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Abstract: A multispectral backscattering LiDAR (Light detection and range) system (hereafter Oculus)
was integrated into a wave glider and used to estimate the scattering order (i.e., single vs multiple
collisions) of LIDAR backscattering, the water inherent optical properties (IOPs), the biogeo-chemical
characteristics of particulate scatterers (i.e., relative size, composition) and their motion) on shelf
waters of South East Florida. Oculus has a dual-wavelength configuration (473 and 532 nm) and
two detection geometries (off- and on-axis). Characteristics of scatterers were investigated based
on two complementary LiDAR-derived proxies (the Structural Dissimilarity Index and the spectral
slope of LiDAR backscattering). In March 2017, field measurements showed a covariation between
direct and diffuse backscattering contributions during morning hours and away from shore. LiDAR
attenuation coefficients explained up to 57% of IOPs variability. The analysis of LiDAR-derived
proxies suggested higher turbidity and larger particulates near the coast

Keywords: LiDAR; multiple scattering; coastal waters; inherent optical properties

1. Introduction

The characterization of underwater scatterers based on light and range detection
(LiDAR) measurements has been fundamental in studies related to the mapping of turbidity
plumes [1] and thin scattering layers [2]. The main finding of these contributions was the
differentiation of scattering layers in terms of vertical (e.g., nepheloid vs water column)
and horizontal distributions (e.g., plankton patchiness). In that regard, the composition
of scattering layers has been largely unknown for more than one decade due in part to
the poor spectral resolution of LiDAR systems for water applications. To cope with this
limitation, different techniques based on hybrid information (e.g., spectral reflectance
and LiDAR backscattering) [3], relationships between optical properties derived from
LiDAR waveforms [4], spatial statistics of LiDAR backscattering magnitude [5], signal
thresholds (e.g., detection of fish schools) [6] and complementary use of hydrodynamic
model simulations (e.g., Langmuir cells) [7] have been reported.

The accurate detection and identification of relatively large scatterers (i.e., size param-
eter = π D/λ >> 1, where D is the scatterer diameter and λ is the wavelength) [8] highly
relies on how well the ‘background’ scattering of the optical medium is removed. This
baseline signal is determined by the inherent optical properties (IOPs) of the waters under
investigation and is critical for optimizing LiDAR-based imagers of underwater features [9].
Also, LiDAR-derived IOPs (e.g., beam attenuation coefficient, c) can be used in models for
estimating signal scattering orders (i.e., single vs multiple collisions) [10] and apparent
optical properties (e.g., Kd or diffuse attenuation coefficient of downwelling irradiance,
Table 1) needed on image denoising [4].
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Table 1. Summary of acronyms.

Definition Units

FOV Field-of-View
IOP Inherent optical property
ICA Independent Component Analysis
SSI Structural Similarity Index dimensionless
SDI Structural Dissimilarity Index dimensionless

SDIct SDI contrast dimensionless
lum Luminance dimensionless
ct Contrast dimensionless
st Structure dimensionless
λ Wavelength of LiDAR source Nm
A Total absorption coefficient m−1

c Beam attenuation coefficient m−1

nw Refractive index of seawater dimensionless
np Refractive index of particulates dimensionless

Ksys System attenuation coefficient m−1

Kd
Diffuse attenuation coefficient of

downwelling irradiance m−1

Xmix Backscattering power Relative units
mk Spectral slope of Xmix dimensionless
S Source signal Relative units

Srec Reconstructed source signal Relative units

The use of autonomous robotic platforms such as gliders has major potential for map-
ping large-scale (i.e., 500 km) distributions of optical properties (e.g., total backscattering
coefficient (bb)) and derived biogeo-optical variables (e.g., chlorophyll-a concentration,
phytoplankton composition) in marine waters at high spatial resolution (i.e., cm) [11].
Despite their scientific value, these glider-based optical determinations may be influenced
by the light field (e.g., upward measurements near the surface during daytime) and glider-
associated turbulence. Likewise, existing glider-based optical sensors do not provide
range-resolved information and are unable to distinguish relatively large scatterers.

Here, a multi-FOV (Field-Of-View) and dual-wavelength LiDAR system (hereafter
Oculus, Figure 1) is evaluated for characterizing IOPs and large scatterers in shelf wa-
ters of SE Florida. Oculus was developed for NOAA (National Oceanic and Atmo-
spheric Administration) for studying the behavior of marine life and can be deployed
in wave gliders (i.e., wave-propelled robotic platforms) [12]. The main advantages of using
Oculus for detecting and discriminating scatterers are high spatial/temporal resolution
(i.e., 100 waveforms per s, vertical resolution = 5.625 cm) [10] and the existence of two
receivers (on- and off-axis) for estimating direct and diffuse scattering contributions to the
total backscattering signal.

This study has three main goals: (1) to determine diel changes of direct and diffuse
scattering components with respect to the distance to the shore, (2) to examine relationships
between LiDAR optical properties (e.g., LiDAR or system attenuation coefficient, Ksys)
and IOPs for shelf waters of South Florida having a wide range of turbidity (i.e., range
of c at a wavelength of 532 nm 0.02–0.5 m−1), and (3) to evaluate two LiDAR-based and
complementary proxies (the Structural Dissimilarity Index, SDI [13] and the spectral slope
of LiDAR backscattering, mk [14] for discriminating different scatterers in terms of motion,
relative size and composition. This contribution is organized into three main sections.
In Section 1, LiDAR scattering contributions (direct and diffuse) are estimated based on
Independent Component Analysis (ICA) [15] of waveforms arriving to off- and on-axis
receivers. Also, the variability of these contributions in our study area was interpreted with
respect to environmental factors. In Section 2, Oculus-derived Ksys values were related to c
and total absorption coefficients (a) in relatively clear and turbid waters (i.e., ~c H = 3 optical
depths, where H is the water depth in m). Lastly in Section 3, scatterers were classified
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based on 2-D structure patterns (spatial and temporal) and spectral backscattering changes
linked to particle size spectra and organic/inorganic content of suspended particulates.
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2. Materials and Methods
2.1. The LiDAR System

The instrument has two non-scanning lasers with wavelengths centered in the blue
(λ = 473 nm) and green (λ = 532 nm) spectral range (Figure 1) [10]. The laser beams are
parallel and were oriented at a nadir angle (i.e., perpendicular to the surface of the water
and down-looking) (Figure 2).

The receivers have an angular separation of 174.5 mrad and a similar FOV of 34.9 mrad.
This geometry enhances the detection and discrimination of optical targets by allowing
a real-time baseline correction by measuring direct and diffuse backscattered photons
(i.e., path-radiance) in a concurrent way. The beam divergence is 17.5 mrad and the source-
receiver separation is 0.0606 m for both telescopes. This source-receiver (S-R) geometry is
an important design feature as high frequencies (i.e., >108 Hz) and associated dephasing of
backscattered photons are sensitive to changes in S-R distance [16]. Oculus has an averaged
laser power of 10 mW and 23.1 mW at 473 nm and 532 nm, respectively, a pulse repetition
rate of 100 Hz and a pulse length of 1.27 and 1.12 ns (blue and green channels, respectively).
The sampling frequency (i.e., digitization rate) during all experiments was 0.5 GHz.

2.2. Field Experiments

Optical measurements were made on 10 March 2017 during daytime conditions. Sur-
veys were done over shelf waters off Fort Lauderlade, Florida (26.1224◦ N, −80.1373◦ W).
LiDAR measurements were obtained from a rotating pole attached to the stern of the ship
(Newton 40) (Figure 2). LiDAR surveys were complemented with vertical profiles of c and
a coefficients as derived from an absorption-attenuation meter (ac-9, accuracy ±0.001 m−1,
sampling rate = 3 Hz, SEA-BIRD Scientific, Bellevue, WA, USA) at 9 wavelengths (λ = 412,
443, 488, 510, 532, 555, 650, 676 and 715 nm). Protocols describing processing and signal
corrections applied to raw ac-9 measurements are reported in previous studies [17].

The sampling design encompassed a time series over relatively deep waters (i.e., bot-
tom depth range = 13.2–30.5 m, 26.065◦ N, −80.077◦ W) and during the morning (9:36:10:03).
Two transects (12:10–12:29 pm and 1:04–2:26 pm) perpendicular to the shore and over
shallower areas (bottom depth range = 7.4–14.7 m, 26.09◦ N, −80.09◦ W and 26.085◦ N,
−80.095◦ W, respectively) were done during the afternoon. To detect substantial changes
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(spatial and temporal) on scatterers’ characteristics, only the first second of each capture
(i.e., the first 100 shots per radiometric channel) were used.
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2.3. Direct and Diffuse Scattering Components

The backscattering signals arriving to on- and off-axis receivers can be interpreted as
a linear sum of two variable backscattering contributions (direct and diffuse) associated
with single and multiple scattering collisions, respectively. In that regard, ICA deals
with the partition of a mixed-signal that is composed of linear contributions terms. Unlike
principal components, ICA is assuming latent variables having ‘non-Gaussian’ distributions
and independent components that are not necessarily orthogonal. Another important
assumption of ICA is the independence between parameters that originated the mixed
signal. The initial step of ICA is the whitening (i.e., the covariance of decorrelated variables
is an identity matrix) of the original data [15]. The calculation of ICA signal sources is
performed by rotating the whitened matrix to minimize the Gaussian distribution behavior
(‘Gaussianity’) between variables. Indeed, the central limit theorem states that a mixed-
signal is expected to be more Gaussian than its members.

In this study, ICA calculations were performed by assuming two receivers (i.e., on-
and off-axis) for measuring two mixed LiDAR signals (Xmix

1 and Xmix
2 ) with a variable

contribution of direct and diffuse backscattering components:

Xmix
1 (t) = a1,1S1(t) + a1,2S2(t) (1)

Xmix
2 (t) = a2,1S1(t) + a2S2(t) (2)

where S1 and S2 are original signal sources with a dominant direct and diffuse backscat-
tering contribution, respectively, a1,1, a1,2, a2,1, and a2,2 are weighting coefficients that are
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influenced by the relative position and orientation of the receivers, and the type of photon
interactions with the optical medium. The ICA analysis was restricted to three specific
times (hereafter time bin = 110, 160, and 270 or time lags of 55, 80 and 135 ns with re-
spect to the receiver, respectively) representing the leading, descending (i.e., exponential
attenuation of power), and trailing portions of each waveform (Figure 3, Table 2). These
portions correspond to different ‘energy attenuation regions’ where a and bb have different
contributions to Ksys (e.g., bb >> a and a >> bb in leading and trailing portions, respectively).
In other words, LiDAR waveforms are sensitive to different IOPs and energy attenuation
processes (e.g., the dominance of direct and diffuse scattering in the leading and trailing
portions, respectively) depending on range. The importance of scattering components
(i.e., direct/diffuse) and IOPs (i.e., a and bb) for determining Ksys is more balanced as Xmix

exponentially decreases with distance from the receiver.
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Table 2. Segmentation of LiDAR measurements based on time-resolved power variation.

λ (nm) Receiver Waveform Portion Time Bin Range

473 On-axis Leading 107–142
Off-axis 100–113
On-axis Exponential attenuation 138–300
Off-axis 115–200
On-axis Trailing 240–363
Off-axis 139–290

532 On-axis Leading 104–146
Off-axis 105–115
On-axis Exponential attenuation 146–300
Off-axis 117–200
On-axis Trailing 250–350
Off-axis 142–280

Two case studies are presented showing the dominance of ‘soft’ backscattering features
(i.e., np approximates to nw) at all detection times (Figure 3a) and the signal perturbation
due to ‘hard’ backscattering features (np>> nw) at detection times between 100 and 150 ns
(Figure 3b). The ICA algorithm used here, also known as FastICA [15], has four major
processing steps: data centering by subtracting the mean (1), whitening of centered data
based on singular vector decomposition (2), maximization of ‘non-Gaussianity’ of whitened
mixed signals based on kurtosis (3), and normalization/decorrelation of weights used to
obtain the ICA signal sources (4). The ICA analysis is unable to extract the amplitude of the
signal sources, thus the arithmetic mean (µ) and standard deviation (σ) of Xmix

1 and Xmix
2

were used to reconstruct the magnitude of S1 and S2, respectively, by applying a z-scores
transformation:

Srec
k,λ(t) = σ(Xk,λ

mix(t))ICk(t) + µ(Xk,λ
mix(t)) (3)

where IC is the independent component and Srec
k,λ is the reconstructed signal for the signal

source S with a dominant scattering contribution k. The proportion of the variability of Srec
k,λ

explained by Xmix
1 and Xmix

2 was quantified using the coefficient of determination (r2).

2.4. Relationships between Ksys and IOPs

Optical measurements derived from the ac-9 sensor were useful to interpret the
scattering processes determining the LiDAR attenuation coefficient and the identity of
LiDAR-derived scatterers. Indeed, the magnitude of Ksys varies between c and Kd or
the diffuse attenuation coefficient of downwelling irradiance [4,18,19]. As c and/or FOV
decreases, the light field is expected to be less diffuse and Ksys tends to be c. Conversely,
Ksys tends to be Kd when the water becomes more turbid, the FOV becomes larger, and/or
the laser beam divergence increases. The final outcome of reducing Ksys to Kd is a greater
contribution of multiple photon collisions to total scattering and a light field that is more
diffuse [19]. For each wavelength and detection geometry, Ksys values were computed for
on- and off-axis receivers (hereafter Ksys(on-axis) and Ksys(off-axis), respectively) as the
slope of log-transform (e-base) backscattering power (Xmix) as a function of range (z):

Xmix(z) = ALe−2Ksysz/nw (4)

where AL is a constant related to the LiDAR system and nw is the mean refractive index of
seawater (i.e., 1.44).

The range used for Ksys calculations was always within the exponential decay phase
of the waveforms and differed between channels (i.e., 8.5–10.7 m and 10.03–12.3 m for on-
and off-axis, respectively). For each Ksys estimate, the mean Xmix was computed based
on the arithmetic average of the first 100 waveforms (i.e., 1 capture). The slope of each
averaged waveform subset was derived by applying a linear regression model type-I [20]
to Xmix changes as a function of range in m. Waveforms with the presence of strong
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backscattering features disrupting the exponential decrease of the LiDAR power with
range were excluded from the regression analysis. The comparison of LiDAR attenuation
coefficients with IOPs-derived from ac-9 measurements was made based on the arithmetic
mean of a and c determinations within the water depths matching the LiDAR vertical range
used for estimating Ksys. To avoid negative backscattering values, an offset of +100 was
added to all signals (on- and off-axis) and the signal-to-noise ratio (S/N) was computed as
the ratio of Xmix(on-axis)/Xmix(off-axis). The response of Ksys due to changes on IOPs was
quantified by the coefficient of determination (r2) after adjusting a linear regression model
type I.

2.5. SDI

The 2-D structure of Oculus-derived backscattering provides unique information
regarding temporal changes on scatterers’ distributions that can be mainly attributed to the
re-location of optical features due to passive or active motion. Notice that these changes
may be associated with variations in backscattering intensity and/or blue/green ratios.
The Structural Similarity index (SSI) is a technique widely used in image processing for
measuring the similarity between images or 2-D matrices [13]. In our case, the 2-D array
is a lidargram or matrix composed of 100 consecutive LiDAR waveforms. Thus, it was
assumed that local temporal variability was small with respect to spatial changes of Xmix

along the boat sampling track and as a function of water depth. Thus, the magnitude of
SSI is representative of 200 waveforms (i.e., 100 profiles per lidargram) or 2 s (~5.1 m along
the boat direction) and is computed for each element i,j of the lidargram (i.e., horizontal
and vertical component, respectively). For each i,j element corresponds to the anomaly of
each waveform computed with respect to the median of backscattering values between
time bin 110 and 250 (i.e., range = 6.7–14 m). The SSI index was computed as the product
of three metrics (luminance,lum, contrast,ct, and structure,st) that apply to each element i,j
of lidargrams to be compared (i.e., L1 and L2):

SSI(L1i,j, L2i,j)k = lumk
αctk

βstk
γ (5)

lumk =

(
2µL1

i,j,kµL2
i,j,k + c1

)
(

µL1
i,j,k + µL2

i,j,k + c1

) (6)

ctk =

(
2σL1

i,j,k
2σL2

i,j,k
2 + c2

)
(

σL1
i,j,k

2 + σL2
i,j,k

2 + c2

) (7)

stk =

(
σL1−L2

i ,j,k
2 + c3

)
(σL1

i,j,k
2σL2

i,j,k
2 + c3)

(8)

where k is the capture time during the survey, α, β and γ are weights set to 1, σ2 is the
variance of element x (i.e., i or j) and σi ,j

2 is the covariance between element i and j,
respectively. c1, c2, and c3 are constants used to avoid a very small denominator and are
affected by the dynamic range. SSI is affected by the size and type of the local window
used to smooth the lidargram. In our study, the dynamic range was 256 and the local
window was a Gaussian low-pass filter with a size of 11 and a standard deviation of 1.5.

The absence or presence of scattering features between lidargrams was quantified
based on two parameters derived from SSI:

< SSI >k =

∑
i,j

SSI(L1i,j, L2i,j)k

ni + nj
(9)

< SDI >k = 1− < SSI >k (10)
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SDIct
k =

< SDIon−axis >k − < SDIo f f−axis >k

< SDIon−axis >k + < SDIo f f−axis >k
(11)

where ni and nk are the sum of i and j elements, respectively, <SDI> is the arithmetic
average of the structural dissimilarity index. For each wavelength, SDIct in Equation (11) is
equivalent to the relative contrast of the backscattering signal between on-axis and off-axis
receivers. The range of values for <SDI> and SDIct is 0–1.

2.6. The Spectral Slope of LiDAR Backscattering

The benefits of using a LiDAR with multiple wavelengths in oceanographic appli-
cations have been already discussed by Gray et al. [21]. Given their spectral emission
and wavelength-dependency on water optical composition, the penetration depth of these
systems can be optimized in environments with variable turbidity. Likewise, LiDARs
having a spectral resolution allows the identification of scatterers in terms of second-order
properties (e.g., the mineral content of particulates). This later advantage was explored
here by calculating the spectral slope of LiDAR backscattering (mk):

mk(t) = − ln(Xk,473
mix(t)/Xk,532

mix(t))/ ln(473/532) (12)

where k is the receiver (on- or off-axis) with a centered wavelength λ. Notice that mk varies
with range or time, thus spectral slopes were analyzed at those time bins described in
Section 2.3 and encompassing different ‘energy attenuation regions’ along the waveforms.
Expression (12) was derived by applying a log-transformation to a hyperbolic function
proposed for modeling IOPs [22].

3. Results
3.1. Scattering Processes and Shape of Waveforms

Examples of waveforms obtained by Oculus at two wavelengths were shown in
Figure 3. The common backscattering volume peak associated with the ‘blue’ and ‘green’
on-axis channels was not totally coincident (i.e., photons arriving sooner at the ‘blue’
receiver). This shift was attributed to the asymmetry of viewing sensor angles making
photons arrive first at off-axis receivers (25.2 and 27.3 ns for ‘blue’ and ‘green’ channels, re-
spectively) (Figure 3a). Notice that this arrival time difference varied with the water optical
properties (e.g., turbidity) and the presence of ‘large-sized’ scatterers (i.e., ‘strong’ backscat-
tering features present in on- and off-axis at the leading portion of the waveforms (e.g., 20.3
and 22.4 ns, respectively, Figure 3b). Despite the existence of these ‘high’ scattering events
and differences between detectors in terms of gain and dynamic range (e.g., larger and
wider for the green channel), no sensor saturation effects were observed. In a logarithmic
space, the beginning of the leading portion of waveforms for on- and off-axis measurements
was commonly visualized at 50 ns. For on-axis signals, the exponential decay phase was
extended up to 210 ns after which the tail was characterized by a change of slope due likely
to a greater contribution of multiple scattering. Conversely, time-resolved backscattering
signals for off-axis waveforms were extinct (i.e., S/N < 1) earlier (~195 ns). Perturbations
on LiDAR backscattering measurements by a ‘hard’ scatterers can be seen as a large bulge
on the arriving signal (see the second peak at time bin 110 in Figure 3b). In general, the
overall impact of this disturbance was related to an increase of signal attenuation after the
scattering event and subsequent backscattering oscillations at longer arrival times due to
larger contributions of photons having multiple collisions. These oscillations must not be
confused with the ‘ringing’ of the signal (i.e., periodic noise variations after a backscattering
saturation event).

The discrimination of time-resolved diffuse and direct backscattering photon contri-
butions to Xmix was investigated here based on a subset of waveforms obtained during
different times of the day and distances to the shore. As expected, the raw signal for on-axis
and off-axis channels was associated to direct- and diffuse-dominated backscattering contri-
butions, respectively (Figure 4). In general, the signal reconstruction was larger (i.e., larger
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explained variability by the response variable) at time bin 160 followed by time bin 110 and
270 (r2 up to 0.99, 0.98, and 0.03 with p < 0.001). In the leading portion of the waveforms,
the signal reconstruction of direct backscattering returns was higher with respect to that
associated to diffuse photon contributions (e.g., explained variability difference up to 13%
at λ = 473 nm, Figure 4a,b), and this difference decreased at longer λ. At intermediate
detection times (i.e., time bin 160), the direct and diffuse backscattering contributions to
Srec were comparable and not influenced by spectral changes. The ICA reconstruction of
direct and diffuse backscattering components was at the tail of the waveforms was very
poor or null (Figure 4e,f).
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The spatio-temporal variability of ICA components is depicted in Figure 5. In general,
ICA values for direct and diffuse scattering contributions were less variable during morning
hours (i.e., shots 1–800). Also, ICA suggested that ‘direct and diffuse photons’ covaried
positively in the leading portion of the waveforms (Figure 5a,b), a phenomenon that was
no longer observed at larger distances from the receiver.
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3.2. Response of Ksys to IOPs

The attenuation of the LiDAR backscattering signal as a function of the range of
on-axis waveforms was substantially influenced by changes in water optical properties
(Figure 6). This influence was more remarkable with c and within the blue spectral range
(p = 0.57, one-tailed t-Student, p = 0.004, Figure 6a). At λ = 473 nm, the a coefficient only
explained one-third of attenuation changes on LiDAR backscattering (r2 = 0.30, p = 0.005,
Figure 6b) and no clear relationships were established at the longer wavelength (r2 = 0.07,
p = 0.126). Statistical relationships between Ksys(off-axis) and a values were weaker with
respect to c-Ksys comparisons made at λ= 473 nm and 532 nm (p > 0.05). Covariations
between Ksys(on-axis) and Ksys(off-axis) values were present (r2 up to 0.32) for waveforms
measured within the ‘blue’ and ‘green’ spectral range (p = 0.004 and 0.003, respectively,
Figure 6c). In general, Ksys(on-axis) was larger than Ksys(off-axis) (twice on average and up
to 2.7-fold at λ = 473 nm).
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3.3. Structural Dissimilarity

For on-axis measurements, the structural dissimilarity was highly variable between
captures obtained in relatively deep waters (<SDI> = 0.08 ± 0.005, λ = 473 nm, and
0.08 ± 0.006, λ = 532 nm, 9:36–10:03 am) and shallow (<SDI> 0.09 ± 0.005, λ = 473 nm, and
0.08 ± 0.006, λ = 532 nm, 12:10–14:26 pm, arithmetic mean ±2 standard errors) (Figure 7a,b)
waters. However, maximum <SDI> values (>0.11) were always observed over areas near
the coast and with smaller bottom depths.
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Morning LiDAR measurements were performed in waters having relatively low
turbidity as inferred from c values (e.g., c(488) and c(532) up to 0.34 m−1 and 0.32 m−1,
respectively). Conversely, during the noon and afternoon surveys (i.e., those in shallower
areas), the water turbidity was higher (i.e., c(488) and c(532) up to 0.38 m−1 and 0.37 m−1,
respectively) and lidargrams between consecutive captures were less alike. As expected,
the mean structural dissimilarity values of waveforms obtained by off-axis receivers were
relatively low (<SDI> range = 0.05 ± 0.03, arithmetic mean ±2 standard errors) with respect
to those computed for on-axis measurements (t-Student = 13.46 and 11.55 for λ = 473 nm
and 532 nm, respectively, two-tailed, p < 0.001, N = 22, Figure 7a,b). Similar to on-axis
receivers, off-axis measurements did not show clear spectral differences on <SDI> as values
for each wavelength were within the lower and upper bounds of two standard errors
(i.e., 95% confidence level). Consistent with <SDI> variations, the SDI contrast between off-
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axis and on-axis signals tended to have relatively high and more variable values during the
noon-afternoon hours (i.e., as high as 0.35) even though these changes were not statistically
significant (e.g., SDIct(morning) vs SDIct(afternoon), t-Student = −1.82, two-tailed p = 0.083)
(Figure 7c,d).

3.4. Spectral Slopes of LiDAR Backscattering

The probability distribution function (PDF) of mk values for on- and off-axis measure-
ments obtained during the whole survey and at different detection times are presented in
Figure 8. In general, the magnitude of the spectral backscattering slope for on-axis wave-
forms was substantially larger (i.e., more 100-fold for some samples) and more variable
with respect to those corresponding to off-axis measurements.
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Most mk values with a probability higher than 50% varied from −4.7 to +6.4 and
from −0.5 to +1.3 for on- and off-axis receivers, respectively. For on-axis measurements,
the distribution of mk values approximated a Gaussian function for time-bin 110 and 270
(Figure 8a). Conversely, the normalized PDF of spectral backscattering slopes for time-bin
160 was clearly left-skewed. Likewise, the magnitude of mk values at time bin 160 indicated
a decrease of backscattering at longer wavelengths. For off-axis measurements, the shape
of the normalized PDF was comparable between different detection times (Figure 8b).
For time bins 110, 160, and 270, the arithmetic averages of mk during afternoon surveys
were more positive (i.e., weaker decay of Xmix with range) with respect to those computed
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during morning hours (Table 3). In general, the S/N values for mk calculations were higher
at time bin 160 followed in descending order by time bin 110 and 270.

Table 3. Mean spectral slopes for different times of the day. <mk> arithmetic average of mk.

Time Bin Receiver Morning Noon-Afternoon

<mk> S/N <mk> S/N
110 on-axis 1.84 2.2 3.92 2.8

off-axis 0.64 1.20

160 on-axis −3.16 17.8 0.06 12.5
off-axis 0.16 0.42

270 on-axis −0.38 1.6 1.40 1.4
off-axis −0.04 0.18

4. Discussion

The interpretation of results is organized in four main sections encompassing the
following topics: the advantages of using ICA for estimating direct and diffuse LiDAR-
derived scattering components (1), the physical meaning of Ksys in terms of IOPs (2), the
impact of environmental conditions (i.e., turbidity and water depth) on temporal and
spatial variability of different types of LiDAR-derived scatterers (3), and interpretation
of spectral backscattering variations in terms of size distribution and composition of
suspended particulates based on published studies (4).

4.1. Direct/Diffuse Backscattering Components

The ICA algorithm was a useful technique to separate direct and diffuse scattering
contributions at different time bins and wavelengths. Overall, ICA is a faster and more
accurate technique for quantifying scattering sources than traditional Monte Carlo (MC) [9]
and PCA (Principal Component Analysis) [23], respectively. Indeed, ICA does not need to
follow the trajectory of each photon to elucidate its origin as MC simulations do and, unlike
PCA methods, are capable to uncouple correlated interactions by discriminating different
probability distributions as derived from higher moments around the mean. In this study,
direct and diffuse backscattered photons were mainly associated with signals detected by
on- and off-axis receivers, respectively. This can be explained by the larger proportion of
photon collisions inside and outside the FOV, respectively. In terms of detection times,
the largest reconstruction of direct and diffuse backscattering components corresponded
to the exponential decay portion of waveforms where the S/N of backscattered photons
was higher with respect to those values characteristics of the leading and tail waveform
sections. Also, the better discrimination of direct and diffuse components at time bin 160
was attributed to the greater ‘Gaussianity’ of probability distribution functions for photons
arriving at time bin 110 and 270 (i.e., where multiple scattering contributions increase).

4.2. LiDAR vs Ac-9 Optical Properties

The exponential decay of LiDAR backscattering power with range showed systematic
differences among waveforms captured by off-axis and on-axis receivers. In general, the
signal attenuation was more remarkable for on-axis waveforms and this was attributed
to the dominance of single scattering (backscattering + forward-scattering). As multiple
scattering increases and the light field becomes more diffuse (i.e., off-axis measurements),
the magnitude of Ksys decreases approaching Kd [4,18,19]. For on-axis measurements, Ksys
had a stronger covariation with c values and suggests that scattering rather than absorption
is the driving process modulating Ksys in our measurements. As expected, this effect was
more pronounced in the blue spectral range where backscattering of particulates and water
generally increases with respect to green wavelengths.

The apparent insensitivity of Ksys(off-axis) to changes on IOPs distributions was likely
attributed to the uncoupling of two important factors determining multiple scattering:
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path-length and water turbidity. For a constant c, multiple photon collisions are anticipated
to augment at longer distances from the receiver. This multiple scattering regime is usually
identified as a change on the backscattering slope (i.e., ln(Xmix) as a function of range).
As c increases, this slope break is expected to move with the maximum path-radiance or
common backscattering volume toward earlier detection times [23]. In fact, additional
backscattering due to higher c values and greater contribution of multiple scattering
leads to a shape deformation in the original waveform that is mainly characterized by
backscattering slope changes in the leading and trailing sections and concurrent non-linear
variations on Ksys. The optical configuration of the Oculus system is consistent with Ksys
values that approximate c rather than Kd. Indeed, the composite product cR [19], where R
is the illuminated spot at a specific range (e.g., 6.2, 9, and 15.1 m for time bins of 110, 160,
and 270, respectively) was always very small (0.07 to 0.19) compared to 1. Likewise, light
scattering was the dominant process determining LiDAR backscattering attenuation in our
study and explained two important findings: (1) the response of Ksys(on-axis) to c changes
was larger with respect to that associated with a variations, and (2) the larger magnitude
of Ksys(on-axis) with respect to Ksys(off-axis). In the last case, the difference between Ksys
values suggests that Ksys(on-axis) has an additional attenuation term due to scattering as
Ksys(off-axis) is mainly driven by light absorption.

4.3. Diel and Spatial Patterns of Scatterers

A consistent pattern revealed by ICA at all detection times was the relatively low
variability of ICA components during morning hours. This phenomenon was likely related
to the sampling design and environmental differences regarding water types. In the first
case, morning surveys were part of a time series and explain why transects (i.e., noon-
afternoon profiles) were characterized by having larger changes on ICA values as spatial
measurements include two sources of physical variability (local + advective). In the
second case, the water optical properties of the morning dataset were different from those
measured during the noon-afternoon datasets. Indeed, the water turbidity as inferred from
c suggested a predominant oceanic (coastal) water type during morning (noon-afternoon)
profiles. Since the average size of particulates increases with turbidity [17,24], larger
backscattering features were likely more abundant late during the day when surveys were
closer to the shore.

Assuming a negligible spatial variability between captures, the comparison of <SDI>
and SDIct values for different sampling locations and times of the day suggested changes in
mobility of scatterers during our surveys. Indeed, maximum values of similarity between
lidargrams were found offshore. This observation was confirmed based on contrast index
calculations (i.e., maximum SDIct values near the coast). The lack of coherence between
LiDAR backscattering profiles near the coast was associated with higher water turbidity
levels as inferred from c and associated changes in particle characteristics as discussed
above. However, the motion of large-sized scatterers due to active swimmers (e.g., fish) [25]
was likely another influencing factor. Reef fish along the south Florida shelf is known to be
highly aggregated near the coast [26], thus it is likely that observed LiDAR backscattering
patterns were partially related to fish distribution differences across the shelf. In general,
<SDI> values associated with off-axis measurements were smaller with respect to those
derived from on-axis measurements. This is not unexpected as off-axis measurements
are dominated by diffuse scattering contributions that are less influenced by the presence
of relatively ‘strong’, ‘large-sized’, and less common backscattering features (e.g., jelly-
fish) [27]. These relatively rare optical features were in part responsible for augmenting
<SDI> associated with on-axis waveforms and preferentially those obtained nearshore and
at shorter wavelengths.

4.4. Spectral Backscattering Variations

In general, on-axis waveforms were characterized by having a greater proportion of
positive mk values (i.e., Xmix increases at longer wavelengths) with respect to those derived
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from off-axis measurements. This phenomenon was attributed to the greater sensitivity
of on-axis measurements to ‘large-sized’ optical features (i.e., geometric cross-section
much larger than LiDAR wavelength). Time-series off the Massachusetts coast have shown
consistent differences in spectral backscattering between different particle size distributions
as derived from backscattering meters [14]. Indeed, Slade et al. found more negative
spectral backscattering slopes (λ = 488–715 nm) when suspended particulates within the
size range 5–50 µm were dominated by finer size fractions. Loisel et al. [28] computed
the spectral backscattering slopes for different marine regions around the globe based on
satellite observations and concluded that most estimates vary between 0 and −3.5 with
more positive values associated with eutrophic zones where suspended particulates are
larger. Lastly, tank experiments using LiDAR [21] found that spectral backscattering slopes
of Arizona dust (mean diameter = Dm = 4.5 µm) were generally smaller (−1.72 to 0.57) with
respect to those (−0.24 to 2.17) derived from large-sized organic particles associated to a
phytoplankton culture of I. galbana (Dm = 6.5 µm). Notice that LiDAR measurements made
in [21] correspond to a biaxial geometry (i.e., detector and source are non-collocated), thus
their resulting waveforms were more alike to our off-axis backscattering determinations.

The spectral composition of backscattered photons differed between relatively shallow
and deep water locations (i.e., predominantly coastal and oceanic conditions, respectively)
as mk values become more positive closer to the shore and during the afternoon (Table 3).
This spatial trend was likely related to the greater proportion of ‘large-sized’ particulates
and higher water turbidity near the shore. Spatial patterns on spectral beam attenua-
tion, an optical proxy for particle size distribution [14], supports this hypothesis as high
c(488)/c(532) ratios (i.e., a greater contribution of ‘small-sized’ particulates) tended to de-
crease closer to the shore (i.e., morning samples) (Figure A1, Appendix A). Gray et al. [21]
pointed out a substantial increase of mk (e.g., −1.7 to −0.24 and 0.57 to 2.17 in clear and
turbid waters, respectively) in turbid waters (i.e., up to a 6.5-fold increase of c(550)). Also,
results on [21] showed composition effects on mk with more positive and negative values
associated with organic-dominated (−0.24 to +2.17) and mineral-dominated (−1.72 to
+0.57) particulates, respectively. In this study, the range of mk values derived from off-axis
receivers suggests that particle assemblages had an intermediate chemical composition
between inorganic-rich and organic-rich case studies. Likewise, the increase of mk values
toward the coast in our surveys indicates that particle composition effects on mk were
secondary with respect to those associated with PSD and/or turbidity changes.

5. Conclusions

The discrimination of underwater optical features and characterization of scatterers
by standard LiDAR configurations is limited due to their relatively poor spectral resolution
and low signal/noise ratios. In this study, Oculus, a new multispectral LiDAR system was
applied to understand scattering sources and their relationships with IOPs and scatterer
types in shelf waters off the South Florida coast. In general, ICA suggested a more de-
fined separation between direct and diffuse scattering contributions along the exponential
decay of Xmix due to a higher S/N and the ‘non-Gaussianity’ behavior of the probability
distribution function. This waveform region is commonly used to compute Ksys (range or
non-range resolved LiDAR attenuation coefficient) and estimate IOPs. In our case, Ksys
variability was linked to c as supported by in situ measurements and theoretical consid-
erations. The complimentary use of SDI/SDIct and mk was useful to identify scatterers in
terms of their properties and distribution patterns. Indeed, structure dissimilarity indexes
suggested a greater mobility of scatterers near the coast where mk also indicated a greater
predominance of relatively large-sized particulates and more turbid conditions.
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predominance of relatively large-sized particulates and more turbid conditions. 
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