

Initialization
• Initialize x = {x(n)}N

n=1 having a known spectral shape G = {G(n)}N
n=1 (e.g., Taylor

window) or ACF
• Set PAPRdesired or improvement factor ε as a termination condition
• i = 1
Repeat
1. Calculate PAPR(i) of x
2. γ = rms(x)
3. for k = 1 to N

if |x(k)|2 > PAPRdesired ∗ γ2 then
i. x(k) =

√
PAPRdesired·γ2 ∗ x(k)

|x(k)|
ii. ϕ = arg(F (x))
iii. x = F−1

(
G ◦ ejϕ

)
else

x(k) = x(k)
end if

end for
4. i = i + 1
5. Calculate PAPR(i+1) of x
Until a prespecified PAPR

(
PAPR(i+1) ≤ PAPRdesired

)
is reached or stop criterion

(
∣∣∣PAPR(i) − PAPR(i+1)

∣∣∣ < ε) is satisfied.
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Figure 9. PAPR evolution over iterations.

The final sequence shown in Figure 10 has the same power spectrum as of the initial
sequence (see Figure 7a) and thus its ACF (see Figure 7b) has been preserved. It should be
noted that when the waveform is up-sampled for the generation of an IF signal, the PAPR
may increase by 2–3 dB [25] in general. Thus, it is suggested that either an a priori margin
be considered for the system or the signal be up-sampled (extended in the frequency
domain via zeros padding) to the f sDAC rate before running the PAPR reduction algorithm.
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2.4. Step IV: Quadrature Vector Modulator and Upconversion

The complex baseband signal {x(n)}N
n=1 synthesized by the COSPAR method must be

up-converted to the IF band in the final step such that the discrete samples of the synthetic
waveform can be fed to DAC for transmission. Assuming an integer oversampling factor
η = f sDAC/ f sADC, we particularly append zeros to both sides of the COSPAR spectrum to
extend its sample size to N′ = 2ηN, where N is the sample size of the complex baseband
signal. This extension in the frequency domain is equivalent to SINC interpolation applied
in the time domain. After that, we up-convert the interpolated complex signal {x′(n)}N′

n=1
to the IF band according to the following quadrature vector modulation procedure:

y(n) = Re
(
x′(n)

)
cos(2π fcn/ f sDAC)− Im

(
x′(n)

)
sin(2π fcn/ f sDAC) (17)

where fc is the center frequency of the IF band and {y(n)}N
n=1 is the real IF band signal.

Example 3
Using the COSPAR waveform synthesized in Step III (Example 2), we consider up-

converting the baseband signal to the IF band (200 MHz–300 MHz) given the DAC sampling
rate of 1200 MSPS. Thus, the oversampling factor is η = f sDAC

f sADC
= 6. Then, the sample

size is extended in the frequency domain, and as such the new sample size becomes
N′ = 2ηN = 196, 608. Finally, the real signal is obtained by applying quadrature vector
modulation with fc = 250 MHz. The power spectrum of the real COSPAR signal is shown
in Figure 11.
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3. Range Resolution of COSPAR Signals

In general, the radar range resolution ∆R for radars using modulated signals with
a bandwidth of B is defined as ∆R = c/2B, where c is the speed of light. This is in fact
the distance between the −3 dB points with respect to the peak response (mainlobe) in the
ACF. In the COSPAR signal generation procedure, the desired level of correlation sidelobes
and the parameters chosen to generate the Taylor window function modify the original
∆R slightly by a factor ρ. Then, for a COSPAR signal with a bandwidth extend of B, the
approximation to the modified range resolution ∆R′ can be given as the following:

∆R′ ∼= ρ× ∆R = ρ× c
2B

(18)

and the mainlobe broadening factor ρ is determined by:

ρ = σ
2
π

√
(arc cosh η)2 −

(
arc cosh

η√
2

)2
(19)

where η and σ are given as in Equation (14) and Equation (15), respectively. Figure 12
shows the mainlobe modification factor for various lateral lobe parameters.
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4. Orthogonality of COSPAR Signals

Each COSPAR synthesis leads to a distinct realization of a noise signal and thereby
makes it possible to generate a set of mutually orthogonal noise waveforms. When trans-
mitted successively, these orthogonal waveforms resolve range ambiguities in the radar
while boosting the LPI property. Moreover, it permits a plurality of radars working in the
same area and sharing the same spectrum. In Figure 13, the cross-correlation of two distinct
COSPAR signals with the same energy and PAPR = 1.5 is shown. The cross-correlation
level attains a mean level of −10 log10(B× T) ∼= −42.17 dB.
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5. Ambiguity Function of COSPAR Signal

The Ambiguity Function (AF) of a signal is a representation of the signal’s matched
filter response against various time delays and Doppler shifts and it can be used for the
evaluation of signal resolution in Doppler and range space and for assessing waveforms’
Doppler tolerance [26,27]. The Ambiguity Function of a signal x(t) can be defined as:

χ(τ, fD) =
∫ ∞

−∞
x(t− τ)x∗(t)e(−j2π fDt)dt (20)
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where τ and fD are time delay and Doppler frequency, respectively.
A comparison of COSPAR and typical LFM (chirp) signal AFs is shown in Figure 14. In

this respect, the LFM waveform is Doppler tolerant such that the matched filter still outputs
a peak when the return signal incurs a Doppler frequency shift despite some offset in the
target’s apparent range. This is called “range-Doppler coupling”, and to identify the true
range, most often an up and down chirp pair is used to average the detection offset from
opposite slopes of each chirp AF [28]. On the other hand, COSPAR represents a typical
noise waveform with a thumbtack AF shape bearing high range and Doppler resolution.
However, in this case, the Doppler shift will result in a reduction in processing gain, and as a
result, target response SNR will decrease severely. Thus, noise waveforms are considered as
Doppler sensitive. In noise radars, this problem is resolved by performing pulse compression
with a bank of filters matched to a selection of desired Doppler frequencies or by the
efficient range-filter bank method described in [29].
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However, in a continuous wave noise radar, the waveform with appropriate integra-
tion time can still be Doppler tolerant for practical applications. For example, in the X-band
(e.g., 9.3–9.4 GHz) marine radar case, the typical vessel velocity ranges between 0 and
30 m/s (0–60 kts), leading to a Doppler frequency shift fd

∼= ±2 kHz at the maximum. If
we use a noise signal with a duration of 164.83 µs such as the COSPAR signal synthesized
in Example 3, then we would still obtain a target response out of the matched filter, as
shown in Figure 15a. No range offset occurs and the SNR loss (~0.05 dB) in peak response
due to Doppler shift is negligible (see Figure 15b) for COSPAR signals.
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6. LPI Property of COSPAR Signal: Spectral and Time–Frequency Analysis

As for the temporal analysis, the noise-like properties of COSPAR signals are dis-
cussed in previous sections. From the spectral point of view, the COSPAR signal attains a
deterministic spectral shape (e.g., Figure 7b) prescribed by the Taylor window function
during its synthesis, which could be considered as a weakness in terms of Electronic Pro-
tection at first glance. However, unless the exact duration and bandwidth of the signal
are known a priori, estimating the spectrum of the continuous emission COSPAR signal
from the arbitrary capture of its transmissions is no easier than any other conventional LPI
waveforms. Owing to the Taylor window function, there are no spectral discontinuities
and its favorable smooth roll-off at band edges makes it a good candidate for LPI operation.
Moreover, its strength lies in its time–frequency representation discussed herein.

Modern ESM systems are capable of generating time–frequency analysis maps apart
from traditional spectral analysis methods [30]. In this way, these ESM systems are able to
intercept the widely used LFM and its variant NLFM signals of the so-called LPI radars.
Some methods used in time–frequency domain signal analysis are based on:

• Short Time Fourier Transform (STFT) [31].
• Wigner–Ville Distribution (WVD) [32].
• Choi–Williams Distribution (CWD) [33].

Time–frequency plots provide a better insight into the signal than traditional methods.
Thus, to evaluate and compare the time–frequency distribution of traditional LFM and
COSPAR waveforms, the STFT and Wigner–Ville Distribution of these signals are shown
in Figure 16a–d. Our first observation is that the energy of the COSPAR signal is well
spread over the whole time–frequency plane, which makes signal analysis by the electronic
reconnaissance system impractical. Therefore, it is believed that extracting signal features
from the COSPAR signal analysis is a challenging task for ESM receivers. Then the question
is “How can we say that the signal appears as noise and is suitable for LPI operation?”
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In order to quantify the LPI properties, we refer to the Spectral Kurtosis (SK) measure
in this work. Spectral Kurtosis is a statistical tool that can reveal non-stationary and non-
Gaussian distribution in the frequency domain for each frequency component. A small
value of Spectral Kurtosis for a frequency bin indicates stationary Gaussian noise is present,
whereas a high positive value pinpoints the existence of a transient or structured signal at
the corresponding frequency [34,35]. This makes Spectral Kurtosis a useful and powerful
tool for quantifying the LPI properties of waveforms for noise radar.

The Spectral Kurtosis of a signal x(t) can be computed based on its spectrogram,
which is obtained by the STFT (Short Time Fourier Transform) S(t, f ):

S(t, f ) =
∫ ∞

−∞
(t)l(t− τ)e−2π f tdt (21)

where l(t) is the window function used in STFT. Then, SK is defined by:

Spectal Kurtosis K( f ) =
〈|S(t, f )|4〉
〈|S(t, f )|2〉2

− 2 f 6= 0 (22)

where 〈 · 〉 is the time-average operator.
As shown in Figure 17, the distribution of frequency bins over time for the COSPAR

signal tends to have a normal distribution, giving a Spectral Kurtosis value of nearly
zero, indicating such a noise-like distribution (normal distribution) for all frequencies.
On the other hand, the LFM signal possesses a high value of Spectral Kurtosis over the
entire frequency band, which means the signal has a structured time–frequency support.
Considering an ESM receiver, the COSPAR signal can be buried well under the ESM
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receiver’s internal thermal noise, making it difficult for the ESM system to distinguish due
to the signal’s noise-like behavior.
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Figure 17. (a) Spectral Kurtosis of COSPAR signal. (b) Spectral Kurtosis of LFM signal.

7. Field Experiments

In January 2021, marine trials were conducted in the shore-based test site of Turkish
Naval Research Center Command (TNRCC) using the noise radar demonstrator developed
by TNRCC. The demonstrator system conforms to the architecture shown in Figure 1. The
demonstrator was set to work in X-band during trials and raw data from marine targets of
opportunity were collected for offline analysis. A radar scan view of the scene generated
using COSPAR recordings shows various ship targets at sea and land structures around
the test site up to 8 km in Figure 18.

During these trials, the COSPAR signal (having a bandwidth B = 100 MHz and
duration T = 164.84 µs) generated in Example 3 was used and outcomes are compared
with results obtained using a 100 MHz Gaussian noise waveform with the same radar
settings. In order to compare the COSPAR sidelobe performance against a Gaussian noise
waveform, we recorded the raw data while the demonstrator system was kept staring
at the ship target at a distance of about 2400 m, which is marked with a dashed white
circle in Figure 18. The correlation spikes belonging to the ship are apparent in both of
the range profiles seen in Figure 19. Observing the range profile, we can make this simple
observation: the strongest echo from the ship is about 8 dB above the leakage level (0 dB)
and the SNR for the target is equal to ~48 dB for the COSPAR waveform, whereas it is
~38 dB for the Gaussian noise case. Considering the strongest echo from the ship, the
matched filter dynamic range floor is dominated by sidelobes of the target response, not
the leakage. For both waveforms, the sidelobes are not at the expected level (−60 dB for
COSPAR and −42 dB for Gaussian noise) due to ground clutter near the radar and the
quantization noise of the digital converters. However, it is clearly seen that the dynamic
range can be improved with the usage of tailored waveforms such as COSPAR signals.
In this respect, we have shown the usefulness of the proposed COSPAR waveform for a
typical noise radar application.
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8. Conclusions

In this paper, the fundamental noise radar architecture and its correlation processing
have been reviewed along with important performance aspects related to waveform choice
for noise radars, and a novel noise waveform synthesis method (called “Combined Spectral
Shaping and Peak-to-Average Power Reduction, COSPAR”) including a cyclic PAPR reduction
algorithm has been presented. Its main advantages are its low computational complexity
and its simplicity for hardware implementation. The method allows parametric spectral
shape synthesis such that designers can specify the Taylor window properties for spectral
shape synthesis and adjust the corresponding ACF near-in sidelobes and peak sidelobe
level accordingly.

The COSPAR waveforms are a special case within the general class of noise radar
waveforms that while bearing a deterministic power spectral shape, every realization
generates a different time domain signal, each having a distinct time–frequency distribution
that makes them amenable for enhanced LPI operation. In this respect, these waveforms
are non-repetitive and thus cannot be easily predicted or intercepted by ESM receivers.

COSPAR waveforms enjoy many valuable attributes, some of which can be summa-
rized as follows:

(i) COSPAR waveforms are noise-like. Although they possess a deterministic spectral
shape, it has been shown that the signal energy is well distributed over their time–
frequency plane. Signals which have structured time–frequency support or signals
which concentrate energy within a certain band are easily intercepted at a great
distance by the ESM receiver. In this respect, COSPAR waveforms possess good LPI
attributes.

(ii) Signal energy does not vary radically from pulse to pulse due to its pre-specified and
fixed power spectrum. Therefore, target SNR fluctuation (due to inconstant transmit
signal energy from pulse-to-pulse) is eliminated.

(iii) Matched filter outputs are not affected by random range sidelobe modulation due to
its pre-defined autocorrelation shape, and standard pulse compression radar signal
processing techniques can be applied.

(iv) Its Ambiguity Function tends to be thumbtack shape, which resolves range and
Doppler ambiguities.

Moreover, the possibility to shape the underlying autocorrelation function by the
parametric spectral shape synthesis (i.e., Taylor window) makes this type of waveform
potentially useful for many sensing applications such as automotive radar, marine navi-
gation radar, surveillance radar, SAR imaging and MIMO radar. Consequently, COSPAR
signals represent a form of waveform diversity for noise radars offering degrees of freedom
to control sidelobe level and crest factor that can be readily explored in many sensing
measurements.
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Abbreviations
The following abbreviations are used in this manuscript:
ACF Auto Correlation Function
CA Cyclic Algorithm
COSPAR Combined Spectral Shape and Peak-to-Average-Power Ratio Reduction
CW Continuous Wave
CWD Choi–Williams Distribution
DSP Digital Signal Processor
DFT/IDFT Discrete Fourier Transform/Inverse DFT
EA Electronic Attack
EP Electronic Protection
ESM Electronic Support Measures
FFT/IFFT Fast Fourier Transform/Inverse FFT
FMCW Frequency Modulated Continuous Wave
FPGA Field Processing Gate Array
LFM Linear Frequency Modulation
MF Matched Filter
NLFM Nonlinear Frequency Modulation
PAPR Peak-to-Average Power Ratio
PSD Power Spectral Density
PSL Peak Sidelobe Level
PR Phase Retrieval
RCS Radar Cross Section
SNR Signal-to-Noise Ratio
STFT Short Time Fourier Transform
WVD Wigner–Ville Distribution
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