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Abstract: In precision agriculture, efficient fertilization is one of the most important pursued goals.
Vegetation spectral profiles and the corresponding spectral parameters are usually employed for
vegetation growth status indication, i.e., vegetation classification, bio-chemical content mapping,
and efficient fertilization guiding. In view of the fact that the spectrometer works by relying on
ambient lighting condition, hyperspectral/multi-spectral LiDAR (HSL/MSL) was invented to collect
the spectral profiles actively. However, most of the HSL/MSL works with the wavelength specially
selected for specific applications. For precision agriculture applications, a more feasible HSL capable
of collecting spectral profiles at wide-range spectral wavelength is necessary to extract various
spectral parameters. Inspired by this, in this paper, we developed a hyperspectral LiDAR (HSL) with
10 nm spectral resolution covering 500~1000 nm. Different vegetation leaf samples were scanned
by the HSL, and it was comprehensively assessed for wide-range wavelength spectral profiles
acquirement, spectral parameters extraction, vegetation classification, and the laser incident angle
effect. Specifically, three experiments were carried out: (1) spectral profiles results were compared
with that from a SVC spectrometer (HR-1024, Spectra Vista Corporation); (2) the extracted spectral
parameters from the HSL were assessed, and they were employed as the input features of a support
vector machine (SVM) classifier with multiple labels to classify the vegetation; (3) in view of the
influence of the laser incident angle on the HSL reflected laser intensities, we analyzed the laser
incident angle effect on the spectral parameters values. The experimental results demonstrated the
developed HSL was more feasible for acquiring spectral profiles with wide-range wavelength, and
spectral parameters and vegetation classification results also indicated its great potentials in precision
agriculture application.

Keywords: precision agriculture; hyperspectral LiDAR; vegetation; incident angle

1. Introduction

Precision agriculture, also known as precision farming, refers to the utilization of
modern information technology for intensive farming. The goal of precision agriculture
research for this purpose is to optimize the return on investment while preserving re-
sources. Precision agriculture can improve the production efficiency of field operations and
reduce the pollution of agriculture to the environment. Spectral profiles collected using
a spectrometer have been widely employed by the scientists in precision agriculture for
vegetation growth status indication, vegetation classification, etc. [1,2]. With fine spectral
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resolution and coverage, collected spectral information is sufficient for many vegetation
applications in precision agriculture, e.g., spectral indexes extraction, water content es-
timation, chlorophyll content estimation, and vegetation “red edge” detection [3–5]. By
its nature, different vegetation has different biological structures that contribute to their
unique spectral profiles [6–8]. Precise measuring and mapping of these contents are of
great significance in precision agriculture, e.g., estimating the vegetation growth status or
the three-dimensional distribution of these vegetation contents could guide and guarantee
more efficient fertilization and pesticide spraying [6,7]. However, the traditional passive
spectrometer is sensitive to environmental lighting conditions [6–8]. Restricted by this
flaw, actively acquiring spectral profiles has been the research hotspot in the community;
additionally, it is difficult to extract spatial information directly from the spectral imaging
results. It is of great importance to develop active methods for collecting spectral profiles
and spatial information [6–8].

Hyperspectral LiDAR (HSL) is a cutting-edge instrument to actively collect the spec-
tral information with spatial measurements. HSL combines the two complementary func-
tions (spatial and spectral information collecting) into a single framework and produces
point clouds accompanying spectral profiles. HSL emits a laser pulse with a ultraw-
ide spectral range, and the spectral data is extracted from the intensity of the reflected
laser pulses while the spatial information is calculated by counting the time of flight
between the transmitted laser pulse and the received pulse [7–11]. During recent years,
researchers have endeavored to develop multispectral laser scanning (MLS) for vegetation
remote sensing applications; an instant method is to combine several monochromatic
laser sources working at different spectral wavelengths together, and a laser combiner
can be employed to guarantee the laser beam combination. With this operation, the laser
beams from the MLSs are pointed to the same part of the target at the same incident
angle and transmitting distance [7–11]. However, it is problematic to combine too many
single wavelength laser sources for extending the spectral bands coverage and spectral
resolution. Most of the MLSs are specially designed for specific applications, and they
work at the selected wavelength. Meanwhile, more laser sources mean more hardware
cost, a more complex optic system, higher power consumption, and bulky size. Some
efforts have been devoted to exploring the MLS in vegetation remote sensing applications,
i.e., quantify the vegetation nutrition contents, tree classification, etc. [10,11]. These ef-
forts preliminarily demonstrate that the LiDAR with multiple wavelengths is feasible for
a vegetation remote sensing application. However, the MLSs have low spectral resolu-
tion and restricted spectral bands. These MLSs are not capable of acquiring abundant
spectral profiles comparable to that from the spectrometer. The spectral bands should
be optimized in advance and designed for particular vegetation spectral indexes deter-
mination, which lacks the scalability and versatility of precision agriculture application.
Motivated by this problem, another HSL architecture employing a supercontinuum laser
(SC) as the laser source is a more practical solution for developing HSL with wider spec-
tral coverage and finer spectral resolution [12–14]. In the SC-based HSL, SC source is
usually capable of transmitting a laser beam with the spectral wavelength covering approx-
imately 450~2500 nm. With a properly designed optical system and reflected laser-pulses-
detection system, it is feasible to develop HSL with better spectral resolution and wider
spectral coverage.

Due to the availability of the commercial SC source, the HSL concept was firstly set
up, prototyped, and tested by scientists from the Finnish Geospatial Research Institute
(FGI) in 2007 [14]. Based on this, in 2010, a two-channel LiDAR (600 nm and 800 nm)
based on the SC source was constructed utilizing commercial components [15]. In ad-
dition, normalized difference vegetation index (NDVI) parameters for Norway spruce
were calculated and presented with the two-channel laser-reflected spectral measurements,
and the potential of using NDVI in Norway spruce plant classification was firstly inves-
tigated and evaluated. In 2012, a full-waveform hyperspectral LiDAR was assembled
by researchers from FGI. The novel instrument was able to generate 3D point clouds
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accompanying eight-channel spectral backscattered reflectance data [16]. With this in-
strument, both geometry and spectral information was obtained concurrently, which had
great potential for extending the scope of imaging spectroscopy into spectral 3D sens-
ing [16]. In 2013, researchers investigated the classification of spruce and pine trees using
this eight-channel HSL [17]. Later, in 2016, a 32-channel hyperspectral full-waveform
LiDAR covering 400–1000 nm was first presented by Li. [18]. With the spectral channels
increasing, the HSL was employed for vegetation biochemical contents. However, the
spectral channels and bands were selected in advance for some biochemical contents’ esti-
mation. In 2018, researchers from the Academy of Optoelectronic (AOE), China Academy
of Sciences extended the spectral band from visible spectrum (VIS) to shortwave infrared
spectrum SWIR [19]. The HSL covering 500~1500 nm with 17 channels was employed
in ore classification and obtained satisfying classification results due to more spectral
channels deployment.

In 2018, with the aim to enhance the HSL spectral resolution, a liquid crystal tunable
filter (LCTF) was employed in the HSL (LCTF-HSL) for selecting and filtering the passing
laser beam with 10 nm spectral resolution [20,21]. With finer spectral resolution, the LCTF-
HSL was utilized to extract vegetation “red edge” (RE) parameters [21]. However, the
LCTF working spectral range limited the spectral coverage of the HSL. Another wavelength
filter Acousto-Optic Tunable Filter (AOTF) with quicker response and broader spectral
range was employed for filtering the spectrum of the ultra-wideband laser beam instead
of the LCTF in the HSL. AOTF-HSL was able to cover the spectral range from 500 nm to
1000 nm with a 10 nm resolution, which met the demand for extracting various spectral
parameters [22–24]. Apart from the improvement in spectral resolution and the band
coverage; recently, a portable HSL was presented and employed in underground mining
application [25]. A pulse digitizing scheme in this design was improved, and size was
reduced [25]. Summary of the SC source-based HSL development in terms of spectral
range and resolution is listed in the following Table 1.

Table 1. Supercontinuum laser HSL development.

Year Spectral Range Channels Reference

2007 \ 1 [14]

2010 600~800 nm 2 [15]

2012 500~1000 nm 8 [16]

2016 400~1000 nm 32 (16 nm spectral resolution) [18]

2018 500~1600 nm 17 [19]

2018 550~720 nm 18 (10 nm spectral resolution) [21]

2019 500~1000 nm 51 (10 nm spectral resolution) [22]

2019 650~1100 nm 91(5 nm Spectral Resolution) [24]

Compared with conventional spectrometer, most the HSLs have limited spectral
bands and channels, which is insufficient for precision agriculture application. With the
aim to provide a more practical HSL to satisfy the demands of the precision agriculture in
acquiring abundant spectral profiles, this paper aims to reveal a feasible HSL design with
wide spectral coverage and fine spectral resolution; additionally, the HSL performance
was assessed with three different experiments: spectral profiles acquirement, spectral
parameters extraction, and vegetation classification. The contributions of this paper could
be summarized as:

(1) for the demand of the vegetation spectral profiles and spectral parameters acquire-
ment in precision agriculture, we presented a practical HSL design; spectral profiles
with 10 nm spectral resolution covering 500~1000 nm were acquired; and the spectral
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parameters widely used in precision agriculture for vegetation status monitoring
were extracted and assessed.

(2) for the demand of vegetation classification in precision agriculture, based on spec-
tral parameters results, the vegetation sample leaves classification results using the
spectral parameters as the input features of a designed support vector machine (SVM)
classifier with multiple labels were presented, and the feasibility was assessed.

(3) in view of the HSL laser intensity related to the laser transmitting distance and
incident angle, the influence of the laser beam incident angle on the spectral parame-
ters calculation was analyzed; the results showed that the spectral parameters with
“(A − B)/(A + B)” and “A/B” were independent with the laser beam incident angle.

The paper is organized as follows: Section 2 presents a short and brief description
of the HSL design and the corresponding equations of the selected vegetation indexes;
Section 3 presents the laser beam radiation model and the analysis of the incident angle
on the several forms of the spectral indexes calculation; Section 4 presents the experimen-
tal setup, the results, analysis, and the comparisons; and the next sections include the
discussion, conclusions, and reference.

2. HSL Design and Vegetation Spectral Indexes
2.1. HSL Design

The system component and the working flow of the employed AOTF-HSL are pre-
sented in Figure 1; hardware prototype of the designed AOTF-HSL and the employed 2D
rotation platform are shown in Figure 2. The HSL is assembled with several indispensable
components, including the SC source, the wavelength selecting device or filtering compo-
nent, the optical system, the reflected laser pulse detection module, and the data sampling
and storing device. Specifications and particulars of these essential parts are given in detail
as follows:

(1) the first component is the laser source. In this HSL, the SC source is employed for
generating “white” laser pulse, and the spectral band ranges from approximately
450 nm to 2500 nm [22];

(2) the second component is the wavelength selecting or filtering device. After the laser
source emitting the supercontinuum laser beam, a wavelength selecting device is
installed after it for filtering the passing laser beam; in this HSL design, an AOTF is
utilized as the wavelength selection device, and more specifications or parameters
of the AOTF are available in our previously published paper [22]; additionally, after
the wavelength selecting operation, a collimator is employed for guaranteeing the
collimation of the laser beam;

(3) the third component is the optical system, which steers the laser beam to the target
and collects the reflected laser pulse from the target. The reflected pulse is detected
by a silicon-based avalanche photodiode (APD). The data are then sampled by a
connected high-speed oscilloscope (20 G per second), and the spectral reflectance is
derived from the collected raw reflected waveform signals.

In this HSL, the ranging information is acquired by counting the time difference
between the emitted laser pulse and the reflected laser pulse, and the spectral information
is then extracted from the intensity, which is the maximum value of the collected raw
waveforms [22]. Angular resolution of the HSL is 0.5 degree, the spectral resolution is
10 nm (500~1000 nm), and the range resolution is 3 cm (sampling frequency 5 GHz).
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2.2. Vegetation Indexes and Parameters

In view of the demand of indicating the vegetation growth status in the precision
agriculture, seven general vegetation spectral parameters related to different biochemical
contents are employed for evaluating the HSL capacity in vegetation parameters extraction,
specifically, the water index (WI), normalized difference vegetation index (NDVI), green
normalized difference vegetation index (GNDVI), vegetation terrestrial chlorophyll index
(TCI), normalized difference red edge index (NDREI), ratio vegetation index (RVI) and
fluorescence ratio index (FRI) [26–31]. Equations of these spectral parameters are given by:

(1) Water index
WI =ρ970/ρ900 (1)

where WI is sensitive to vegetation water content. The calculation is shown in the Equation (1).
ρ970 and ρ900 are the spectral reflectance values at the corresponding wavelengths [26,32].

(2) Normalized difference vegetation index (NDVI)

NDVI =
ρ800 − ρ600

ρ800 + ρ600
(2)
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where NDVI is an import indicator to reflect the vegetation growth and nutrition infor-
mation. This index is capable of indicating the crop’s demand for nitrogen. Equation (2)
presents the NDVI determination; the ρ800 and ρ600 are the spectral reflectance values
employed in the calculation [27].

(3) Green normalized difference vegetation index (GNDVI)

GNDVI =
ρ750 − ρ550

ρ750 + ρ550
(3)

where GNDVI is related to the leaf area index (LAI), and the equation is listed as Equation (3).
ρ750 and ρ550 are the spectral reflectance values [27].

(4) Vegetation terrestrial chlorophyll index (TCI)

TCI =
ρ753.75 − ρ708.75

ρ708.75 + ρ681.25
(4)

where TCI is sensitive to chlorophyll content; higher TCI value means more chlorophyll
content. The TCI calculation is as Equation (4); ρ750, ρ708.75 and ρ681.25 are the corresponding
reflectance values [28].

(5) Normalized difference red edge index (NDREI)

NDREI =
ρ750 − ρ705

ρ750 + ρ705
(5)

where NDREI is also related to the chlorophyll content in Equation (5); ρ750 and ρ705 are
the spectral reflectance values at 750 nm and 705 nm wavelength [29].

(6) Ratio vegetation index (RVI)

RVI =ρ870/ρ660 (6)

where RVI is also related to the nutrition elements in vegetation [30].
(7) Fluorescence ratio index (FRI)

FRI =ρ600/ρ690 (7)

where FRI is the related to photosynthesis and chlorophyll fluorescence [31].
Table 2 and Figure 3 summarize the corresponding spectral wavelength of the spectral

profiles employed in determining the vegetation spectral indexes. Figure 2 presents the
spectral wavelength distribution totally; spectral profiles from twelve different spectral
wavelengths covering 500–1000 nm are necessary for above vegetation spectral indexes
calculation. It is impractical to combine twelve different single wavelength laser sources
together to obtain the needed spectral profiles at a time. In addition, it is hard to guarantee
all the laser beams from different laser sources are pointing to the same part of the target.
The SC-based HSL is a more preferable and practical solution for this application.

Table 2. Vegetation parameters.

Vegetation Index Spectral Wavelength Element Reference

Water index 970 nm, 900 nm water [24]

NDVI 680 nm, 800 nm nutrition [25]

GNDVI 750 nm, 550 nm nutrition [25]

TCI 753.53 nm, 708.75 nm, 681.25 nm chlorophyll [26]

NDREI 750 nm, 705 nm chlorophyll [27]

RVI 870 nm, 660 nm nutrition [28]

FRI 600 nm, 690 nm chlorophyll [29]
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3. Laser Radiation Model

In the Section 2, equations of the spectral indexes are listed. However, for the HSL
laser-reflected intensities, they are related to the laser incident angle and the materials of
the target surface. Therefore, in this section, based on the laser intensity model, the spectral
indexes considering the laser incident angle are analyzed and presented. Section 3.1
presents the basic model of the laser intensity, and the Section 3.2 presents the analysis of
the spectral indexes considering the laser incident angle.

3.1. Laser Intensity Model

After reviewing the literatures [26,27], LiDAR intensity are influenced majorly by
laser-beam-transmitting distance, incident angle, and reflectively of the target surface.
Laser radiation model considering above factors is given by:

PRx =
PTxD2

r
4R2

π

Ω
ρcos(θ) (8)

where PRx denotes the received power of the reflected laser pulse, PTx denotes the power of
the transmitted laser pulse, R denotes the transmitting distance of the laser pulse, ρ denotes
the reflectivity, Ω denotes the solid scattering angle, Dr denotes the receiver aperture, βTx
denotes the transmitted laser beam bandwidth, and θ denotes the laser pulse incident angle
to the target surface.

3.2. Spectral Parameters Extraction Using Whiteboard as Reference

We divide these equations into three formulas: “(A − B)/(A + B)”, “A/B”, and “1/B”.

(a) Spectral Parameters with “(A − B)/(A + B)” formula

Spectral parameters (SP) with “(A − B)/(A + B)” style is written as:

SP1 =
ηλ1 − ηλ2

ηλ1 + ηλ2

(9)

where the ηλ1 and ηλ2 are the spectral profiles at the wavelength λ1 and λ2, respectively.
Assume that the laser intensities from the target and whiteboard at λi are PT

λi
and PW

λi
.

The HSL laser intensities (LI) measuring the target and the whiteboard can be written
as follows:

LIT
λ1

=
1
4

πPT
Tx,λ1

D2
λ1

ΩT
λ1

(
RT

λ1

)2 ρT
λ1

cos
(

θT
λ1

)
(10)
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LIT
λ2

=
1
4

πPT
Tx,λ2

D2
λ2

ΩT
λ2

(
RT

λ2

)2 ρT
λ2

cos
(

θT
λ2

)
(11)

LIW
λ1

=
1
4

πPW
Tx,λ1

D2
λ1

ΩT
λ1

(
RW

λ1

)2 ρW
λ1

cos
(

θW
λ1

)
(12)

LIW
λ2

=
1
4

πPW
Tx,λ2

D2
λ2

ΩT
λ2

(
RW

λ2

)2 ρW
λ2

cos
(

θW
λ2

)
(13)

where the superscript “T” means the measurements from the target, the superscript “W”
means the measurements from the whiteboard, the subscript λ1 and λ2 refers to the spectral
wavelength, and θ means the incident angle of the laser pulse. With above assumptions,
spectral profiles ηλ1 and ηλ2 can be written as:

η1 =
PT

λ1

PW
λ2

=

1
4

πPT
Tx,λ1

D2
λ1

ΩT
λ1

(
RT

λ1

)2 ρT
λ1

cos
(

θT
λ1

)
1
4

πPW
Tx,λ1

D2
λ1

ΩW
λ1

(
RW

λ1

)2 ρW
λ1

cos
(

θW
λ1

) (14)

η2 =
PT

λ2

PW
λ2

=

1
4

πPT
Tx,λ2

D2
λ2

ΩT
λ2

(
RW

λ2

)2 ρT
λ2

cos
(

θT
λ2

)
1
4

πPW
Tx,λ2

D2
λ2

ΩW
λ2

(
RW

λ2

)2 ρW
λ2

cos
(

θW
λ2

) (15)

Then, substituting the Equations (14) and (15) to the Equation (9), and Spectral Param-
eters with “(A − B)/(A + B)” formulas can be written as:

η1 − η2 =

1
4

πPT
Tx,λ1

D2
λ1

ΩT
λ1

(
RT

λ1

)2 ρT
λ1

cos
(

θT
λ1

)
1
4

πPW
Tx,λ1

D2
λ1

ΩW
λ1

(
RW

λ1

)2 ρW
λ1

cos
(

θW
λ1

) −
1
4

πPT
Tx,λ2

D2
λ2

ΩT
λ2

(
RT

λ2

)2 ρT
λ2

cos
(

θT
λ2

)
1
4

πPW
Tx,λ2

D2
λ2

ΩW
λ2

(
RW

λ2

)2 ρW
λ2

cos
(

θW
λ2

) (16)

η1 + η2 =

1
4

πPT
Tx,λ1

D2
λ1

ΩT
λ1

R2
λ1

ρT
λ1

cos
(

θT
λ1

)
1
4

πPW
Tx,λ1

D2
λ1

ΩW
λ1

(
RW

λ1

)2 ρW
λ1

cos
(

θW
λ1

) +

1
4

πPT
Tx,λ2

D2
λ2

ΩT
λ2

R2
λ2

ρT
λ2

cos
(

θT
λ2

)
1
4

πPW
Tx,λ2

D2
λ2

ΩW
λ2

(
RW

λ2

)2 ρW
λ2

cos
(

θW
λ2

) (17)
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In HSL, θT
λ1

= θT
λ2

and θW
λ1

= θW
λ2

are established, and the SP1 calculation can be
written as:

SP1
WB =

η1 − η2

η1 + η2
=

PT
Tx,λ1

D2
λ1

ΩT
λ1

(
RT

λ1

)2 ρT
λ1

PW
Tx,λ1

D2
λ1

ΩW
λ1

(
RW

λ1

)2 ρW
λ1

−

PT
Tx,λ2

D2
λ2

ΩT
λ2

(
RT

λ2

)2 ρT
λ2

PW
Tx,λ600

D2
λ2

ΩW
λ2

(
RW

λ2

)2 ρW
λ2

PT
Tx,λ1

D2
λ1

ΩT
λ1

R2
λ1

ρT
λ1

PW
Tx,λ1

D2
λ1

ΩW
λ1

(
RW

λ1

)2 ρW
λ1

+

PT
Tx,λ2

D2
λ2

ΩT
λ2

R2
λ2

ρT
λ2

PW
Tx,λ2

D2
λ2

ΩW
λ2

(
RW

λ2

)2 ρW
λ2

(18)

(b) Spectral Parameters with “A/B” formulas

Spectral parameter (SP) with “A/B” style is written as:

SP2 =
η1

η2
(19)

Substituting the Equations (14) and (15) to the Equation (19), the spectral parameters
with “A/B” style is written as:

SP2 = η1/η2 =


PT

Tx,λ1
D2

λ1

ΩT
λ1

R2
λ1

ρT
λ1

cos
(

θT
λ1

)
PW

Tx,λ1
D2

λ1

ΩT
λ1

R2
λ1

ρW
λ1

cos
(

θW
λ1

)
/


PT

Tx,λ2
D2

λ2

ΩT
λ2

R2
λ2

ρT
λ2

cos
(

θT
λ2

)
PW

Tx,λ2
D2

λ2

ΩT
λ2

R2
λ2

ρW
λ2

cos
(

θW
λ2

)
 (20)

Similarly, in HSL, θT
λ1

= θT
λ2

and θW
λ1

= θW
λ2

are established, and the SP2 calculation can
be written as:

SP2 = η1/η2 =


PT

Tx,λ1
D2

λ1

ΩT
λ1

R2
λ1

ρT
λ1

PW
Tx,λ1

D2
λ1

ΩT
λ1

R2
λ1

ρW
λ1

/


PT

Tx,λ2
D2

λ2

ΩT
λ2

R2
λ2

ρT
λ2

PW
Tx,λ2

D2
λ2

ΩT
λ2

R2
λ2

ρW
λ2

 (21)

4. Results

In view of the demands of the precision agriculture, three experiments were carried
out in this section for assessing the HSL-based spectral profiles acquirement, spectral
parameters extraction, and vegetation classification. In the first experiments, two different
plants, Dracaena (Dracaena angustifolia) and Aloe (Aloe arborescens Mill) with both green
and yellow leaves, and another two different plants, Rubber tree (Ficus elastica Roxb. ex
Hornem) and Radermachera (Radermachera hainanensis Merr) with only green leaves,
were measured by the AOTF-HSL (plants employed in this experiment are the same as
that in our previous paper; the figures of these plants can be found in the literature [22]).
The experiments were carried out indoors under controlled environment for collecting
the spectral profiles. The plant was placed approximately 17 m in front of the HSL.
Since the spectral pulse intensity was related to the incident angle, the laser pulse was
perpendicularly pointed to the surface of the vegetation leaves. Apart from the AOTF-
HSL, a passive SVC spectrometer (SVC HR-1024) was employed for acquiring the spectral
profiles of the above four different plants. The extracted vegetation spectral indexes from
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the HSL were compared with that from a passive SVC spectrometer for evaluating the
difference, which aimed to assess the feasibility of using HSL to extract the above spectral
indexes; then, the results of the green and yellow leaves were compared for validating
the differences of the selected vegetation spectral indexes, which could demonstrate the
effectiveness of the HSL in vegetation growth status indication and vegetation physiological
changes detection.

In addition, in the second experiment, another sixteen different leaves were also
measured by the AOTF-HSL. A multi-label SVM was designed and employed to classify
the leaves. Based on the assessing results of the vegetation parameters, six different spectral
parameters were calculated and utilized as the input features of the SVM classifier. The
classification results were presented, analyzed, and discussed for demonstrating the great
AOTF-HSL potential in vegetation classification and mapping.

Finally, in the third experiment, Fraxinus velutina, Eucommia ulmoides, and Prunus
triloba Lindl green leaves and Fraxinus velutina yellow leaf were measured by the HSL
and an ASD FieldSpec 4 spectrometer (ASD© FieldSpec 4). The spectral profiles from
the spectrometer were employed as the reference to evaluate the results from the HSL.
These leaves were measurement by the HSL at different incident angles (0◦, 10◦, 20◦,
30◦, 40◦, 50◦, 60◦, 70◦, and 80◦). The laser pulse incident angle was set by a compass.
Distance information and spectral information were obtained at different incident angles.
Normalized difference vegetation index (NDVI) and water index (WI) were employed as
the representative parameters of the “(A − B)/(A + B)” and “A/B” styles. NDVI and WI
results were calculated using the spectral profiles collected at different incident angles.

4.1. Experiment #01—Spectral Indexed Results Comparison
4.1.1. Green Leaf Results

WI extraction results for the employed four different plants with green leaves are
presented in Table 3. It was notable that all the WI values of the four different green leaves
were all below one, and the differences between HSL and SVC spectrometer results were
all below 5%. Besides, the difference equation was as the following Equation (11):

difference =
(IndexHSL − IndexSVC)

IndexHSL
× 100% (22)

where the IndexHSL was the extracted parameters from the HSL measurements, and the
IndexSVC was the corresponding parameters from the SVC spectrometer spectral profiles.

Table 3. Spectral indexes results comparison.

Parameters HSL SVC Difference

WI

Dracaena Green Leaf 0.99 0.95 4.04%
Aloe Green Leaf 0.84 0.83 1.19%

Rubber Tree Green Leaf 0.91 0.92 −1.10%
Radermachera Green Leaf 0.96 0.97 −1.04%

NDVI

Dracaena Green Leaf 0.83 0.83 0.1%
Aloe Green Leaf 0.89 0.93 −3.8%

Rubber Tree Green Leaf 0.88 0.90 −1.9%
Radermachera Green Leaf 0.89 0.86 2.7%

GNDVI

Dracaena Green Leaf 0.62 0.66 −6.6%
Aloe Green Leaf 0.82 0.74 10.1%

Rubber Tree Green Leaf 0.86 0.88 −2.2%
Radermachera Green Leaf 0.69 0.69 0.8%
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Table 3. Cont.

Parameters HSL SVC Difference

TCI

Dracaena Green Leaf 1.87 2.56 −36.8%
Aloe Green Leaf 2.64 2.69 −1.9%

Rubber Tree Green Leaf 4.93 6.54 −32.7%
Radermachera Green Leaf 1.82 2.25 −23.7%

NDREI

Dracaena Green Leaf 0.48 0.54 −12.5%
Aloe Green Leaf 0.63 0.62 1.6%

Rubber Tree Green Leaf 0.72 0.79 −9.7%
Radermachera Green Leaf 0.56 0.56 0.0%

RVI

Dracaena Green Leaf 9.27 11.60 −25.2%
Aloe Green Leaf 11.23 27.66 146.3%

Rubber Tree Green Leaf 16.36 23.62 44.4%
Radermachera Green Leaf 15.85 14.70 7.3%

FRI

Dracaena Green Leaf 1.39 1.05 24.1%
Aloe Green Leaf 1.40 1.23 12.2%

Rubber Tree Green Leaf 1.02 0.76 −25.5%
Radermachera Green Leaf 1.35 1.08 20.0%

We could observe that the NDVI from HSL and SVC spectrometer performed quite
similarly with the results listed in Table 3. The Dracaena green leaf difference was below
1%, which was the minimum difference among the four green leaves. By contrast, the Aloe
green leaf had the maximum difference, and the difference value was 3.8%. In aspects of
the GNDVI results, the Dracaena and Aloe green leaves’ difference were more significant
than 5%. The Rubber plant and Radermachera green leaves’ difference between HSL and
SVC spectrometer were all below 5%.

By comparing the results difference between NDVI and GNDVI, the GNDVI yielded a
slightly bigger difference. Through analyzing the NDVI and GNDVI calculation equations
(Equations (2) and (3)) and the spectral profiles plotted in Figure 4, we observed that the
spectral reflectance at 750 nm derived from the HSL on Aloe green leaf of the HSL was
larger than that of SVC, while they had similar reflectance at 550 nm. This accounted for
the phenomenon that Aloe green leaf yielded a larger difference in NDVI and GNDVI
parameter extraction.
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The rest of the four parameters, TCI, NDREI, RVI, and FRI, were related to the
vegetation biochemical and biological contents. TCI, NDREI, RVI, and FRI from HSL
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and SVC spectrometer spectral profiles are listed in Table 3. It could be observed that the
HSL and SVC yielded more significant differences compared with previous WI, NDVI, and
GNDVI parameters results.

For the Dracaena green leaf, the difference of the TCI, NDERI, RVI, and FRI was
larger; only NDERI was below 20%. As listed in Section 2, the spectral profiles covering
500~700 nm were included in the calculation of the TCI, NDERI, RVI, and FRI values, and
the reflectance values from HSL and SVC were slightly different. The spectral profiles
comparison is shown in Figure 4a,b. As presented in these figures, compared with the
spectral profiles of 700~1000 nm, the 500~700 nm spectral reflectance was quite different.

In aspects of Aloe green leaf results, the RVI parameters from HSL and SVC show
clear difference. As plotted in Figure 5b, the reflectance values (500~700 nm) from HSL and
SVC were different, and HSL spectral values were larger than SVC. Especially different was
the spectral profiles’ difference at the wavelength at 660 nm (marked with a pink rectangle
in Figure 5b); this would affect the RVI index determination results.
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From the presented Rubber tree’s and the Radermachers’s spectral curves in Figures 6 and 7,
we could observe that the results were also affected by the difference of the 500~700 nm
spectral profiles reflectance. Among them, the Radermachera yielded the best similarity in
the 500~700 nm spectral reflectance values between HSL and SVC.
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4.1.2. Yellow Leaf Results Analysis

Previously, Section 3.1 listed the green leaves’ results of these vegetation spectral
indexes, and the following Table 4 shows the results from the Dracaena yellow leaf and
the Aloe yellow leaf. Additionally, the green leaves’ results are listed in the Table 4 for
comparison. Among the yellow leaves results, the difference was unsatisfactory apart from
the Dracaena yellow leaf WI and RVI index results. The spectral profiles from the HSL and
SVC spectrometer are presented in Figures 8 and 9. Compared with green leaf results, the
curves were relatively distinctive due to the fact that the HSL laser pulse footprint diameter
was approximately 1 cm on the target with these settings. The sampled area on the yellow
leaves had huge difference between two apparatuses; this might also be the reason that the
spectral profiles collected by the HSL were steeper at red edge, as shown in Figures 8 and 9.
Furthermore, the yellow leaves had uneven distributions of the biochemical and biological
contents in the covered area of the footprint.

Table 4. Spectral indexes results comparison.

Parameters HSL SVC Difference

WI

Dracaena Green Leaf 0.99 0.95 4.04%
Dracaena Yellow Leaf 1.02 1.00 1.96%

Aloe Green Leaf 0.84 0.83 1.19%
Aloe Yellow Leaf 0.96 0.97 −1.04%

NDVI

Dracaena Green Leaf 0.83 0.83 0.1%
Dracaena Yellow Leaf 0.35 0.08 77.8%

Aloe Green Leaf 0.89 0.93 −3.8%
Aloe Yellow Leaf 0.47 0.20 56.8%

GNDVI

Dracaena Green Leaf 0.62 0.66 −6.6%
Dracaena Yellow Leaf 0.35 0.15 57.0%

Aloe Green Leaf 0.82 0.74 10.1%
Aloe Yellow Leaf 0.52 0.44 15.7%

TCI

Dracaena Green Leaf 1.87 2.56 −36.8%
Dracaena Yellow Leaf 0.18 1.66 −822.2%

Aloe Green Leaf 2.64 2.69 −1.9%
Aloe Yellow Leaf 1.99 0.98 50.8%
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Table 4. Cont.

Parameters HSL SVC Difference

NDREI

Dracaena Green Leaf 0.48 0.54 −12.5%
Dracaena Yellow Leaf 0.05 0.03 40.0%

Aloe Green Leaf 0.63 0.62 1.6%
Aloe Yellow Leaf 0.31 0.12 61.3%

RVI

Dracaena Green Leaf 9.27 11.60 −25.2%
Dracaena Yellow Leaf 2.08 2.00 4.1%

Aloe Green Leaf 11.23 27.66 146.3%
Aloe Yellow Leaf 2.98 2.00 32.9%

FRI

Dracaena Green Leaf 1.39 1.05 24.1%
Dracaena Yellow Leaf 0.86 0.64 26.1%

Aloe Green Leaf 1.40 1.23 12.2%
Aloe Yellow Leaf 0.87 0.66 23.5%
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Through analyzing the difference of the parameters between green and yellow leaves,
the indexes demonstrated similar changing trends. For instance, the yellow leaf WI index
had a minor increase due to the lower water content in yellow leaves. The NDVI values
also performed a dramatic decrease since the yellow leaves had lower chlorophyll. The
similar changing trend could be observed from the results of other vegetation spectral
indexes. Results from the comparison between green and yellow were able to give positive
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support for the feasibility study of using the HSL in vegetation spectral indexes estimation,
determination, and growth status indicating.

4.2. Experiment #02—Vegetation Leaves Classification

Figure 10 presents an example of scanning the leaf with HSL. The red point was the
footprint of the HSL laser pulse. The collected spectral profiles of the sixteen different
leaves are presented in Figure 10; the spectral profiles plotted in Figure 11a included
the Chinese pine (Juniperus rigida), Ginkgo (Ginkgo biloba), Metasequoia (Metasequoia
glyptostroboides), hawthorn (Crataegus pinnatifida), Horse chestnut (Aesculus hippocas-
tanum), Toothes oak (Quercus), Platanus occidentalis, and Koelreuleria Paniculata. The
spectral profiles of the left eight different leaves in Figure 11b included Morusalba Tortuosa,
Catalpa speciose, Willow tree (Salix), Chinese scholartree (Styphnolobium japonicum),
Quercus dentate Thunb, liriodendron chinense (Chinese Tulip Tree), Eucommiaulmoides,
and Syringa reticulate var. mandshurica. Limited by the HSL working spectral coverage,
the spectral profiles presented in Figure 11 were sampled ranging from 650 nm to 1100 nm.
Another spectral parameter set (NDVI, SR, NDVI705, VOG, WI, and RVI) was extracted
and presented. SR, NDVI705, and VOG were the new parameters different from that
of the first experiment. The definitions and explanations were listed as the following
Equations (23)–(25).
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(1) Simple ratio Iidex (SR)

SR =
ρ800

ρ680
(23)

where ρ800 and ρ680 are the spectral reflectance of the wavelength 800 nm and 680 nm.
(2) Vogelmann index (VOG)

VOG =
ρ740

ρ720
(24)

where ρ740 and ρ720 are the spectral reflectance of the wavelength 800 nm and 680 nm.
(3) Normalized difference vegetation index (NDVI705)

NDYI705 =
(ρ750 − ρ705)

(ρ750 + ρ705)
(25)

Similarly, ρ750 and ρ705 are the spectral reflectance at 750 nm and 705 nm wavelength.
Table 5 presents the calculation results of the spectral indexes for these leaves. In this

experiment, each leaf was scanned by the HSL four times. The spectral profiles presented
in Figure 11 were the average values of the four-time measurements. Parameters results
listed in Table 5 were also calculated using the averaged spectral profiles measurements.
Figure 12 plots the parameters of the employed sixteen leaves. Basically, the parameters of
these leaves were distinctive, which indicated that these leaves were divisible using these
spectral parameters as the feature vector.

Table 5. Vegetation spectral indexes results.

NDVI SR NDVI705 VOG WI RVI

Chinese Pine 0.7894 8.4986 0.4244 1.4030 1.0949 6.2322
Ginkgo 0.6878 5.4058 0.3398 1.3400 1.0895 4.4384

Metasequoia 0.8727 0.3398 0.6886 2.2356 1.0659 9.7278
Hawthorn 0.8729 14.7369 0.5480 1.7484 1.2682 12.1753

Horse Chestnut 0.8746 14.9474 0.5605 1.8880 1.2745 11.6309
Toothes Oak 0.8341 11.0533 0.4868 1.4453 1.0875 8.1513

Platanus Occidentalis 0.7550 7.1632 0.5215 1.4672 1.0847 4.3583
Koelreuleria Paniculata 0.8820 15.9475 0.6260 1.9389 1.0860 10.2124

Morusalba Tortuosa 0.7434 6.7953 0.5333 1.5470 1.0794 5.1169
Catalpa Speciose 0.8306 10.8080 0.4168 1.5226 1.0530 7.4142

Willow Tree 0.8561 12.8985 0.5876 1.8701 1.1279 7.3945
Chinese Scholar Tree 0.8787 15.4825 0.6140 1.8646 1.0952 11.8217

Quercus Dentate Thunb 0.7941 8.7140 0.5606 1.8369 1.1223 4.7415
Liriodenfron Chinense 0.8147 9.9530 0.5541 1.4711 1.0468 6.5760
Eucommia Ulmoides 0.8042 9.2139 0.5498 1.9005 1.0627 6.1059

Syringa Reticulate Var. 0.7788 8.0398 0.5618 1.7679 1.0403 6.0578

As presented in Figure 12, different parameters are not in the same orders of magni-
tude. Therefore, before employing the parameters in the classification, the normalization
of the parameters is necessary. The normalized parameters of these leaves are plotted in
Figure 13. Compared with Figure 12, the parameters are more balanced. The feature vector
composed by the normalized six parameters is employed as the input vector of the SVM
classifier. Since we have sixteen different leaves, a SVM classifier with multiple labels was
designed and its structure is presented in Figure 14.

We scanned the leaves at different spectral wavelengths, and the spectral intensities
from these wavelengths were randomly selected to generate more samples for training
the classifier. For instance, we scanned these leaves at 750 nm eight times for each leaf;
then, we randomly selected one measurement from the eight, and the same operation was
conducted for other spectral wavelengths and leaf samples. Here, a training dataset was
randomly selected from the first 50% of the datasets and the testing dataset was selected
from the rest of the 50% of datasets. The training and testing dataset both contained
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1000 samples, which was randomly selected from the collected dataset. Table 6 lists the
classification accuracy of the sixteen leaves using the designed multi-label SVM classifier.
All the classification accuracies could reach 100% with the dataset. No SVM parameters
optimization was carried out; the multi-label SVM classifier was built on the default SVM
in MATLAB. The kernel function was revised from “linear” to “RBF”.
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Table 6. Vegetation parameters results.

Leaf Accuracy (%) Leaf Accuracy (%)

Chinese Pine 100% Morusalba Tortuosa 100%

Ginkgo 100% Catalpa Speciose 100%

Metasequoia 100% Willow Tree 100%

Hawthorn 100% Chinese Scholar Tree 100%

Horse Chestnut 100% Quercus Dentate Thunb 100%

Toothes Oak 100% Liriodenfron chinense 100%

Platanus Occidentalis 100% Eucommia Ulmoides 100%

Koelreuleria Paniculata 100% Syringa Reticulate Var. 100%

4.3. Experiment #03—Influence of the Incident Angle Analysis on Spectral Indexes Results

In this experiment, normalized difference vegetation index (NDVI) and water index
(WI) were employed as the representative parameters of the “(A − B)/(A + B)” and “A/B”
styles. NDVI and WI results of the Fraxinus velutina, Eucommia ulmoides, and Prunus triloba
Lindl green leaves and Fraxinus velutina yellow leaf are presented in the Figure 14. A 100%
whiteboard was employed as the reference to calculate these NDVI and WI results. As
analyzed in the Section 2.2, the incident angle had no influence on the NDVI and WI results.
In Figure 15, the incident angles were 0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, and 80◦. The
distance remained the same while measuring the whiteboard and these leaves. It could be
seen that the NDVI and WI values varied at a limited range, which demonstrated that the
incident angle almost had no influence on the NDVI and WI results.

As aforementioned, an ASD FieldSpec 4 spectrometer was employed to collect the
spectral profiles, which could be regarded as the reference. Figure 16 presents the difference
results between the spectral parameters from the HSL and spectrometer. In aspects of the
NDVI difference, Eucommia ulmoides and Prunus triloba Lindl green leaves and Fraxinus
velutina yellow leaf NDVI difference were smaller than 0.2 at all the selected incident angles.
In addition, the most of the WI difference results were smaller than 0.1.
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5. Discussion

Part of the green leaves’ results demonstrated distinctive differences between the HSL
and the SVC spectrometer (Table 3), i.e., the RVI of the Aloe green leaf. Difference of the
reflectance values (500~700 nm) from HSL and SVC brought about the larger difference
in the spectral indexes. We thought the following two reasons could be summarized to
account for why the spectral reflectance (500~700 nm) difference affected the green leaves
results to such a great extent.

(1) The first reason was that the vegetation yielded low reflectivity in the spectral
band 500~700 nm, and the small changes or difference would be relatively large
in proportion;

(2) The second reason was that the reflectance of 500~700 nm was employed as the
denominator for determining the parameters. For instance, the WI index demon-
strated high similarity since the employed spectral wavelength had high reflected
intensities; small difference or fluctuations in spectral reflectance was relatively
a small proportion; in fact, HSL and SVC yielded minor difference within the
700 nm~1000 nm spectral wavelength for the four green leaves, but the high reflectiv-
ity yielded a difference in just a small proportion and almost had no influence on the
parameters results.

As presented in the Figures 15 and 16, the NDVI and WI results were not exactly the
same; there were some fluctuations. We thought the following reasons might account for
this phenomenon:
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(1) The power of the received laser pulse was affected by many factors. In Figure 3, these
NDVI and WI results were calculated with the distance fixed and the incident angle
changed. As analyzed in Equations (18) and (21), some other factors also affected the
NDVI and WI results.

(2) The NDVI and WI results difference between the HSL and spectrometer varied at
different incident angles, which might be caused by the noises contained in the HSL
raw waveforms. Here, no de-noising or calibration operation conducted for the raw
HSL measurements was carried out.

Although the above work demonstrates the ability of the AOTF-HSL, we thought the
following limitations were worthy of further investigation:

(1) For the green leaves spectral profiles, we found that low reflectivity spectral bands
(500~700 nm) demonstrated comparatively different spectral reflectance values
(Figures 4b, 5b, 6b and 7b); these fluctuations of the AOTF-HSL spectral profiles af-
fected the difference; the fluctuations might be caused by the noise contained in the
raw measurements in the HSL. A filtering scheme (Gaussian fitting) or better HSL
setting-up might be effective for bettering the results.

(2) The HSL employed in this paper owned a 10 nm spectral resolution; it was compar-
atively better than previous HSL, but the spectral resolution of SVC spectrometer
was better than 10 nm, and the low spectral resolution partially accounted for the
AOTF-HSL spectral profiles fluctuations (Figures 4b, 5b, 6b and 7b); it was of great sig-
nificance for developing HSL with finer resolution, and it would bring new, interesting
results for vegetation spectral indexes determination.

(3) The spectral data in this experiment were collected at the fixed distance, and a proper
calibration method or solution was essential for calibrating the HSL while collecting
the spectral profiles with different distance and incident angles. In other words, the
incident angle effect on the HSL should be investigated.

(4) In this paper, the HSL just scanned one point for each leaf, and the laser beam
footprint was comparatively large. For 3D imaging of the vegetation spectral indexes
distribution, HSL with narrow field of view resulting in higher spatial resolution was
of great significance for extending the application.

(5) Based on this HSL, a classic multi-label SVM classifier was designed and employed
for tree leaves classification; a simple classifier could reach satisfactory classification
accuracy. We thought two major reasons might account for these phenomena: the
experiment was carried out in the lab with a controlled environment with almost
no external factors that could affect the HSL collecting the spectral profiles of the
leaves; the leaves employed in the experiment are all green leaves, which has uniform
distribution of the biological contents.

(6) Calibration of the HSL should be carried out and some intrinsic and extrinsic factors
should be modeled, which was helpful to improve the HSL measurements. There
must be noises contained in the HSL raw waveforms; appropriate de-noising methods
should be investigated.

6. Conclusions

This paper conducts a comprehensive assessment of the AOTF-HSL in vegetation spec-
tral indexes extraction and growth stratus indicating, which is of significance for extending
HSL applications in precision agriculture. The findings of this paper are summarized as:

(1) This paper presented a practical HSL design suitable for precision agriculture applications.
(2) The consistency of green leaves spectral indexes results extracted from both the SVC

and the HSL demonstrates that the AOTF-HSL with current settings was feasible and
executable for vegetation spectral profiles acquirement.

(3) This paper investigated the incident angle effect on the spectral indexes determination;
we found that the incident angle had no influence on the spectral parameters with
“(A − B)/(A + B)” and “A/B” styles.
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