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Abstract: Convolutional neural network (CNN)-based deep learning (DL) has a wide variety of
applications in the geospatial and remote sensing (RS) sciences, and consequently has been a focus
of many recent studies. However, a review of accuracy assessment methods used in recently
published RS DL studies, focusing on scene classification, object detection, semantic segmentation,
and instance segmentation, indicates that RS DL papers appear to follow an accuracy assessment
approach that diverges from that of traditional RS studies. Papers reporting on RS DL studies
have largely abandoned traditional RS accuracy assessment terminology; they rarely reported a
complete confusion matrix; and sampling designs and analysis protocols generally did not provide a
population-based confusion matrix, in which the table entries are estimates of the probabilities of
occurrence of the mapped landscape. These issues indicate the need for the RS community to develop
guidance on best practices for accuracy assessment for CNN-based DL thematic mapping and object
detection. As a first step in that process, we explore key issues, including the observation that accuracy
assessments should not be biased by the CNN-based training and inference processes that rely on
image chips. Furthermore, accuracy assessments should be consistent with prior recommendations
and standards in the field, should support the estimation of a population confusion matrix, and
should allow for assessment of model generalization. This paper draws from our review of the
RS DL literature and the rich record of traditional remote sensing accuracy assessment research
while considering the unique nature of CNN-based deep learning to propose accuracy assessment
best practices that use appropriate sampling methods, training and validation data partitioning,
assessment metrics, and reporting standards.

Keywords: accuracy assessment; thematic mapping; feature extraction; object detection; semantic
segmentation; instance segmentation; deep learning

1. Introduction

This paper is the second and final component in a series in which we explore accuracy
assessment methods used in remote sensing (RS) deep learning (DL) convolutional neural
networks (CNN) classification, focusing on scene classification, object detection, semantic
segmentation, and instance segmentation tasks. In Part 1 [1], we undertook a review of
100 randomly selected RS DL papers published in 2020 in eight remote sensing journals
(IEEE Geoscience and Remote Sensing Letters, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, Interna-
tional Journal of Remote Sensing, ISPRS Journal of Photogrammetry and Remote Sensing, Remote
Sensing, Remote Sensing Letters, and Remote Sensing of Environment). In that review, we found
that RS DL studies commonly use metrics and terminology from the computer vision and
DL literature, instead of those traditionally used in RS. For example, the class-specific
measures of recall and precision are commonly reported instead of the traditional RS equiv-
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alents of producer’s accuracy (PA) and user’s accuracy (UA). The terminology used is, in
many cases, inconsistent, with multiple names for similar or identical accuracy measures.
For example, we found five other terms sometimes used to describe recall. The studies
reviewed rarely reported a complete confusion matrix to describe classification error; and
when a confusion matrix was reported, the values for each entry in the table generally did
not represent estimation of population properties (i.e., represent a probabilistic sample of
the map). Some of these issues are not unique to RS DL studies; similar issues have been
noted regarding traditional RS classification accuracy assessment, for example by Foody [2]
and Stehman and Foody [3].

Building upon traditional RS accuracy assessment standards and practices, a litera-
ture review, and our own experiences, we argue that it is important to revisit accuracy
assessment rigor and reporting standards in the context of CNNs. In order to spur the
development of community consensus and further discussion, we therefore offer an initial
summary of recommendations and best practices for the assessment of DL products to
support research, algorithm comparison, and operational mapping. In the Background
section, we provide an overview of the types of mapping problems to which CNN-based
DL is applicable, review established standards and best practices in remote sensing, and
summarize current RS DL accuracy assessment approaches. The Recommendations and
Best Practices section outlines accuracy assessment issues related to RS DL classification,
focusing on issues related to partitioning the data, assessing generalization, assessment met-
rics, benchmark datasets, and reporting standards. We end with a discussion of outstanding
issues and challenges, along with our overall conclusions.

2. Background
2.1. CNN and RS Classification

Within geospatial science and RS, CNNs have been applied to a wide range of tasks
including classification, spatial predictive modeling, restoration and denoising, pan sharp-
ening, and cloud removal [4–8]. Within the overall task of CNN-based classification,
Figure 1 summarizes the four main types of applications. Scene classification is prediction
of the category or set of categories that describe an entire image, for example, that the
image belongs to the “developed” class (Figure 1a) [4,5,9]. No pixel-level classification
or localization is generated. In contrast, object detection includes localization, in which
a bounding box with an associated class label and probability is generated [4,5,10]. In
Figure 1b, each bounding box represents the location of a building. Semantic segmentation
produces a pixel-level classification, similar to that generated by traditional RS methods,
where each pixel is assigned to a thematic class, producing a wall-to-wall map (Figure 1c).
It is also possible to obtain the associated probabilities for each class for each pixel, infor-
mation that has applications in spatial probabilistic mapping and modeling [7,8,11]. Lastly,
instance segmentation incorporates both object detection and pixel-level classification, with
each unique instance of a class delineated, for example, each building in Figure 1d. The
potential outputs include bounding boxes, pixel-level masks, predicted classes, and class
probabilities [7,8,12,13]. Since the four problem types differ in their application and output,
some accuracy assessment best practices will be type-specific.

Table 1 provides some example DL architectures for different mapping problems. DL
classification is an active area of research, with new methods and augmented architectures
being developed, and thus the examples listed in the table are only a partial list. A full
discussion of these techniques can be found in the associated references.
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Figure 1. Example of different CNN-based mapping problem types. Example data are from the LandCover.ai dataset [14].
(a) scene classification, (b) object detection, (c) semantic segmentation and (d) instance segmentation.

Table 1. Example DL architectures for the four different types of mapping problems with associ-
ated references.

Group Examples Reference

Scene Classification
AlexNet
ResNet

Xception

[15]
[16]
[17]

Object Detection
Single Shot Detector (SSD)

Yolo v3
Faster R-CNN

[18]
[19]
[20]

Semantic Segmentation

SegNet
UNet

UNet++
DeepLab

DeepLabv3+

[21,22]
[23]

[24,25]
[26]
[27]

Instance Segmentation
DeepMask

Mask R-CNN
Boundary Preserving Mask R-CNN

[28]
[29,30]

[31]
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2.2. Traditional Remote Sensing Accuracy Assessment Standards and Best Practices

Decades of RS research and applied studies have yielded accuracy assessment stan-
dards and best practices that are generally applicable to a variety of mapping tasks, re-
gardless of the methods applied to obtain results [2,3,32–49]. One of the most important
principles is that accuracy should be assessed using randomized, unbiased testing samples
that do not overlap with the training samples [37,48]. Despite following the aforemen-
tioned recommendations, all datasets have inherent uncertainty and errors, hence the term
“ground truth” is usually regarded as misleading; instead, “validation”, “testing”, and
“reference” data are preferred terms. (The distinction between testing and validation data
will be discussed in Section 2.3.).

The primary accuracy assessment approach is a spatial overlay of the classification
results and testing data, the results of which are summarized on a per-class basis in a
table called the confusion matrix. Since the confusion matrix and associated metrics were
discussed in detail in Part 1 [1], and comprehensive additional resources are available,
for example Congalton and Green [48] and Stehman et al. [37], only a brief overview is
provided here.

The confusion matrix is the fundamental source for most derived measures, including
overall accuracy (OA), and class-level UA and PA. The goal of generating these accu-
racy measures is normally to describe the accuracy of map products that represent real
landscapes. If the class proportions in the confusion matrix do not reflect the landscape
proportions, the error measures derived from that matrix will not reflect the map prop-
erties. If a purely random sample is used to create testing samples, then the proportion
of samples in each class will be an unbiased estimate of the population properties of the
map. However, if other sampling methods are used, such as stratified random sampling,
analysis methods that take the sampling design into account should be used to estimate
the population proportions from the sample confusion matrix; see for example Stehman’s
work on this topic [43,50,51].

RS accuracy assessment remains an area of active research, and disagreements on
key accuracy assessment issues remain. For example, in geographic object-based image
analysis (GEOBIA), the varying size of image objects and associated assessment units has
resulted in arguments regarding the appropriate assessment units: pixels, image object
polygons, or groups of pixels [45,52–56]. Another area of accuracy assessment research is
how to deal with category definitions or transitions between categories that are inherently
fuzzy [33,57].

A particularly controversial issue in traditional RS accuracy assessment is the Kappa
statistic. Kappa is commonly included in traditional RS accuracy assessment [48], in part
because it supposedly provides an adjustment of OA for chance agreement and is robust
if class prevalence is imbalanced (i.e., the proportions of the landscape covered by the
different classes vary greatly in magnitude) [58]. However, multiple decades of research
showing that Kappa is not an unbiased correction of chance agreement, and that it is indeed
affected by class imbalance, has resulted in strong recommendations to discontinue the use
of Kappa in RS accuracy assessment [59,60].

2.3. RS DL Accuracy Assessment Background

As with all machine learning methods, CNN-based classification requires training
samples (Figure 2). However, because CNN models include information on spatial context,
the input data for CNN models are not individual pixels, as in traditional RS classification,
but instead, they are image subsets of a defined size (e.g., 128-by-128, 256-by-256, or 512-by-
512 pixels) [7–9,14]. These image subsets, usually called chips or patches, can be generated
prior to training and stored on disk, or rendered dynamically during the training process.
Since models are trained using image chips, inference also must be performed on individual
chips. After the individual chips are classified, they are then usually reassembled to a
single, contiguous dataset.



Remote Sens. 2021, 13, 2591 5 of 22Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 2. Conceptualization of DL workflow including chip generation, data partitioning, training, model assessment, and 
inference to new data. Example data are from the LandCover.ai dataset [14]. Database and hammer icons are from Font 
Awesome and made available under a CC by 4.0 license. 

CNN-based classifications normally require three sets of reference data, used respec-
tively for training, validation, and testing (Figure 2). The training data are used to empir-
ically determine the parameters of the network, including the spatial filters and weights 
of the connections. An epoch is one iteration over the entire training dataset. At the end 
of each epoch, model performance is assessed against the validation image chips, which 
were not used in training the model, to determine if additional iterations would poten-
tially be useful. The validation dataset provides an independent check for overfitting, a 
potential problem where the algorithm prioritizes the individual characteristics of the 
training data over the generalization needed for reliable classification of previously un-
seen samples. Once a final model is obtained, the testing dataset is used for the final accu-
racy assessment. [7,8,61–63]. Although this terminology of training, validation, and test-
ing is occasionally used in alternative ways, for example referring to the final testing as 
model validation (e.g., [64]), using these terms in their standard definitions, as indicated 
above, ensures clarity. 

For binary classification specifically, RS DL studies generally use different terms 
from those used in multi-class problems. However, these metrics are still generated from 
a confusion matrix. In a binary confusion matrix, the class of interest is referred to as the 
positive class and the background class as the negative class (Table 2). In a binary classi-
fication, four outcomes are possible. True positives (TP) and true negatives (TN) represent 
the correct classification of respectively the class of interest and the background. A false 
positive (FP) is the incorrect classification of the background class as the class of interest, 
whereas a false negative (FN) is the incorrect assignment of the class of interest to the 
background class. Depending on the nature of the classification, the values reported in the 
table can potentially represent the fundamental structural units of the dataset (typically 
pixels, but also occasionally other data structures such as voxels or points in a point cloud 
dataset), or objects delineated in the dataset. Sometimes the values tabulated represent 
raw counts, and sometimes they are listed as proportions of each class on the landscape. 

 

Figure 2. Conceptualization of DL workflow including chip generation, data partitioning, training, model assessment, and
inference to new data. Example data are from the LandCover.ai dataset [14]. Database and hammer icons are from Font
Awesome and made available under a CC by 4.0 license.

CNN-based classifications normally require three sets of reference data, used re-
spectively for training, validation, and testing (Figure 2). The training data are used to
empirically determine the parameters of the network, including the spatial filters and
weights of the connections. An epoch is one iteration over the entire training dataset. At
the end of each epoch, model performance is assessed against the validation image chips,
which were not used in training the model, to determine if additional iterations would
potentially be useful. The validation dataset provides an independent check for overfitting,
a potential problem where the algorithm prioritizes the individual characteristics of the
training data over the generalization needed for reliable classification of previously unseen
samples. Once a final model is obtained, the testing dataset is used for the final accuracy
assessment [7,8,61–63]. Although this terminology of training, validation, and testing is
occasionally used in alternative ways, for example referring to the final testing as model
validation (e.g., [64]), using these terms in their standard definitions, as indicated above,
ensures clarity.

For binary classification specifically, RS DL studies generally use different terms
from those used in multi-class problems. However, these metrics are still generated from
a confusion matrix. In a binary confusion matrix, the class of interest is referred to as
the positive class and the background class as the negative class (Table 2). In a binary
classification, four outcomes are possible. True positives (TP) and true negatives (TN)
represent the correct classification of respectively the class of interest and the background.
A false positive (FP) is the incorrect classification of the background class as the class of
interest, whereas a false negative (FN) is the incorrect assignment of the class of interest to
the background class. Depending on the nature of the classification, the values reported in
the table can potentially represent the fundamental structural units of the dataset (typically
pixels, but also occasionally other data structures such as voxels or points in a point cloud
dataset), or objects delineated in the dataset. Sometimes the values tabulated represent raw
counts, and sometimes they are listed as proportions of each class on the landscape.

The summary accuracy measures typically used for binary DL classifications tend
to use unique names for UA and PA for each of the positive and negative classes, with
recall and precision being the most commonly used measures (Table 3). Adding further
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complexity is that each of the metrics listed in Table 3 has additional names that are
sometimes used.

Table 2. The binary classification confusion matrix. TP = True Positive, TN = True Negative, FP =
False Positive, and FN = False Negative.

Reference Data

Positive Negative

Classification Result
Positive TP FP

Negative FN TN

Table 3. Binary assessment metrics and relationships to traditional accuracy assessment metrics.

Metric Equation Relation to Traditional RS Measures

Overall
Accuracy (OA)

TP+TN
TP+TN+FP+FN

Overall
Accuracy

Recall TP
TP+FN

PA for
positives

Precision TP
TP+FP

UA for
positives

Specificity TN
TN+FP

PA for
negatives

Negative
Predictive Value (NPV)

TN
TN+FN

UA for
negatives

The F1 score (Equation (1)) is an overall class statistic very commonly used in DL
studies and is usually described as the harmonic mean of precision and recall. However, it
is also useful to state the equation in terms of the confusion matrix components, using the
binary terminology defined in Table 2.

F1 Score =
2 × TP

2 × TP + FN + FP
(1)

Another summary statistic often used is the intersection-over-union (IoU) (Equa-
tion (2)) [65], which represents the area of intersection divided by the area of union of the
reference and predicted class.

IoU =
TP

TP + FN + FP
(2)

As is apparent from comparison of Equations (1) and (2), the F1 score and IoU are
strongly correlated. The only difference between the formulas for F1 and IoU is that
the latter gives twice the weighting to TP occurrences. When averaged over multiple
classes, IoU is typically abbreviated as mIoU. Usually, this averaging is, with each class,
equally-weighted. However, a frequency-weighted mIoU (FW mIoU) incorporates the
map population characteristics, and therefore is a better representation of the map proper-
ties [66].

3. Recommendations and Best Practices for RS DL Accuracy Assessment
3.1. Training, Validation, and Testing Partitions

The geographic arrangement of the partitioning of the three sets of reference data,
used for training, validation, and testing, is important, and should be carried out in a
manner that supports the research questions posed [37] and produces unbiased accuracy
estimates. Figure 3 summarizes three basic splitting and stratification options for a hypo-
thetical mapping project over the state of Nebraska in the United States (US). Figure 3a
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illustrates simple random chip partitioning, in which image chips are created for the entire
study area extent, shown in gray, and then these image chips are randomly split into the
three partitions without any additional geographic stratification. Figure 3b illustrates geo-
graphically stratified chip partitioning in which chips are partitioned into geographically
separate regions. Figure 3c illustrates tessellation stratified random sampling, in which the
study area is first tessellated into rectangular regions or some other unit of consistent area.
Each tessellated region, and all its associated image chips, is then randomly assigned to
one of the training, validation, or testing partitions.
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The choice between the three geographic sampling designs described above has
potential consequences for accuracy assessment. Both simple random chip partitioning
and tessellation stratified random chip partitioning should yield class proportions for
each partition similar to those of the entire study area extent. However, if geographically
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stratified chip partitioning is used, it is important to bear in mind that the partitioning
is normally deliberative and without replication. Thus, before using this approach, one
should consider if the study area is uniform, both in terms of the inherent characteristics of
the classes, which might affect the classification, and the proportions of the classes in the
landscape, which might affect the proportions in the population error matrix. On the other
hand, a potential benefit of both the geographically stratified design and the tessellation
stratified random sampling design is that the spatial autocorrelation between the partitions
is reduced, and thus the accuracy evaluation may be a more robust test of generalization
than, for example, simple random chip partitioning. Sometimes subsampling within
partitions is also used. If so, whatever the geographic sampling design, the subsampling
within the partitions should be probabilistic so that unbiased population statistics can
be estimated.

In developing training, validation, and testing datasets, it is also important to consider
the impact of overlapping image chips. Many studies have noted reduced inference
performance near the edge of image chips [67–70]; therefore, to improve the final map
accuracy, it is common to generate image chips that overlap along their edges, and to use
only the predictions from the center of each chip in the final, merged output. Overlapping
chips are also sometimes generated to increase the number of samples available or represent
objects of interest using different positions within the local scene [7,8,68,69]. Generally, the
final assessment metrics should be generated from the re-assembled map output, and not
the individual chips, since using the chips can result in repeat sampling of the same pixels.
Furthermore, if overlap is used when generating chips, all chips that overlap should be
maintained in the same data partition so that there is complete independence between
the three partitions. For the simple random chip sampling described above, this type of
separation may not be possible without subsampling, thus making random chip sampling
less attractive.

3.2. Assessing Model Generalization

One of the strengths of many RS DL studies is that they explicitly test generalization
within their accuracy assessment design, for example by applying the trained model to new
data or new geographic regions not previously seen by the model. Conceptually, model
generalization assessment is an extension of the geographically stratified chip partitioning
method discussed in Section 3.1, except in this case the new data are not necessarily
adjacent to or near the training data, and in many cases they involve multiple replications
of different datasets. Assessing model generalization is useful both for adding rigor to the
accuracy assessment and for providing insight regarding how the model might perform
in an operational environment where new training of the model is impractical every time
new data are collected. Examples of such generalization tests include Maggiori et al. [71],
Robinson et al. [72], and Maxwell et al. [69].

In designing an assessment of model generalization, the type of generalization must be
defined, and appropriate testing sets must be developed to address the research question.
For example, if the aim is to assess how well a model generalizes to new geographic extents
when given comparable data, image chips and reference data in new geographic regions
will be needed. If the goal is to assess generalization to new input data, then it may be
appropriate to select the new data from the same geographic extent that was used to train
the original model.

3.3. Assessment Metrics

As highlighted in Part 1 of this study [1], there are many inconsistencies in the RS DL
literature relating to which assessment metrics are calculated, how they are reported, and
even the names and terminology used. DL RS studies have primarily adopted measures
common in the DL and computer vision communities and have abandoned traditional RS
accuracy assessment metrics and terminology. We argue here that when choosing which
metrics to calculate and report, the use and purpose of the derived products should be
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considered. It is important to report metrics that give end users and other researchers
insight into how the model and dataset will perform for the application of interest. It is
also important to consider the relative proportion of classes or features of interest on the
landscape to estimate accuracy metrics that reflect the population from which the samples
were drawn. Below, we recommend best practices for choosing and reporting accuracy
assessment metrics for the four CNN-based problem types with these considerations
in mind.

3.3.1. Scene Classification

In scene classification, the unit of assessment is a single image or chip. Though
the image chips are usually generated from geospatial data, the classified images are
not normally mapped or referenced back to a specific spatial location in the assessment.
This lack of a map output might suggest that the concept of the population confusion
matrix is not relevant. Nevertheless, potentially operationalizing the method implies a
specific population from which the input data will be drawn. Therefore, as with any
classification, the class prevalence data in the confusion matrix should match that of the
assumed population. In practice, however, it may be challenging to generate a population
matrix for scene classification. Many scene classification benchmark datasets appear to be
deliberative samples, and usually by design collect samples that are not in proportion to
the likelihood of the class in the population.

An example of a scene classification dataset is DeepSat SAT-6 [9] (available from:
https://csc.lsu.edu/~saikat/deepsat/; accessed on 1 July 2021). This dataset differentiates
six classes (barren, building, grassland, road, tree, and water) and consists of 28-by-28 pixel
image chips derived from National Agriculture Imagery Program (NAIP) orthophotog-
raphy. A total of 405,000 chips are provided, with 324,000 used for training and 81,000
reserved for testing, as defined by the dataset originators. Figure 4 provides some example
image chips included in this dataset.
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Table 4 summarizes the accuracy of a ResNet-32 CNN-based scene classification in
terms of the confusion matrix with values in the table representing the proportions of

https://csc.lsu.edu/~saikat/deepsat/
https://csc.lsu.edu/~saikat/deepsat/
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the classes in the original testing dataset. Thus, the row and column totals represent the
prevalence of each class in the classified data and reference data, respectively. Reporting
the entire confusion matrix, along with row and column totals, as well as the class accuracy
statistics is useful because it allows greater understanding of how the statistics were
calculated, as well as the different components of the classification errors. We use DL terms
of precision and recall, as well as the traditional RS terms of UA and PA for clarity.

Table 4. Scene labelling accuracy assessment for DeepSat SAT-6 dataset, with values in the table representing proportions of
outcomes based on class prevalence in the benchmark dataset. OA = 0.9967.

Reference Row
Total

Precision
(UA)

F1
Barren Building Grassland Road Tree Water

Classification

Barren 0.2248 0.0000 0.0006 0.0000 0.0000 0.0000 0.2253 0.9974 0.9943
Building 0.0000 0.0454 0.0000 0.0000 0.0000 0.0000 0.0455 0.9989 0.9946
Grassland 0.0020 0.0000 0.1548 0.0000 0.0002 0.0000 0.1570 0.9861 0.9909

Road 0.0000 0.0004 0.0000 0.0255 0.0000 0.0000 0.0260 0.9819 0.9899
Tree 0.0000 0.0000 0.0001 0.0000 0.1749 0.0000 0.1750 0.9996 0.9993

Water 0.0000 0.0000 0.0000 0.0000 0.0000 0.3712 0.3712 1.0000 1.0000

Column
Total 0.2268 0.0459 0.1555 0.0256 0.1751 0.3712

Recall
(PA) 0.9912 0.9903 0.9957 0.9981 0.9989 1.0000

Table 5 provides the same data, except this time the columns are normalized to sum
to 1.0 (see for example [73]). Because each class has the same column total, this confusion
matrix represents a hypothetical case where each class has the same prevalence.

Table 5. Scene labelling accuracy assessment for DeepSat SAT-6 dataset, with accuracy values in each column summing to
1.0, an approach often used in DL studies. OA = 0.9957.

Reference Row
Total

Precision
(UA)

F1
Barren Building Grassland Road Tree Water

Classification

Barren 0.9912 0.0000 0.0037 0.0000 0.0000 0.0000 0.9949 0.9962 0.9937
Building 0.0000 0.9903 0.0000 0.0019 0.0000 0.0000 0.9922 0.9981 0.9942
Grassland 0.0088 0.0000 0.9957 0.0000 0.0011 0.0000 1.0056 0.9902 0.9929

Road 0.0000 0.0097 0.0002 0.9981 0.0000 0.0000 1.0079 0.9902 0.9941
Tree 0.0000 0.0000 0.0004 0.0000 0.9989 0.0000 0.9993 0.9996 0.9993

Water 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000

Column
Total 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Recall
(PA) 0.9912 0.9903 0.9957 0.9981 0.9989 1.0000

Designers of community benchmark datasets, including SAT-6, sometimes do not
make it clear whether the proportions of the samples in the various classes represent
the prevalence of those classes in the landscape. Thus, it is not clear if Table 4 is truly a
population estimate. However, to illustrate how a population estimate can be obtained
from these data, we assumed an application in the East Coast of the USA, and obtained
a high spatial resolution (1 m2 pixels) map of the 262,358 km2 Chesapeake Bay region
from [74]. In Table 6, the values in the table have been normalized so that the column totals
represent the class prevalence values determined from the Chesapeake reference map, and
thus, unlike the other two tables, Table 6 provides an estimate of a potential real-world
application of the dataset.
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Table 6. Scene labelling accuracy assessment for DeepSat SAT-6 dataset, with class prevalence set to equal the estimated
prevalence in the Chesapeake Bay region obtained from [74], and thus the confusion matrix represents an estimate of the
population matrix. OA = 0.9978.

Reference Row
Total

Precision
(UA)

F1
Barren Building Grassland Road Tree Water

Classification

Barren 0.0033 0.0000 0.0010 0.0000 0.0000 0.0000 0.0043 0.7647 0.8633
Building 0.0000 0.0277 0.0000 0.0000 0.0000 0.0000 0.0277 0.9989 0.9946
Grassland 0.0000 0.0000 0.2715 0.0000 0.0007 0.0000 0.2721 0.9975 0.9966

Road 0.0000 0.0003 0.0000 0.0157 0.0000 0.0000 0.0160 0.9803 0.9891
Tree 0.0000 0.0000 0.0001 0.0000 0.6199 0.0000 0.6200 0.9998 0.9994

Water 0.0000 0.0000 0.0000 0.0000 0.0000 0.0598 0.0598 1.0000 1.0000

Column
Total 0.0033 0.0280 0.2726 0.0157 0.6206 0.0598

Recall
(PA) 0.9912 0.9903 0.9957 0.9981 0.9989 1.0000

Comparing Tables 4–6, it is notable that the values for recall are the same in each
table, but precision, F1, and OA are different. This emphasizes that class prevalence affects
most summary accuracy metrics, and therefore the prevalence values used are important.
Assuming all classes have equal prevalence, as in Table 5, appears to be the standard for RS
scene classification. In our survey of 100 papers, five of the 12 studies that dealt with scene
classification reported confusion matrices, and all five used this normalization method.
However, a hypothetical landscape in which all classes exist in equal proportions is likely
to be rare, if it is found at all. It is also important to note that, since the number of classes
determines the prevalence of each class in the hypothetical equal-prevalence landscape,
such an approach does not facilitate comparisons between studies, unless the studies all
have the same number of classes. Kappa, though only occasionally used in DL studies, is
sometimes also suggested as useful if the data are imbalanced, but as discussed previously
should be avoided [59,60].

As an alternative, some studies only report recall, on the basis that this metric is not
affected by prevalence [65,75]. However, Table 6 highlights the potential hazard of such
an approach: the classification has values for recall (PA) above 0.99 for all classes, but the
barren class has a precision (UA) value of only 0.76. If only recall values are tabulated, the
user would be misled as to the reliability of the classification for barren.

3.3.2. Semantic Segmentation

The typical output of a DL semantic segmentation is a wall-to-wall, pixel-level, multi-
class classification, similar to that of traditional RS classification. For such classified maps,
traditional RS accuracy assessment methods, including using a probabilistic sampling
scheme to facilitate unbiased estimates of population-based accuracies, and reporting a
complete confusion matrix, has direct application. Using traditional terminology, such
as UA and PA, would facilitate communication with RS readers, but almost all authors
seem to prioritize communication with the DL community and use the computer science or
computer vision terms, such as precision and recall. Given that there are so many of these
alternative names for the standard RS metrics, perhaps the most important issue is that all
metrics should be clearly defined.

Table 7 gives an example confusion matrix for a semantic segmentation, and Table 8
lists the number of samples used in calculating the accuracy measures, emphasizing the
large size of the assessment sample. To produce this table, the LandCover.ai multiclass
dataset [14] (available from https://landcover.ai/; accessed on 1 July 2021) was classified
with an augmented UNet architecture [23], using the training and testing partitions defined
by the originators. In Table 7, the values are proportions of the various combinations
of reference and classified classes in the landscape, and the column totals represent the

https://landcover.ai/
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class prevalence values. For example, Buildings is a rare class, making up just 0.8% of the
reference landscape.

Table 7. Confusion matrix for semantic segmentation of LandCover.ai dataset. Values in the table represent estimates of the
population (i.e., landscape) proportions. OA = 95.0%.

Reference Row
Total

Precision
(UA)

F1
ScoreBuildings Woodlands Water Other

Classification

Buildings 0.007 0.000 0.000 0.003 0.009 0.827 0.716
Woodlands 0.000 0.325 0.000 0.019 0.344 0.931 0.937

Water 0.000 0.001 0.053 0.004 0.058 0.961 0.938
Other 0.001 0.023 0.002 0.562 0.588 0.956 0.955

Column
Total 0.008 0.349 0.056 0.588

Recall (PA) 0.705 0.944 0.916 0.955

Table 8. Accuracy assessment data used for semantic segmentation of LandCover.ai dataset.

Class Sample Size (No. Pixels)

Buildings 246,966
Woodlands 9,035,022

Water 1,531,777
Other 15,433,404

Table 7 illustrates why the F1 score on its own, without the values of the constituent
precision and recall measures, provides only limited information. The F1 scores of Wood-
lands and Water are almost identical, suggesting the classification performance is basically
the same for these two classes. Table 7, however, shows that Water, unlike Woodlands, had
a much lower recall than precision.

Surprisingly, although our review of 100 DL papers found the use of many different
accuracy metrics, none used some of the more recently developed RS metrics, such as
quantity disagreement (QD) and allocation disagreement (AD) suggested by Pontius and
Millones [59], which provide useful information regarding the different components of
error. For the map summarized in Table 7, the QD was 0.0% and the AD was 5.0%,
indicating almost no error is derived from an incorrect estimation of the proportion of the
classes; instead, the error derives from the mislabeling of pixels.

Table 9 was derived from [68], which used semantic segmentation to extract the extent
of surface mining from historic topographic maps. The accuracy assessment included a
geographic generalization component, and was carried out on the mosaicked images, not
individual image chips. The results in Table 9 highlight the value of reporting a variety
of metrics. Due to the large area of the background or “not mining” class, the OA and
specificity were very high. However, variability in the accuracy of mapping the mining
classes and issues of FPs and FNs were captured by precision, recall, and the F1 score.
Reporting only OA would have been misleading in this case, due to the class imbalance.
Reporting only the F1 score would obscure the fact that in Geographic Region 4, the
much lower accuracy is due to a low recall, whereas the precision is similar to that of the
other areas.
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Table 9. Binary classification accuracy assessment from prior study [68] in which mining features
were extracted from historic topographic maps. NPV = Negative Predictive Value.

Geographic Region Precision Recall Specificity NPV F1 Score OA

1 0.914 0.938 0.999 0.993 0.919 0.999
2 0.883 0.915 0.999 0.999 0.896 0.998
3 0.905 0.811 0.998 0.993 0.837 0.992
4 0.910 0.683 0.998 9.983 0.761 0.983

CNN-based deep learning can also be used to generate spatial probabilistic models.
For example, Gagne et al. [76] explored DL for the probabilistic prediction of severe
hailstorms, while Thi Ngo et al. [77] assessed landslide susceptibility modeling. If the
primary output will be a probabilistic model, probabilistic-based assessment metrics should
be reported. The main probabilistic-assessment metrics are areas under the curve (AUC)
derived from the receiver operating characteristic (ROC) and the precision-recall (P-R)
curves; however, if the end user will primarily make use of the “hard” classification, then
threshold-based derived metrics should also be reported [78,79]. A disadvantage with the
AUC ROC metric is that it relies on recall and specificity, and thus only the producer’s
accuracies for the positive and negative classes are considered [65,79]. Thus, precision
(i.e., UA) is not assessed, which can be especially misleading when class proportions are
imbalanced. As a result, the P-R curve and associated AUC PR metric is more commonly
recommended. This topic is explored in more detail in the context of object detection in
Section 3.3.3.

3.3.3. Object Detection and Instance Segmentation

Object detection and instance segmentation both identify individual objects. Since the
number of true negative objects (i.e., objects not part of the category of interest) is generally
not defined, reporting a full confusion matrix and the associated OA metric is generally
not possible. Nevertheless, reporting the number of TP, TN, FN, and FP, along with the
derived accuracy measures typically used—precision, recall, and F1 (e.g., [80])—ensures
clarity in the results.

A further complication for object detection is that there is normally a range of con-
fidence levels in the detection of any single object. This confidence potentially has two
components: the overall probability that an object exists, and the degree to which the
identified object is correctly delineated. The first of these components can be represented
by the P-R curve and associated AUC metric, as discussed in Section 3.3.2. In the context of
object detection, however, the AUC PR is normally referred to as average precision (AP),
and/or mean average precision (mAP). The second component of object probability, the
delineation of the object, is usually quantified in terms of the IoU of the reference and
predicted masks or bounding boxes. For example, the threshold IoU value of 0.5 is often
used to determine whether a sufficient number of pixels are correctly labeled for an object
to be regarded as correct (i.e., a TP); otherwise it is labeled either a FN or FP. However,
because the choice of a threshold is usually arbitrary, a range of thresholds may be chosen,
for example, from 0.50 to 0.95, with steps of 0.05, which would generate 10 sets of object
detections, each with its own P-R curve and AP metric.

Unfortunately, there is considerable confusion regarding the AP/mAP terminology.
First, these terms may be confused with the average of the precision values in a multiclass
classification (e.g. a semantic segmentation). Second, mAP is generally used to indicate
a composite AP, for example, typically averaged over different classes [81–83], but also
sometimes different IoU values [84]. However, because of inconsistencies in the usage
of the terms AP and mAP in the past, some sources (e.g., [85]) no longer recommend
differentiating between them, and instead use the terms interchangeably.

Because of the lack of standardization in AP and mAP terminology, it is important
for accuracy assessments to clearly report how these accuracy metrics were calculated,
for example, specifying the IoU thresholds used. Adding subscripts for IoU thresholds,
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if thresholds are used, or BB or M to indicate whether the metrics are based on bounding
boxes or pixel-level masks, can be an effective way to communicate this information
(for example, APBB or IoUM). Wu et al. [86] used both superscripts and subscripts to
differentiate six AP metrics derived from bounding box and pixel-level masks, as well as
three different sizes of objects (small, medium, and large).

In reporting object-level data, it is important to consider whether a count of features or
the area of features is of interest. For example, a model may be used to predict the number
of individual trees in an image extent. In such a case, it would be appropriate to use the
numbers of individuals as the measurement unit. However, if the aim is to estimate the
area covered by tree canopy, then it would be more appropriate to use assessment metrics
that incorporate the relative area of the bounding boxes or masks.

3.4. Creating Benchmark Datasets

A variety of benchmark geospatial datasets are available to test new methods and
compare models. For a detailed list of public benchmark DL datasets for use in RS, see
Hoeser and Kuenzer [8]. Cheng et al. [87] provide an extensive comparison of benchmark
datasets. Despite the range of publicly available benchmark datasets, there are notable
gaps in the available data. For example, datasets to test generalization to new geographic
extents and/or data are limited, and there is also generally a lack of non-image benchmark
datasets, such as those representing LiDAR point clouds, historic cartographic maps, and
digital terrain data, as noted in our prior studies [68,69]. Cheng et al. [87] argue that the
differentiation of a larger number of classes is particularly important.

Benchmark datasets and the associated metadata inherently constrain the potential for
rigorous accuracy assessment, depending on the nature of the data and, crucially, how they
are documented. Benchmark datasets in many cases provide pre-determined protocols for
accuracy assessment. Therefore, it is particularly helpful if benchmark datasets support
best practices, as described below:

1. The methods used for generating training, validation, and testing partitions should
be documented.

2. Tables and/or code should be provided to replicate the defined data partitions. Alter-
natively, the data partitions can be separated into different folders.

3. Class codes and descriptions should be defined.
4. The testing dataset should approximate the relative proportions of classes or features

on the landscape in order to support the generation of population-level metrics.
Sampling should either be comprehensive (i.e., wall-to-wall) or probabilistic.

5. If the dataset is meant to support the assessment of model generalization to new
data and/or geographic extents, the recommended validation configuration should
be documented.

6. The accuracy of the reference data should be assessed and reported.
7. Example code should be provided as a benchmark.
8. Any complexities or limitations of the dataset should be defined.

3.5. Reporting Standards

In order to improve consistency between studies, replication capacity, and inference
potential, it is important to report, in detail, the research methods and accuracy assessment
metrics. Here, we provide a list of reporting standards and considerations that will promote
clarity for interpretation and replication of experiments.

1. The number of training, validation, and testing chips should be reported, along with
the chip size, classes and associated numeric codes, class definitions, and means
of partitioning the samples (i.e., simple random, geographically stratified, tessella-
tion stratified random, etc.). The relative proportions of each mapped category or
abundance of features of interest on the actual landscape should be described.

2. If a subset of image chips from the entire dataset and/or mapped extent is used, the
method for this subsampling should be described.
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3. If the validation/testing sample unit was not the image chip (i.e., pixels, pixel blocks,
or areal units), the unit should be stated and explained. If a minimum mapping unit
(MMU) is used, this should be stated and the rationale for its use documented.

4. Providing code and data on a public access site is particularly helpful. If doing so,
this should include code or a description that allows the data partitions used in
the original study to be replicated. For example, providing code that will replicate
the partitions when executed, and/or specifying random seeds could be used to
enhance replicability.

5. The supporting documentation or code should allow the generation of a confusion
matrix and associated derived metrics that are estimates of the population character-
istics. If the testing sample does not directly provide an estimate of the population
properties, methods for estimating the population confusion matrix from the sample
confusion matrix should be provided.

6. Any thresholds used to generate metrics should be reported (e.g., IoU thresholds or
probability thresholds to generate binary metrics).

7. For object detection and/or instance segmentation, it should be stated whether bound-
ing boxes and/or pixel-level masks were used to perform the assessment, and whether
assessment relied on feature counts or areas.

8. If model generalization is assessed, the form of generalization should be defined
along with the sampling methods, geographic extents, and/or new datasets used.

9. Any limitations of the input data should be described.

4. Outstanding Issues and Challenges

Although CNN-based deep learning has shown great promise in geospatial object de-
tection and thematic mapping, there are some issues and complexities that hinder rigorous,
systematic experimentation and application, which should be discussed. First, comparison
of new methods and architectures is hindered by the complexity of hyperparameter opti-
mization and architecture design [4,5,7,8]. When experimenting with traditional machine
learning methods, it is generally possible to optimize hyperparameters using a grid search
and cross validation to compare a variety of settings [88]. However, due to lengthy training
times, computational demands, and a wide variety of hyperparameters and architecture
changes that can be assessed, such systematic experimentation is currently not possible
for CNN-based DL [4,5,7,8,89]. When new algorithms or methods are proposed, it is
common to use existing machine learning or DL methods as a benchmark for comparison;
however, we argue that such comparisons are limited due to an inability to optimize the
benchmark model fully [72,90]. For example, Musgrave et al. [90] suggest that reported
improvements when using new algorithms and architectures are often overly optimistic
due to inconsistencies in the input data, training process, and experimental designs and
because the algorithm to which the comparison is being made was not fully optimized.
Fairer and more rigorous comparisons generally suggest more marginal improvements.

This issue is further confounded by the lack of a theoretical understanding of the data
abstractions and generalizations modeled by CNNs [91]. For example, textural measures,
such as those derived from the gray level co-occurrence matrix (GLCM) after Haralick [92],
have shown varying levels of usefulness for different mapping tasks; however, one de-
terminant of the value of these measures is whether or not the classes of interest have
unique spatial context or textural characteristics that allow for greater separation [93–96].
Building on existing literature, a better understanding of how CNNs represent textural
and spatial context information at different scales could potentially improve our general
understanding of how best to represent and model textural characteristics to enhance a
wide range of mapping tasks. Furthermore, improved understanding could guide the
development of new DL methods and architectures.

Accuracy estimates are usually empirical estimates of map properties, and as with
all statistical estimates, they have uncertainties. In the RS DL 100 papers surveyed in our
literature review [1], only a small subset provided quantitative estimates of uncertainty.
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Following the recommendation of Musgrave et al. [90], we suggest that confidence in-
tervals be reported where possible. For example, confidence intervals can be estimated
for overall accuracy [97] and AUC ROC [98] or multiple model runs can be averaged to
assess for variability. For example, Oh et al. [82] use the mean and standard deviation
of 30 replications to assess variability. It is also possible to statistically compare output.
For example, McNemar’s test offers a statistical comparison of two classifications [32] and
the Delong test can compare AUC ROC values [99]. Such information can be informative,
especially when only small differences in assessment metrics between models are observed.

The rich history of RS accuracy assessment research and application offers recommen-
dations that are applicable to thematic mapping tasks broadly, including those relying on
DL. For example, accuracy assessment methods generally assume that all pixels will map
perfectly to the defined classes and that feature boundaries are well-defined. However, real
landscapes are much more complex, and some thematic transitions, such as the transition
between uplands and wetlands [100–102], are generally gradational rather than discrete.
Foody [33] notes the harshness of standard accuracy assessment methods relative to these
issues. In a prior study [57], we outline an assessment approach based on weighting the
center of reference and predicted features higher than areas near boundaries as a more
appropriate assessment of accuracy when boundaries are inherently fuzzy, such as wet-
lands and individual tree crowns. A wide variety of assessment metrics can be generated
using center-weighted measures, including metrics that are straight forward to interpret
in that they are similar to conventional measures (e.g., center-weighted OA, precision,
recall, and F1 score). The impact of landscape complexity and heterogeneity should also
be considered when designing accuracy assessment protocols and interpreting results.
For example, heterogenous landscapes may prove more difficult to map in comparison to
more homogeneous landscapes, resulting from more boundaries, edges, class transitions,
and, potentially, mixed pixels or gradational boundaries [33,103]. Accounting for mixed
pixels, gradational boundaries, difficult to define thematic classes, and the defined minimal
mapping unit (MMU) are complexities that exist for all thematic mapping tasks, including
those relying on DL, which highlight the need for detailed reporting of sample collection
and accuracy assessment methods [1–3,32,33,44,45,57,104,105].

Researchers should also consider the regional, biome, and landscape-specific map-
ping needs and complexities presented in the existing literature. For example, prior
studies offer insights specific to land cover and vegetation mapping in Mediterranean
biomes (e.g., [106–109]), northern tundra and permafrost regions (e.g., [110–112]), range-
land (e.g., [113,114]), and urbanized areas (e.g., [115–117]). Such findings can inform DL
researchers as to existing mapping difficulties and research needs, which classes are most
difficult to differentiate, and which classes are most important to map for different use
cases. We argue that considering the existing literature, methods, and complexities relating
to specific mapping tasks or landscape types can offer guidance for knowledge gaps and
research needs to which DL may be applicable. Similarly, the current body of knowledge
offers insights for extracting information from specific data types. For example, extracting
information from true color or color infrared aerial imagery with high spatial resolution,
limited spectral resolution, and variability in illuminating conditions between images is an
active area of research in the field [14,71,118–121].

5. Conclusions

Building on a previous review of 100 RS DL papers [1], we propose best practices for
the assessment of a wide variety of thematic, geospatial products derived using CNN-based
DL. Since RS DL studies generally use geospatial data, many of the findings of traditional
accuracy assessment methods have direct application in RS DL studies, and are indeed
reflected in current RS DL accuracy assessments, as shown by the literature review. For
example, most (but not all) RS DL studies seem to be heeding the general consensus that
Kappa is a potentially misleading statistic and so should be avoided.
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However, RS DL studies appear to depart from traditional RS terminology in notable
ways. Because the new terminology has not been entirely standardized, it is useful if
studies define the metrics used, and provide the underlying equations. For example, for
metrics such as AP and mAP, threshold(s), type of mask and any subdivision by object size
should preferably be indicated with superscripts and/or subscripts. Another important
issue is that relatively few RS DL studies report full confusion matrices, and those that do,
generally do not report values in the table that are estimates of population proportions.
Confusion matrices with class prevalence values that do not reflect the map or landscape
classified do not provide predictions that can be linked to actual applications.

Some aspects of RS DL analysis require accuracy assessment protocols that are de-
signed for unique issues associated with CNN-based classification. The typically overlap-
ping nature of the image chips that are the standard input for DL classification requires
special consideration for designing training, validation, and testing partitions. The training,
validation, and testing partitions should be entirely separate, even when chip overlap
regions are taken into account. Classification should be assessed based on the reassembled
image, rather than the individual chips. Model generalization is a particularly useful aspect
of many RS DL accuracy assessments. By incorporating multiple generalizations, studies
can both improve the robustness of the accuracy test and provide insight regarding the
likely performance of the model in real-world situations where the model may need to use
new data without additional extensive training.

Considering the significant increase in the application of DL methods to RS appli-
cations in recent years, and none withstanding the fast advancement of this field, it is
crucial to carefully consider how accuracy assessments are carried out. Hence, classifica-
tion products should be assessed in a manner that quantifies their accuracy relative to an
intended use and that takes into account the geographic nature of the map product, which
is an approximation of an actual landscape. Rigorous assessment should be supported
by clear reporting that promotes transparency and reproducibility. Adoption of the best
practices outlined here, and refinement of these suggestions in the future, will foster rigor
and consistency in geospatial DL experimentation.
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