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Abstract: The Kobresia pygmaea (KP) community is a key succession stage of alpine meadow degrada-
tion on the Qinghai–Tibet Plateau (QTP). However, most of the grassland classification and mapping
studies have been performed at the grassland type level. The spatial distribution and impact factors
of KP on the QTP are still unclear. In this study, field measurements of the grassland vegetation
community in the eastern part of the QTP (Counties of Zeku, Henan and Maqu) from 2015 to 2019
were acquired using unmanned aerial vehicle (UAV) technology. The machine learning algorithms
for grassland vegetation community classification were constructed by combining Gaofen satellite
images and topographic indices. Then, the spatial distribution of KP community was mapped. The
results showed that: (1) For all field observed sites, the alpine meadow vegetation communities
demonstrated a considerable spatial heterogeneity. The traditional classification methods can hardly
distinguish those communities due to the high similarity of their spectral characteristics. (2) The
random forest method based on the combination of satellite vegetation indices, texture feature and
topographic indices exhibited the best performance in three counties, with overall accuracy and
Kappa coefficient ranged from 74.06% to 83.92% and 0.65 to 0.80, respectively. (3) As a whole, the area
of KP community reached 1434.07 km2, and accounted for 7.20% of the study area. We concluded
that the combination of satellite remote sensing, UAV surveying and machine learning can be used
for KP classification and mapping at community level.

Keywords: Kobresia pygmaea community; unmanned aerial vehicle; Gaofen satellite; spatial distribution

1. Introduction

Alpine meadow is the major vegetation type on the Qinghai–Tibet Plateau (QTP),
China. It is important for animal husbandry, water conservation and biodiversity conserva-
tion [1,2]. Since the 1980s, due to the dual effects of climate change and human activities,
alpine meadow grassland has experienced different extents of degradation, especially in
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the source region of Yellow River, which is on the eastern part of the QTP [3]. The degra-
dation has restricted the sustainable development of animal husbandry and seriously
threatened local ecological security [4]. The degradation succession stages of the alpine
meadow grassland community include Poaceae, Kobresia humilis (KH), Kobresia pygmaea
(KP) and black soil type (BS). The KP community is the key stage for the management
of degraded grassland [5]. In the first two stages, the original community structure and
function can be quickly restored under the grazing prohibition and artificial measures [6].
However, further degradation of KP community will cause irreversible degradation until
the severest stage of black soil type [7]. Therefore, it is vital to map the current distribution
of KP community grassland for mitigation and adaptation measures. However, previous
grassland classifications have been performed at the vegetation type level, and few at
the community level [8,9]. At present, the spatial distribution and impact factors of KP
community on the QTP are still unclear [1,2,10]. Therefore, it is urgent to develop a method
for mapping alpine meadow at community level.

Traditional grassland vegetation community samples are mainly obtained with the
few field investigation, expert knowledge and literature reviews. Due to the complex
distribution and dynamic of grassland vegetation communities, the field investigation
cannot meet the accuracy requirement of classification [11–15]. In addition, remote sensing
(RS) vegetation indices have been commonly used as classification variables, “the same
object with different spectrum” or “the different object with same spectrum” have occurred
frequently [16–18]. Successful classifications at the community level requires: (1) the
RS images with proper temporal-spatial resolution, coverage, sensitive spectrum band;
(2) massive field observations; and (3) effective classification methods.

Compared with traditional multi-spectral remote sensing (e.g., MODIS, Landsat, HJ-
1A/1B), the Gao Fen 1 (GF1) and Gao Fen 6 (GF6) satellites have significant advantages in
grassland resource monitoring [19]. Each of these satellites has a high resolution of 16 m
(wide field view images, WFV), a relatively large detection width of 800 km and a short
revisit period of two days (four days for each, two days for combination) [20]. Additionally,
GF6 satellite adds the red edge band, which is beneficial to vegetation classification. Thus,
it is easier to collect high quality remote sensing images at a regional scale [21].

The massive field observation is the basis of RS classification of grassland communities.
However, the resolution of satellite images is insufficient to identify grassland commu-
nities, and traditional methods require large amounts of time, labor, cost and resources.
In recent years, with the development of unmanned aerial vehicle (UAV) technology,
the shortcoming of satellite and traditional methods in grassland resource monitoring
are supplied [22–24]. On the one hand, the aerial photographs provided by UAV have
high resolution, which can be used to identify the grassland vegetation community effec-
tively [25]. On the other hand, UAV has a large observation range, which can save time
and effort. Yi et al. (2017) [26] also developed a set of UAV aerial photography system with
fixed-point, multi-site, collaborative observation, which can realize massive observation
over large regions [27].

With the development of classification methods, machine learning algorithm has
obvious advantages in RS image classification [28,29]. Based on neural network (NN),
support vector machine (SVM), random forest (RF) and other machine learning algorithms,
the satellite vegetation index, phrenological characteristics, image texture and topography
are considered to improve the accuracy of RS classification [24,30–32]. However, RS
classification in grassland mainly includes the land use type (e.g., grassland, non-grassland,
woodland, etc.) [33], different biophysics characteristics (such as grassland with high,
medium and low coverage) [34] and types in different climatic zones (such as class, group
and type of grassland) [35].

In this study, we aimed to map the KP community over the eastern of QTP by using
the combination of UAV aerial photographing, GF WFV images and machine learning
algorithms. We hope this study can be helpful for guiding further mapping of the KP
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community over the whole QTP and provide scientific basics for restoration and manage-
ment activities.

2. Data and Methods
2.1. Study Area

The study area is located at the eastern of the source region of the Yellow River,
including Zeku County and Henan County of Qinghai province, and Maqu County of
Gansu province (Figure 1). It is one of the most important animal husbandry basis on
the QTP and also an important water source conservation area in China. The study
area is located at 33◦03′~35◦33′N, 100◦33′~102◦33′E, with elevation ranging from 2871
to 4850 m (Figure 1c). The mean annual precipitation ranges from 400~600 mm, mean
annual temperature is between −2.4~2.1 ◦C It belongs to the continental plateau temperate
monsoon climate. Alpine meadow is one of the main alpine grassland types, accounting
for 79.67% of the whole study area. Other than alpine meadow, mountain meadow, swamp
meadow and alpine steppe account for 13.22%, 1.78%, and 1.69%, respectively (Figure 1b).
The growth period of grassland plants is relatively short, only about 150 days, mainly from
May to September. The grasslands are mainly used for yak and sheep grazing.
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Figure 1. Location, grassland type and topography of study area. (a) Location of the study area in Qinghai–Tibetan Plateau
and the observation sites; dots of different color represent the vegetation communities. Poaceae: Elymus nutans + Stipa
silena + Festuca ovina community, KH: Kobresia humilis community, KP: Kobresia pygmaea community, BS: black soil type, MM:
marsh meadow, SM: shrub meadow. (b) Grassland type of study area; (c) topography of study area.

2.2. Data and Preprocessing
2.2.1. Field Observation and Preprocess of Aerial Photographs

We carried out the field monitoring for vegetation communities of alpine meadow
based on aerial photographs by Phantom 3 professional and Mavic 2 zoom Quad-Rotor in-
telligent UAVs (manufactured by DJI Innovation Industries; http://www.dji.com (accessed
on 1 June 2018). According to grassland growth status and spatial representativeness, an
area in the range of 250 × 250 m was selected as an observation site, and four flight routes
were designed in each site, including one GRID flight way (200 × 200 m) and three BELT
flight ways (40× 40 m) (Figure 2a). The flight way of UAVs was designed by FragMAP [22],
Phantom 3 professional was used to perform the GRID flight way at a height of 20 m (red
dot in Figure 2a,b), Mavic 2 zoom was used to perform the BELT flight way at a height

http://www.dji.com
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of 2 m (green dot in Figure 2a,c). The positional accuracy of two UAVs was ±1.5 m hor-
izontally and ±0.5 m vertically. A photograph was then taken vertically downward at
each way point automatically, the photograph resolutions of GRID and BELT were 1 and
0.09 cm, and the ground coverages were 26 × 35 m and 2.57 × 3.43 m, respectively.
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tom 3 professional and (c) Mavic 2 zoom Quad-Rotor intelligent UAVs.

To better identify the vegetation species, about 9~15 aerial photographs were collected
randomly by operating Mavic 2 zoom manually at a height of 0.5 m in each sample site. The
number of photographs was determined by the uniformity of community growth status.
These aerial photographs could clearly identify plant species, which was corresponding to
the traditional ground observation quadrat (Supplementary Figure S1).

According to the dominant species of grass vegetation, grassland coverage, texture fea-
tures and plateau pika (Ochotona curzoniae, hereafter pika) activities, the aerial photographs
were divided into six types, including four alpine meadow vegetation communities of
Poaceae, KH, KP and BS (Figure 3 and Table 1), two land covers of shrub meadow (SM)
and marsh meadow (MM). Additionally, the forest and others (bare land, construction use
and waters) were acquired based on the Google Earth images and GF WFV images. Field
observation was carried out at the peak time of grassland growth, and 751 sample sites
were observed from 2015 to 2019 in total (Figure 1c). About 30 sample sites were acquired
for forest and others.

2.2.2. Region of Interest Construction

According to the GPS information recorded in FragMAP and stored in aerial pho-
tographs property files, the names of photographs were renamed by the number of 1 to 16
by the DJI Locator software [22] in each site. Then the region of interest was built based
on photograph location information in the same observation site in ArcGIS and ENVI
software (Figure 3d,h,l,p). Additionally, about 30 samples (region of interest, ROI) for forest
and others (the water, bare land, and construction land) were selected in ENVI software,
according to the GF WFV images and Google Earth images.
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Figure 3. Classification criteria for aerial photographs of alpine meadow vegetation communities. (a,e,i,m) were aerial
photographs taken at the height of 20 m by Phantom 3. (b,c,f,g,j,k,n,o) were aerial photographs taken at a height of 2 m
by Mavic 2. (c,g,k,o) acquired with 2× wide-angle zoom lenses; (d,h,l,p) were Gaofen images of four types of vegetation
communities corresponded; Poaceae, KH, KP and BS represented communities of Elymus nutans + Stipa silena + Festuca
ovina, Kobresia humilis, Kobresia pygmaea and black soil type, respectively.

Table 1. Characteristics of vegetation communities in alpine meadow.

Community Dominant Species Coverage Other Features

Poaceae Elymus nutans, Stipa silena,
Festuca ovina More than 90%

Tall grassland height (20–50 cm in height),
grassland was flat without any traces of

pika activity

KH
Kobresia humilis;

sub-dominant: Elymus nutans
and Festuca rubra

More than 90%
Grassland was flat with low height (<10 cm

in height) and high coverage, and small
number of pika appeared

KP Kobresia pygmaea Between 30~80%

Grassland had a unique morphology and
textural characteristics, with closed and
monospecific builds (2~3 cm in height),

polygonal crack patterns and a felty root
mat, pika and poisonous weeds are

invaded frequently

BS Weeds Less than 20% Pika was rampant and weeds
was overgrown

Poaceae, KH, KP and BS represented Elymus nutans + Stipa silena + Festuca ovina, Kobresia humilis, Kobresia pygmaea and black soil
type, respectively.
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2.2.3. Acquisition and Preprocessing of Remote Sensing Data

The remote sensing data, including GF1 and GF6 WFV imager images, were down-
loaded from the China Centre for Resources Satellite Data and Application (http://www.
cresda.com/EN/ (accessed on 20 September 2019)). The WFV imager was carried by GF1
and GF2 satellites, with four multi-spectral bands (800 km of swath width) and eight
multi-spectral bands (850 km of swath width), respectively. The resolution of WFV image
was 16 m, and the revisit period for each satellite was 4 days. Together, the revisit period
could be reached up to 2 days (Table 2). Three scenes of WFV images with no cloud cover
in Zeku, Henan and Maqu, during the peak of grassland growth of 2019 and 2020 were
downloaded (Table 3). The GF WFV data were preprocessed using ENVI 5.3 software, and
the Radiometric Calibration module, FLAASH Atmospheric Correction module and RPC
(Rational Polynomial Coefficient) Orthorectification module was used for converting the
original DN value to atmospheric surface reflectance, atmospheric correction and precise
geometric correction of WFV images, respectively. Then, the Band Math module was
used to calculate the vegetation indices of NDVI, NDWI and NDMI. The Co-occurrence
measures module was used to extract image texture features of WFV images based on a
sliding window with 3 × 3 pixels, and the texture indices mainly included Mean, Variance,
Homogeneity, Contrast, Dissimilarity, Entropy, Second Moment and Correlation.

Table 2. characterization of Gao Fen (GF) wide field view (WFV) cameras.

Satellite Band Spectral
Range (µm) Band Type Spatial

Resolution (m)
Swath

Width (km)
Revisit

Period (day)
Orbit Altitude

(km)

GF-1

1 0.45–0.52 Blue

16 800 4 675
2 0.52–0.59 Green
3 0.63–0.69 Red
4 0.77–0.89 NIR

GF-6

1 0.45–0.52 Blue

16 800 4 645

2 0.52–0.59 Green
3 0.63–0.69 Red
4 0.77–0.89 NIR
5 0.69–0.73 Red edge 1
6 0.73–0.77 Red edge 2
7 0.40–0.45 Purple
8 0.59–0.63 Yellow

Table 3. List of GF1/6 WFV images used in this study.

County Data of Satellite
Images Satellite Path Row Central Latitude

and Longitude Cloud Percent

Zeku 2019.06.03 GF1 23 98 E 101.9, N 34.7 4%
Henan 2019.08.15 GF6 30 72 E 98.1, N 35.8 1%
Maqu 2020.08.25 GF6 18 72 E 104.7, N33.6 1%

The DEM data were 90 m shuttle radar topography mission (SRTM) images (version
V004) (http://srtm.csi.cgiar.org/ (accessed on 1 June 2018) in Geo-TIFF format. The Slope,
topographic position index (TPI) and aspect were calculated based on the DEM. Then, all
indices above mentioned were uniformly projected as UTM_Zone_47N (same as GF WFV).

http://www.cresda.com/EN/
http://www.cresda.com/EN/
http://srtm.csi.cgiar.org/
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2.3. Vegetation Community Classification and Accuracy Evaluation
2.3.1. Classification Method

The maximum likelihood estimate (MLE), NN, SVM and RF classification methods
were employed. MLE assuming each statistic of different types in every band was normally
distributed, the likelihood of each pixel belonging to a certain training sample was calcu-
lated. Finally, the type of pixel was determined based on the highest likelihood [36]. NN
(also called artificial neural network, ANN) referred to a multi-layer network structure, the
Levenberg–Marquardt function algorithm was selected for NN training. The number of
neurons and hidden layers were determined based on a trial-and-error process [37]. SVM
was constructed by a set of hyperplanes in high- or infinite-dimensional space, the higher
the functional margin, the lower the generalization error of the classifier. The radial basis
function (RBF) was used as the kernel function, and the optimal cost and gamma values
were obtained for final classification [38,39]. The RF algorithm was constructed by the
classification tree, which applied a set of decision trees to improve prediction accuracy.
The bootstrap sample was employed to construct a decision tree. The training samples
were constantly selected to minimize the sum of the squared residuals until a complete
tree was formed. Multiple decision trees were formed, and voting was used to obtain the
final prediction [40,41]. MLE, NN and SVM methods were performed in ENVI supervised
classification toolboxes of Maximum Likelihood Classification, Neural Net Classification
and Support Vector Machine Classification, respectively. RF method was performed in
ENVI Extensions toolbox of Random Forest Classification [42].

2.3.2. Classification and Accuracy Evaluation

Given the classification accuracy and efficiency, three input datasets were used:
(1) GF1/6 WFV spectral band (band1 to band8); (2) vegetation and texture indices (NDVI,
NDWI, SAVI, Contrast, Correlation, Dissimilarity, Entropy, Homogeneity, Mean, Second
moment and Variance); (3) vegetation, texture, and topography indices (DEM, Slope, Asp
and TPI). About 70% of observation sites were selected randomly as a training set, and the
rest were used to validate classification accuracy in each county. The standard confusion
matrix was employed to evaluate the classification accuracy of images, and the overall ac-
curacy (OA), Kappa coefficient (Kappa), user’s accuracy (UA) and producer’ accuracy (PA)
based on the validation datasets were used to assess the precision of classification results.

3. Results
3.1. Characteristics of Field Observation and Its Corresponding Multi-Indices

The distribution of observed sites was shown in Figure 1a. The vegetation com-
munities of alpine meadow showed a considerable spatial heterogeneity. Among the
751 observed sites, the proportion of KH community is highest, with 56.32% of all observed
sites. Followed by KP community (17.04% of all observed sites), the number of KP com-
munity observation sites were 68, 37 and 22 for Maqu, Zeku and Henan, respectively. The
proportion of SM, MM, BS and Poaceae only accounted for 3.33~9.85% of all observed sites.

For the four types of alpine meadow grass communities and four types of land cover,
the statistics of GF1/GF6 WFV image bands, vegetation indices, topography indices and
texture indices were calculated in the study area (in Supplementary Materials). The result
showed that the characteristics of multi-indices in alpine meadow vegetation communi-
ties were very similar, and it was difficult to distinguish with commonly used indices
(Figure 4a,b,e). Even though eight land covers could be coarsely distinguished between
each other in red edge bands (band5 and band6 of WFV image) and DEM, there was
relatively large error in classification (with little difference in mean values and wide range
in variation) (Figure 4c,d,f).
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3.2. Accuracy Evaluation of the Different Classification Methods

Accuracy assessment of classification was performed with the validation samples
listed in Table 4. Among the four classification methods, the RF method performed best,
with the highest overall accuracy and Kappa coefficient ranged from 74.06% to 83.92% and
from 0.65 to 0.80 in three counties, respectively. This was followed by the SVM method,
with an overall accuracy that ranged from 69.39% to 78.53% and Kappa coefficient that
ranged from 0.60 to 0.73. The accuracies of the NN and MLE method were the worst
(overall accuracy ranged from 40.78% to 73.89%; Kappa coefficient ranged from 0.24 to
0.67). Among the three classifications input, in general, the MLE, SVM and RF methods
based on the input data set of vegetation indices + texture + topography exhibited the best
performance, followed by the spectrum and vegetation indices + texture. However, the
performance of the NN method based on the above input data set showed contrary results
to the MLE, SVM and RF methods.
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Table 4. Overall accuracy and Kappa coefficient of eight land covers based on maximum likelihood estimate (MLE), neural
network (NN), support vector machine (SVM) and random forest (RF) and difference input data set in County of Zeku,
Henan and Maqu.

County Input Accuracy
Methods

MLE NN SVM RF

Zeku

Spectrum OA (%) 57.36 71.22 72.13 82.24
Kappa 0.50 0.64 0.65 0.78

Vegetation indices + texture OA (%) - 63.36 69.39 79.87
Kappa - 0.52 0.61 0.75

Vegetation indices + texture + topography OA (%) 63.75 40.78 78.53 83.92
Kappa 0.57 0.24 0.73 0.80

Henan

Spectrum OA (%) 68.03 75.14 74.96 81.32
Kappa 0.60 0.67 0.66 0.76

Vegetation indices + texture OA (%) 72.04 65.89 73.31 80.39
Kappa 0.64 0.54 0.65 0.75

Vegetation indices + texture + topography OA (%) 73.89 49.86 73.89 78.86
Kappa 0.66 0.34 0.66 0.73

Maqu

Spectrum OA (%) 65.67 70.04 70.28 75.96
Kappa 0.56 0.60 0.60 0.68

Vegetation indices + texture OA (%) 51.38 67.12 73.78 74.06
Kappa 0.40 0.55 0.65 0.65

Vegetation indices + texture + topography OA (%) 65.19 61.89 74.09 82.75
Kappa 0.56 0.46 0.65 0.77

Note: overall accuracy, OA; maximum likelihood estimate, MLE; neural network, NN; support vector machine, SVM; random forest, RF.

The results of the standard confusion matrix were shown in Table 5. The PA and UA
based on the RF method were highest in three counties, with 60.84% to 97.23% and 60.73%
to 78.09%, respectively. The PA and UA based on other methods showed lower value,
and the classification results of the KP community were easily confused with other grass
communities and land cover types.

Table 5. Producer’s accuracy and user’s accuracy of Kobresia pygmaea community based on maximum likelihood estimate
(MLE), neural network (NN), support vector machine (SVM) and random forest (RF) in Zeku, Henan and Maqu County.

County Input Accuracy (%)
Method

MLE NN SVM RF

Zeku

Spectrum PA 50.99 26.06 39.83 96.37
UA 49.01 47.96 56.89 74.07

Vegetation indices + texture PA - 38.83 19.61 86.94
UA - 46.85 46.49 69.94

Vegetation indices + texture + topography PA 69.30 64.93 84.82 97.23
UA 46.45 43.34 57.38 65.68

Henan

Spectrum PA 59.61 5.71 5.26 67.57
UA 29.83 80.85 57.38 60.81

Vegetation indices +texture PA 26.58 10.06 26.88 76.73
UA 41.75 44.97 54.43 67.59

Vegetation indices + texture + topography PA 35.83 - 32.83 68.67
UA 41.86 - 46.40 67.65

Maqu

Spectrum PA 70.68 64.83 52.74 67.23
UA 43.68 49.41 50.67 59.29

Vegetation indices + texture PA 59.45 13.68 61.32 60.84
UA 50.00 90.48 61.21 60.73

Vegetation indices + texture + topography PA 70.48 35.83 64.22 73.96
UA 45.53 52.32 57.42 78.09

Note: producer’s accuracy, PA; user’s accuracy, UA; maximum likelihood estimate, MLE; neural network, NN; support vector machine,
SVM; random forest, RF.
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3.3. Distribution and Area of KP Community

According to the vegetation community distribution map acquired by the RF method,
the spatial distribution of the KP community was fragmented with large spatial hetero-
geneity and small area (Figure 5). Among the three counties, the distribution of the KP
community was mainly located in: the north, east and around the county urban area of
Zeku County (around the town of Zequ, Qiakeri and Xipusha), with an area of 445.60 km2

(6.82% of Zeku County); the northeast and central part of Henan County (east of county
urban area, towns of Tuoyema and Duosun, and north of Saierlong), with an area of
176.76 km2 (4.48% of Henan County); the part of county urban area, towns of Oulaxiuma,
Muxihe and Awancang in Maqu County, with an area of 811.70 km2 (8.59% of Maqu
County). As a whole, the area of KP community reached 1434.07 km2, and accounted for
7.20% of the study area.
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4. Discussion
4.1. Influence Factors of KP Community in the Qinghai–Tibet Plateau

Generally, the KP community builds almost closed, non-specific, golf-course like
the lawn with a felty root mat. This characteristic mat not only protects soil against
intensive trampling by herbivores, but also helps to cope with nutrient limitations enabling
medium-term nutrient storage and increasing productivity and competitive ability of roots
against leaching and other losses [43–45]. However, with browning (patchwise dieback of
lawns), crack, collapse, fragmentation of KP community turf, the water budget [46], carbon
cycle [47,48] and soil nutrition [44,45,49] have been significantly changed [10].

Pastoralism may have promoted the dominance of KP community and is a major driver
for felty root mat formation [10]. However, the degradation of KP grassland may be caused
by both human activities and climate change [9]. The mean annual precipitation in the
northern and western parts of the QTP (the elevations ranged from 4400–4800 m) was less
than 450 mm, with an increase of inter-annual variability towards the west [2,10]. Grassland
suffered from co-limitation of summer rainfall and nutrient shortage [10,50–53]. The types
of grassland were diverse, but the species richness was low [10,15]. Hence, the ten distinct
plant communities were described in this area [2]. The grassland is dominated by KP
community in closed lawns with covers of 98%, and companion species less than 10 [10,43].

Our study area is located at the eastern edge of the QTP (including three counties),
the mean elevation is 3758 m (Figure 1c) and mean annual precipitation ≥ 450 mm. The
alpine meadow in study area consists of four types of vegetation communities, including
(a) the Poaceae community (Elymus nutans + Stipa silena + Festuca ovina), (b) the Kobresia
humilis community, (c) the Kobresia pygmaea community (KP), and (d) the denuded black
soil ecosystem. Those communities consist of more than 40 species, with mosaics of KP
community patches and grasses, other sedges and perennial forbs growing as rosettes
and cushions [54,55]. Overgrazing is the main inducing factor for grassland vegetation
community variation [5,10,56], but effect of climate still cannot be eliminated. Although
we have mapped the distribution of KP community, the relative contributions from cli-
matic and anthropogenic forces require further investigation. The main effect factor can
be distinguished by combining the potential distribution based on the ecological niche
model [57] and realistic distribution based on remote sensing, which is very important for
alpine meadow protection.

4.2. Challenges and Prospects for Alpine Meadow Grass Communities Classification
4.2.1. Field Observation

KP community plays a vital role in alpine meadow degradation succession in QTP.
However, its spatial distribution is difficult to map: on the one hand, the field observation
data is lacking; on the other hand, the distribution of the KP community is under a
dynamic variation with different disturbances [5,43]. The massive field observation is
the basis of RS classification for grassland community. Traditional grassland vegetation
community samples were obtained with the few field investigation, expert knowledge and
literature reviews [11–14,58]. Field observation is mainly carried out at quadrat, plot and
belt transection scales [15,59,60]. Due to the complex distribution of grassland vegetation
communities, the field investigation is difficult and time-consuming. Meanwhile, the expert
knowledge and literature reviews cannot meet the accuracy requirement of classification,
because of the subjective bias, the dynamic climate and anthropogenic activities [15,61].

In this study, the field observation was performed by UAV based on FragMAP [14].
The resolution of each aerial photo is ~0.87 cm and covers ~35 × 26 m of ground at the
height of 20 m, which is close to the traditional ground observation plot [25,62]. Moreover,
the UAV is efficient and easy to operate (about 15 min to finish each observation site),
which provides the possibility for rapid observation in large regions [24]. Most importantly,
the waypoints, once established, can be repeatedly used (the error of two flights of the
same waypoint is 1–2 m, and two photos on the same waypoint from two different flights
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are almost overlapped). It is suitable to monitor the dynamic variation of grassland
communities in a long-term period [25,62].

Limited by the UAV control range and battery life, the size of ROI was only 250 × 250 m,
and the proportion of image raster used for training classification is relatively small. Be-
sides, most of field observation sites were located in the flat area, which was near major
traffic roads. Therefore, the spatial distribution of KP community still had some uncer-
tainty in other regions of the study area. Moreover, the vegetation communities were
distinguished by manual visual interpretation, and it requires good knowledge of plant tax-
onomy and time-consuming. Hence, the automatic identification of vegetation community
based on aerial photograph and deep learning algorithm requires further exploration.

4.2.2. Classification Variables

NDVI, NDWI and SAVI have been commonly used as the classification variables
for grassland classification [20,33,59]. The vertical variation of grassland vegetation is
significantly changed with topographic features in the QTP [63], hence, topographical factor
is an important classification basis in alpine vegetation communities classification [64].
Additionally, texture features are also essential variables in object-based classification,
which usually reflect local spatial information relating to the change of image tone [16,17].
The common method in texture feature extraction is the grey level co-occurrence matrix
(GLCM). The texture metric includes angular second moment, contrast correlation, entropy,
homogeneity, difference, average and standard degrees [18]. Incorporating texture feature
information usually enhances the recognition of “the same object with different spectrum”
or “the different object with same spectrum” [16–18].

Our results showed that, the threshold range of these RS indices for identifying the
alpine meadow communities are commonly confused during extraction and identification.
According to the descriptive statistical value of those RS indices corresponding to the four
alpine meadow grass communities, the threshold range of KH was close to KP, and that
of Poaceae was close to BS among the NDVI, NDWI and SAVI (Figure 6a–c). Although
four grass communities could be distinguished in topography and texture metrics, there
were relatively few differences and large errors (with little difference in mean values and
wide range in variation) (Figure 6d–i). Therefore, it was difficult to distinguish the alpine
meadow grass communities based on single variable and simple combinations [33–35]. RS
classification accuracy can be improved by combining the RS, topographic and texture
indices (Tables 3 and 4).

Due to large errors in spatial quantification of some variables (such as texture indices),
the classification still has some limitations and uncertainties [29]. Hence, we consider
using high spatiotemporal resolution images in future research, such as the Sentinel- 2A/B
satellite images, to reduce the effects of spatial heterogeneity on spectral reflectance and
acquire more detailed texture features. Secondly, screening and reconstructing the remote
sensing vegetation index: combining existing vegetation index, screening out indices that
are more suitable for alpine meadow vegetation community classification.

4.2.3. Classification Method

Limited by the low temporal-spatial resolution, few spectrum band of RS images and
field observations, most of natural grassland classification were applied in land use types
(such as non-grassland, grassland, woodland, etc.) [33], different biophysics characteristics
(for example, grassland with high, medium and low coverage) [34] and types with differ-
ent climatic zones (e.g., groups and types of grassland) [35]. The most frequently used
classification methods are visual interpretation, maximum likelihood classifiers, k-nearest
neighbor and decision tree classification, and so on [65–67]. With the development of clas-
sification methods, the machine learning algorithm has obvious advantages in RS image
classification [28,29]. However, the previous grassland classifications have been done at
the vegetation type level, and few at the community level [8,9].
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Figure 6. Characteristics of RS indices (a–c), topography (d–f) and texture metrics (g–i) in eight types of land covers:
Poaceae, KH, KP and BS represent Elymus nutans + Stipa silena + Festuca ovina, Kobresia humilis, Kobresia pygmaea and black
soil type, respectively.

Referenced with previously classification methods [20,58,68,69], the ANN, AVM and
RF were used to distinguish the alpine meadow grass communities based on RS, texture
and topographic indices in the QTP. Our results demonstrated that the RF algorithm had
higher overall accuracy than other algorithms by using the same training samples (with
74.06% to 83.92%). Compared with other methods, RF is a data-driven algorithm. With the
increase of input dataset, classification accuracy is improved correspondingly [66,70,71].
The RF algorithm can estimate complex nonlinear relationship and all the quantitative
and qualitative information distributed within the models better; thus, these models are
robust and fault-tolerant [69,70]. Moreover, the input classification indices can be acquired
by different multi-spectral remote sensing images, and it helps to integrate multi-source
remote sensing data [66,70,71]. However, it is difficult to train the RF model effectively
with a small sample dataset. RF algorithm composes a large sample decision tree, and
classification is performed based on the voting results of each decision tree, thus, has a
strong tolerance for data error [40,41]. Constructing decision trees consumes more time
while performing random forest classification [70].
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5. Conclusions

Based on the band spectral, vegetation indices, texture feature of GaoFen 1/6 wide
field view images, topographic indices and UAV field observation, this study examined
four classification methods and evaluated their accuracy. Our results showed that the
characteristics of RS indices in alpine meadow vegetation communities were very similar,
and it was difficult to distinguish the alpine meadow grass communities based on single
variable or simple combinations. The KP community could be distinguished through the
RF method based on combination of RS, texture and topographic indices. The spatial
distribution of KP community was fragmented with large spatial heterogeneity and small
area in three counties. The area was 1434.07 km2, which accounted for 7.20% of the whole
study area. Our study demonstrated it was feasible to map at the community level using
the satellite remote sensing, UAV surveying and machine learning methods. In future work,
more detailed texture features derived from the high spatiotemporal resolution images are
required to improve the grassland vegetation community classification.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13132483/s1. Figure S1: Aerial photographs of alpine meadow vegetation communities. a, b,
c and d were photographs taken at the height of 2 m. e, f, g and h were photographs taken at a height
of 0.5 m; Poaceae, KH, KP and BS represent communities of Elymus nutans + Stipa silena + Festuca
ovina, Kobresia humilis, Kobresia pygmaea and black soil type, respectively. Figure S2: Statistical
analysis results of band1 to band8 of GF1/GF6 images; Poaceae, KH, KP and BS represent Elymus
nutans + Stipa silena + Festuca ovina, Kobresia humilis, Kobresia pygmaea and black soil type,
respectively. Figure S3: Statistical analysis results of texture indices of GF1/GF6 images; Poaceae,
KH, KP and BS represent Elymus nutans + Stipa silena + Festuca ovina, Kobresia humilis, Kobresia
pygmaea and black soil type, respectively. Figure S4: Statistical analysis results of vegetation and
topography indices of GF1/GF6 images; Poaceae, KH, KP and BS represent Elymus nutans + Stipa
silena + Festuca ovina, Kobresia humilis, Kobresia pygmaea and black soil type, respectively.
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