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Abstract: Wave wash-over poses a significant threat to sea turtle nests, with sustained exposure to
waves potentially resulting in embryonic mortality and altered hatchling locomotor function, size,
and sex ratios. Identifying where and under what conditions wave exposure becomes a problem,
and deciding what action(s) to take (if any), is a common issue for sea turtle managers. To determine
the exposure of sea turtle nests to waves and identify potential impacts to hatchling productivity, we
integrated a geographic information system with remote sensing and wave runup modeling across
40 nesting beaches used by the Northern Gulf of Mexico Loggerhead Recovery Unit. Our models
indicate that, on average, approximately 50% of the available beach area and 34% of nesting locations
per nesting beach face a significant risk of wave exposure, particularly during tropical storms. Field
data from beaches in the Florida Panhandle show that 42.3% of all nest locations reported wave
exposure, which resulted in a 45% and 46% decline in hatching and emergence success, respectively,
relative to their undisturbed counterparts. Historical nesting frequency at each beach and modeled
exposure to waves were considered to identify priority locations with high nesting density which
either experience low risk of wave exposure, as these are good candidates for protection as refugia for
sustained hatchling production, or which have high wave exposure where efforts to reduce impacts
are most warranted. Nine beaches in the eastern Florida Panhandle were identified as priority sites
for future efforts such as habitat protection or research and development of management strategies.
This modeling exercise offers a flexible approach for a threat assessment integration into research
and management questions relevant to sea turtle conservation, as well as for other beach species and
human uses of the coastal environment.

Keywords: climate change; coastal zone management; environmental modeling; Gulf of Mexico;
inundation; marine turtle; wave wash-over

1. Introduction

Sea turtle embryos require a narrow range of incubation conditions to properly de-
velop [1–4]. Disrupted osmotic gradients coincident with reduced gas exchange due to
inundation of clutches by tides, groundwater, wave exposure, or rainfall can affect hatchling
production and fitness [3,5–7]. Wave and tide exposure, in addition to causing hypoxia, may
alter temperature or salinity within the nest resulting in mortality, reduced locomotor per-
formance, changes in hatchling size, altered hatchling sex ratios [1,3–5,8,9], and/or changes
to the overlaying beach geomorphology resulting in nest erosion or accretion [10–13].

To reduce wave exposure and maximize sea turtle nest productivity, nesting females
use several environmental cues such as beach slope, tide height, and distance from the
water when selecting nesting sites [14–18]. Nesting females will also lay several nests
throughout the nesting season in order to minimize the risk of complete reproductive
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failure [19–21]. Despite these environmental cues, wave exposure is a common occurrence,
particularly during the hurricane season [22–26]. This exposure may become more frequent
over the next several decades as sea level rises and hurricanes became more intense and
frequent, threatening hatchling production [9,26–31]. Synergistically with implications
from climate change, coastal modifications such as back-beach construction and armoring
can exacerbate the risk of wave exposure by ultimately reducing the extent of available
nesting beach [32–36].

Nest loss and reduction of nesting habitat is of particular concern for small, genetically
distinct populations of sea turtles such as the Northern Gulf of Mexico Loggerhead (Caretta
caretta) Recovery Unit [37–39]. This recovery unit is among the smallest in the United States
with several hundred adults, with each individual offspring holding a great conservation
value to the population [40,41]. Wave exposure is currently a significant cause of embryonic
mortality for this Recovery Unit. From 2002 to 2012, approximately 35% of loggerhead turtle
nests from Panama City and Saint George Island, two beaches jointly representing ~20%
of the nesting effort for this recovery unit, were estimated to have been lost due to wave
erosion [39]. Saint George Island, in particular, is a major nesting beach for this recovery
unit [42–44]; therefore, losing a significant percentage of nests to wave exposure at this
nesting beach may lead to a significant reduction in population-level hatchling production.

While the exact number of nests laid across the recovery unit [41] and the proportion
affected by wave exposure vary from year to year [45], mitigating losses at sites with high
nesting density and high exposure to waves could lead to significant gains in hatchling
production [39,45]. Similarly, preserving nesting beaches with high nesting density and low
wave exposure could ensure sustained hatchling production in the face of climatic changes
and stressors from coastal development [26,37,43,46]. In either case, nesting sites with
high relative nesting density and either high or low relative wave exposure are priority
candidates for future conservation initiatives (e.g., preservation of nesting habitat) and
research to examine the pros and cons of intervention (such as nest relocation) prior to
promoting it as a management strategy.

The identification of nesting beaches that will benefit most from conservation ef-
forts can be aided by geographic information systems coupled with remote sensing data
(e.g., LiDAR, aerial imagery, nighttime lighting). This approach has increasingly been
used to identify threats to sea turtle nesting beaches and prioritize locations for conser-
vation [26,27,43,47–52]. For example, using historical data on wave height and wave
period coupled with beach slope and sea turtle nest distribution, a wave runup model
can be used to map wave exposure at the nesting beach in an effort to better inform
sea turtle nest management [52–55]. In fact, such approaches may become increasingly
relevant as nesting beaches face mounting pressures from sea level rise and coastal devel-
opment [29,37,43,46,56,57].

Sea turtle managers are often faced with queries on how to assess the risk of wave
exposure, to identify nesting beaches with various levels of exposure to this risk, and to
determine what management actions to take (if any) to mitigate or prevent it. To inform
management of the Florida portion of the Northern Gulf of Mexico Loggerhead Recovery
Unit, we investigated the reduction in nest productivity (i.e., hatching and emergence
success) associated with reported wave exposure from 2016 to 2019. We then incorporated
remote sensing data with wave runup models to quantify the proportion of available
nesting habitat and nest GPS locations at risk of wave exposure to identify priority nesting
beaches for conservation initiatives. Priority beaches were defined as those beaches that
would benefit the population most from preservation or further research to evaluate
potential interventions or mitigations strategies in light of impacts from wave exposure.

2. Materials and Methods
2.1. Study Site, Nest Monitoring, and the Effects of In Situ Wave Exposure

This study was conducted across 40 loggerhead nesting beaches (Table 1) within
the Florida portion of the northern Gulf of Mexico, which stretches from the Alabama–
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Florida state line east to Alligator Point, providing approximately 375 km of nesting beach
primarily for loggerhead turtles (Figure 1) but also for green turtles (Chelonia mydas), Kemp’s
Ridley turtles (Lepidochelys kempii), and leatherback turtles (Dermochelys coriacea) [43,58].
Our analysis focused on loggerhead nests as they are the dominant nesting species in
this region [38]. Loggerhead sea turtles nesting in the Florida Panhandle are part of the
Northern Gulf of Mexico Loggerhead Recovery Unit [40,41]. Though this recovery unit
stretches west to the U.S.–Mexico border, the majority of loggerhead nesting for this unit is
concentrated in the eastern Florida Panhandle [38].
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Helen SP, W: Panama City Beach, X: St Andrews SP, Y: Tyndall AFB, Z: Mexico Beach, AA: St Joe 

Beach, BB: St Joseph Peninsula SP, CC: St Joseph Peninsula, DD: Cape San Blas AFB, EE: Cape San 
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Point, NN: Bald Point SP. Three buoys are present offshore of the study area. From west to east: 

#42012 Orange Beach, 25.9 m depth; #42039 Pensacola, 270 m depth; and #42036 West Tampa, 49.7 

m depth. Four tide stations are present within the study area. From west to east: #8729840 Pen-

sacola; #8729210 Panama City Beach; #8729108 Panama City; and #8728690 Apalachicola. 
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Figure 1. The Florida portion of the Northern Gulf of Mexico Loggerhead Recovery Unit, showing our study sites (A–
NN). Data sourced from the Florida Fish and Wildlife Conservation Commission Statewide Atlas of Sea Turtle Nesting
Occurrence and Density. From west to east: A: Perdido Key, B: Perdido Key State Park, C: Gulf Islands National Seashore
(GINS)—Perdido Key, D: GINS—Fort Pickens, E: Pensacola Beach, F: GINS—Santa Rosa, G: Navarre Beach, H: Eglin Air
Force Base (AFB), I: Eglin AFB West, J: Okaloosa West, K: Eglin AFB East, L: Okaloosa Mid, M: Henderson Beach State Park
(SP), N: Okaloosa East, O: Miramar Beach, P: Topsail Hill State Park, Q: Walton West, R: Grayton Beach SP, S: Walton Mid,
T: Deer Lake SP, U: Walton East, V: Camp Helen SP, W: Panama City Beach, X: St Andrews SP, Y: Tyndall AFB, Z: Mexico
Beach, AA: St Joe Beach, BB: St Joseph Peninsula SP, CC: St Joseph Peninsula, DD: Cape San Blas AFB, EE: Cape San Blas,
FF: St Vincent National Wildlife Refuge, GG: Cape St George Island, HH: St George Island, II: St George Island SP, JJ: Dog
Island, KK: Carabelle, LL: Phipps Preserve Beach, MM: Alligator Point, NN: Bald Point SP. Three buoys are present offshore
of the study area. From west to east: #42012 Orange Beach, 25.9 m depth; #42039 Pensacola, 270 m depth; and #42036 West
Tampa, 49.7 m depth. Four tide stations are present within the study area. From west to east: #8729840 Pensacola; #8729210
Panama City Beach; #8729108 Panama City; and #8728690 Apalachicola.

Each nesting beach was patrolled daily from 2016 to 2019 by citizen-science volun-
teer or professional crews permitted under the Florida Fish and Wildlife Conservation
Commission (FWC) during the sea turtle nesting season (1 May through 31 October). The
data described below was obtained from the Fish and Wildlife Research Institute (FWRI)
of the FWC based on data recorded by the monitoring crews. These patrols record new
nesting activity, mark new nests for protection, record disturbances to existing nests (e.g.,
predation, wave exposure, inundation), and conduct nest productivity assessments (i.e.,
hatching and emergence success) following procedures detailed by FWC [59,60]. For this
study, information for each nest included GPS location, dates laid and hatched, distur-
bance history, and productivity. GPS locations were typically taken with hand-held units
with horizontal accuracies of approximately 5 m, thus we expect our data to fall within
this accuracy.
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Table 1. Nesting beaches comprising the Florida portion of the Northern Gulf of Mexico Loggerhead Recovery Unit ordered from west to east. Beach slope was taken along cross-shore
transects from the shoreline to the base of the dune or back-beach construction every 200 m along the beach digital elevation model. For beach slope and number of nests per year,
values are presented as mean ± 1 standard deviation. n indicates number of available transects. Nesting data (2016–2019) was provided by the Florida Fish and Wildlife Conservation
Commission Fish and Wildlife Research Institute. Latitude and longitude represent the centroids of the nesting beach. AFB: Air Force Base, GINS: Gulf Islands National Seashore, NWR:
National Wildlife Refuge, NA: data was not provided. Additional data is provided in Table S2.

Beach Name Figure 1
Code Lat (◦) Long (◦) Beach Length

(km)
Nesting Area

(km2) Beach Slope (◦) Nests y−1 Nearest Wave Buoy Nearest Tide Station

Perdido Key A 30.2836 −87.5002 7.08 0.47 2.56 (±0.39, n = 36) 12.67 (±6.35) Orange Beach Pensacola
Perdido Key State Park B 30.2902 −87.4665 2.65 0.18 2.62 (±0.28, n = 13) 7 (±3.46) Orange Beach Pensacola

GINS—Perdido Key C 30.3154 −87.3388 11.78 1.25 1.69 (±0.66, n = 60) 33.5 (±28.76) Orange Beach Pensacola
GINS—Fort Pickens D 30.3180 −87.2418 12.57 1.08 1.37 (±0.62, n = 64) 25.25 (±3.3) Orange Beach Pensacola

Pensacola Beach E 30.3350 −87.1171 12.58 0.87 2.18 (±0.25, n = 63) 28.75 (±6.95) Orange Beach Pensacola
GINS—Santa Rosa F 30.3592 −86.9880 13.19 0.99 2.31 (±0.81, n = 66) 21 (±5.6) Orange Beach Pensacola

Navarre Beach G 30.3763 −86.8843 6.73 0.41 2.12 (±0.87, n = 34) 9 (±5.83) Orange Beach Pensacola
Eglin Air Force Base H 30.3845 −86.8235 4.87 0.33 2.11 (±0.4, n = 24) 24.25 (±31.4) Orange Beach Pensacola

Eglin AFB West I 30.3946 −86.7164 16.04 1.19 2.4 (±1.16, n = 80) 27.33 (±6.66) Orange Beach Pensacola
Okaloosa West J 30.3954 −86.6080 4.86 0.33 3.02 (±0.78, n = 25) 4.67 (±1.15) Orange Beach Pensacola
Eglin AFB East K 30.3883 −86.5313 7.33 0.59 2.66 (±2.03, n = 37) 19 (±5.2) Orange Beach Pensacola
Okaloosa Mid L 30.3831 −86.4939 5.75 0.34 3.96 (±1.99, n = 29) 6.5 (±1.73) Pensacola Panama City Beach

Henderson Beach State Park M 30.3830 −86.4436 2.03 0.12 3.67 (±1.37, n = 10) 3 (±1.73) Pensacola Panama City Beach
Okaloosa East N 30.3807 −86.4150 3.41 0.18 5.26 (±2.82, n = 17) 4 (±1.63) Pensacola Panama City Beach

Miramar Beach O 30.3736 −86.3573 7.82 0.45 4.17 (±1.96, n = 40) 10.33 (±5.03) Pensacola Panama City Beach
Topsail Hill State Park P 30.3616 −86.2908 5.22 0.33 4.58 (±3.1, n = 26) 10.5 (±2.65) Pensacola Panama City Beach

Walton West Q 30.3433 −86.2208 8.55 0.48 4.5 (±2.38, n = 43) 16 (±10.03) Pensacola Panama City Beach
Grayton Beach State Park R 30.3268 −86.1631 3.44 0.25 3.16 (±1.74, n = 17) 7 (±2.94) Pensacola Panama City Beach

Walton Mid S 30.3115 −86.1143 6.28 0.38 3.66 (±1.2, n = 31) 13.25 (±5.44) Pensacola Panama City Beach
Deer Lake State Park T 30.3009 −86.0812 0.79 0.05 2.25 (±0.95, n = 4) 1.25 (±0.5) Pensacola Panama City Beach

Walton East U 30.2847 −86.0366 8.50 0.49 3.21 (±0.85, n = 43) 28.75 (±11.9) Pensacola Panama City Beach
Camp Helen State Park V 30.2678 −85.9920 0.55 0.05 0.86 (±0.58, n = 3) 2.5 (±0.71) Pensacola Panama City Beach

Panama City Beach W 30.1755 −85.8068 28.00 1.97 2.56 (±0.53, n = 140) 47.25 (±6.55) Pensacola Panama City
Beach/Panama City

Saint Andrews State Park X 30.1045 −85.7084 8.56 0.69 2.22 (±1.23, n = 44) 15.75 (±5.91) Pensacola Panama City
Tyndall Air Force Base Y 30.0589 −85.6116 28.67 3.46 1.17 (±0.67, n = 145) 89.75 (±7.8) Pensacola Panama City

Mexico Beach Z 29.9508 −85.4342 6.84 0.57 2.47 (±1.77, n = 34) 20 (±3.56) Pensacola Panama City
Saint Joseph Peninsula State Park AA 29.8721 −85.4008 15.29 1.84 2.18 (±0.93, n = 77) 178.75 (±24.9) Pensacola Panama City

Saint Joseph Peninsula BB 29.7099 −85.3839 10.52 0.77 3.29 (±1.01, n = 53) 200.75 (±54.91) Pensacola Panama City
Saint Joe Beach CC 29.8928 −85.3596 10.66 0.82 2.94 (±1.01, n = 54) 19.75 (±6.4) Pensacola Panama City
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Table 1. Cont.

Beach Name Figure 1
Code Lat (◦) Long (◦) Beach Length

(km)
Nesting Area

(km2) Beach Slope (◦) Nests y−1 Nearest Wave Buoy Nearest Tide Station

Cape San Blas AFB DD 29.6656 −85.3485 3.95 0.72 0.79 (±0.58, n = 20) 71.25 (±37.56) Pensacola Panama
City/Apalachicola

Cape San Blas EE 29.6838 −85.2779 11.57 1.36 1.67 (±1.23, n = 58) 65.5 (±18.3) Pensacola Apalachicola
Saint Vincent NWR FF 29.6491 −85.1588 16.26 2.24 1.87 (±1.6, n = 82) 92.75 (±44.01) Pensacola Apalachicola

Cape Saint George Island GG 29.6011 −85.0638 17.51 1.86 1.81 (±0.68, n = 88) 251.25 (±96.11) Pensacola/ West Tampa Apalachicola
Saint George Island HH 29.6553 −84.8779 17.78 1.36 2.81 (±0.47, n = 89) 389.5 (±115.83) West Tampa Apalachicola

Saint George Island State Park II 29.7187 −84.7438 15.22 1.34 1.95 (±0.49, n = 77) 84 (±42.37) West Tampa Apalachicola
Carrabelle KK 29.8272 −84.6963 10.41 0.42 4.03 (±2.04, n = 52) NA West Tampa Apalachicola
Dog Island JJ 29.7828 −84.6488 14.56 1.40 2.25 (±1.74, n = 74) NA West Tampa Apalachicola

Phipps Preserve Beach LL 29.9087 −84.4331 2.51 0.23 1.24 (±0.67, n = 13) NA West Tampa Apalachicola
Alligator Point MM 29.8949 −84.3839 8.18 0.47 3.73 (±2.7, n = 40) NA West Tampa Apalachicola

Bald Point State Park NN 29.9145 −84.3361 5.88 0.30 3.59 (±2.06, n = 30) 3.25 (±1.5) West Tampa Apalachicola
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“Wave exposure”, as determined by the monitoring crews, is inclusive of wave wash-
over and partial or complete wash-out and constitutes the exposure of the nest’s beach
surface to the uprush and rundown of foreshore swash zone motions. A partial wash-out
is where erosion of the beach surface causes a fraction of the clutch to be lost whereas a
complete wash-out is the total loss of the clutch. These levels of wave exposure can be
reported based on (1) the observation of a wet sand line (i.e., previous high tide line) located
landward of the nest, (2) deposition or removal of sand or other material (e.g., wrack)
from the nest’s surface up to, and including, subaerial exposure of the clutch (i.e., erosion,
wash-out), or (3) direct observation of waves, tide, or storm surge interacting with the nest.

“Inundation”—the sustained immersion of the clutch by elevated groundwater, tides,
wave setup, or storm surge—was documented at the time of post-hatching nest evalua-
tion (i.e., a clutch is considered inundated if standing water is found at the time of nest
evaluation); therefore, the frequency or duration of inundation during incubation is not
known. Nests which reported inundation, regardless of previous wave exposure, were not
included in the subsequent productivity assessments in order to remove any covariance
effects with otherwise undisturbed nests.

Hatching success (i.e., the number of hatched eggs divided by the total number of
eggs in the clutch) and emergence success (i.e., the number of unaided emerged hatchlings
divided by the total number of eggs, [59,60]) derived from the nest productivity assessments
were compared between undisturbed in situ loggerhead nests and those with reported
wave wash-over using binomial generalized linear models (GLM). Nests which were
relocated, left in situ but disturbed (i.e., predated, invaded by roots, disturbed by another
turtle, poached, inundated), or were lacking productivity assessment data were removed
from these GLMs to avoid covarying effects. In addition, nests which experienced partial
or complete wash-out were not included in these GLMs, regardless of previously reported
wash-over, as it was impossible to determine the number of eggs lost.

2.2. Digital Elevation Model and Wave Runup Modeling

Historical LiDAR surveys were used to create a mean digital elevation model (DEM)
for each of the study sites, as well as calculate minimum, maximum, and standard deviation
DEMs to describe intra- and inter-annual beach variability. An averaged DEM based on
historical data was developed to ensure that the tool would be broadly applicable, given
that updated DEMs of all nesting beaches may not always be available. Twenty-three
surveys covering part or all of the study area were conducted between 1998 and 2018 by
the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), U.S. National
Oceanic and Atmospheric Administration (NOAA), U.S. National Aeronautics and Space
Administration (NASA), Florida Department of Emergency Management (FDEM), and
Northwest Florida Water Management District (NWFWMD) and made available in the
NOAA Data Access Viewer (https://coast.noaa.gov/dataviewer/#/, accessed 28 April
2020, Table S1). Each survey was downloaded with a 3 m grid cell and referenced to
the State Plane 1983 Florida North (horizontal) and NAVD88 (vertical) datums. Using R
version 4.0.2, these layers were temporally- and spatially-averaged as in [53].

These DEMs were brought into ArcMap 10.6 to identify the available nesting area at
each study site. A polygon bounding the individual nesting beaches was defined seaward
by the mean lower-low water datum derived from the closest tide gauge (Figure 1) and
landward by the dune crest or back-beach construction based on aerial imagery. To calculate
beach slope, cross-shore transects between mean high water and the dune base were drawn
every 200 m along the study area similar to [61].

To calculate the proportion of the beach area exposed to waves, we compared the
available nesting area polygon with an exposure polygon. The exposure polygon was
calculated by modeling daily total water level elevations (TWL) along the study region during
the 2016 to 2019 nesting seasons. TWL is the sum of tide height, storm surge, and wave
runup [55]. Stockdon et al. [55] described a generalized formulation for wave runup which
requires beach slope (βf), deep-water wave height (H0), and deep-water wavelength (L0):

https://coast.noaa.gov/dataviewer/#/
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R2 = 1.1

0.35β f (H0L0)
1
2 +

[
H0L0

(
0.563β2

f +0.004
)] 1

2

2

 (1)

where the first parenthetical term represents wave setup, the time-averaged elevation of
the water level at the shoreline due to wave accumulation, and the second term represents
swash, the time-varying uprush and rundown of the water level caused by individual
waves. Wavelength can be calculated from wave period using linear wave theory [62,63].

Beaches in the Florida Panhandle are south-facing, microtidal dissipative-to-intermediate,
and range from densely populated (e.g., Pensacola) to residential (e.g., Saint George Island)
to protected (e.g., Saint Joseph Peninsula State Park) [43]. The average cross-shore beach
slope is 2.49◦ (±1.55◦ SD, 0.043 ± 0.027 radians SD, Table S2). Hourly deep-water wave
height and wave period during the nesting season (1 May through 31 October) from 2016
to 2019 along the study area, corresponding to the years of available nesting data, were
obtained from the National Data Buoy Center (NDBC) stations #42012 Orange Beach,
#42039 Pensacola, and #42036 West Tampa (Figure 1). Median hourly wave height and
wave period reported from the three offshore buoys range from 0.70–0.83 m and 5.27–5.65 s,
respectively (File S1). This beach slope, wave height, and wave period combination results
in a mean Iribarren number ξ0 of 0.337 (±0.247 SD, median = 0.286). Tides in the study area
are typically diurnal with an average tidal range between 0.38–0.52 m (File S2); however,
Apalachicola exhibits a mixed tide.

Given the dissipative nature of beaches in the Florida Panhandle, wave runup (R2)
was calculated following the dissipative-specific formulation of Stockdon et al. [55]:

R2 = 0.043(H0L0)
1
2 (2)

with waves observed at the buoys reverse-shoaled to deep water as necessary as in [53].
To evaluate the model’s ability to identify nesting locations exposed to waves, hourly

TWL at each nest GPS location during its incubation were calculated using wave and tidal
data from the nearest NOAA/NDBC stations (File S3). If the TWL exceeded the DEM
elevation at the nest coordinates at any point in time, the nest was marked as washed over.
The modeled wave exposure was then compared to reported in situ observations of the
nest obtained by monitoring crew (as per Section 2.1) using Chi-squared analyses.

2.3. Extent of Wave Exposure

The spatial extent of wave exposure along each of the nesting beaches was determined
by subtracting the elevation at each cell in the averaged DEM from the time series of TWL
at that location. If, at any point in time, the TWL at a given cell was greater than the
morphological elevation, that cell was considered washed over. To reduce computational
demands, hourly wave data were condensed to daily maximum wave height and coincident
wave period to calculate daily total water levels. The total wash-over exposure per DEM
cell across our study period was determined by summing the modeled daily wash-over
events and converting the count to proportions by dividing the wash-over count by the total
number of TWL estimates (n = 732 daily TWL estimates from the 2016–2019 nesting seasons,
File S3). The exposed cells within each beach were converted to a polygon in ArcMap 10.6.
This exposure polygon was then compared to the available nesting area polygon to calculate
the proportion of the beach area impacted by wave exposure per nesting beach.

2.4. Identification of Priority Nesting Beaches for Future Efforts Regarding Wave
Exposure Impacts

To identify priority nesting beaches for future efforts, both the number of nests laid
per nesting beach and the proportion of nesting exposed to wave activity were considered.
The proportion of nests within the wave exposure polygon created in Section 2.3 were
compared to the total nests laid per nesting beach to calculate the proportion of at-risk nesting
locations. Each nesting beach was then ranked by their mean number of nests per year (i.e.,
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nesting frequency) as well as the modeled proportion of exposed nests, similar to [26]. Nest
frequencies per beach were categorized by quartiles with beaches in the highest quartile
denoted as “very high nesting” and progressing to “high nesting”, “medium nesting”, and
“low nesting” with subsequent quartiles. Similarly, the proportion of nests exposed to modeled
waves per nesting beach were classified according to quartiles (“very high wave exposure”,
“high wave exposure”, “medium wave exposure”, and “low wave exposure”).

The mean number of potentially at-risk nests from wash-over per nesting beach per
year was calculated as the product of the nesting frequency and the modeled proportion of
exposed nests. Nesting beaches in the 75th percentile or greater for number of potentially
at-risk nests were considered “very high priority” and represent locations where future
efforts are most warranted to address wave exposure impacts. Beaches in the 50th to 75th
percentiles were considered “high priority” while those between the 25th and 50th per-
centiles were designated “moderate priority”. The remainder were deemed “low priority”.
By multiplying nesting frequency and wave exposure to calculate the mean number of
potential at-risk nests per year, nesting beach contributions to possible population-level
nest productivity impacts could be ranked from largest to smallest.

3. Results
3.1. Loggerhead Turtle Nesting, Nest Productivity, and the Effects of In Situ Wave Wash-Over

Based on the temporally- and spatially averaged DEM, the Florida Panhandle provides
a total of 32.6 km2 of nesting area for loggerhead turtles. Available nesting area per nesting
beach was highly variable across the study area, ranging from 0.05 km2 at Deer Lake and
Camp Helen State Parks up to 3.46 km2 at Tyndall Air Force Base (Table 1). Average nesting
frequencies during the 2016 to 2019 nesting seasons were highest in the eastern Florida
Panhandle (Figure 2A), with Saint George Island having the highest mean nesting frequency
at 372.75 nests yr−1 while Deer Lake State Park had the lowest (1.33 nests yr−1) (Table 1).

From 2016 to 2019, data on 6773 loggerhead turtle nests with GPS coordinates were
provided by FWC. Of these nests, 42.3% reported in situ wave exposure. This includes
1665 nests (24.6%) which were washed over but remained in place, 1121 nests (16.6%)
which were completed washed out, and 79 nests (1.2%) which experienced only partial
wash-out (Table S3, File S4).

After isolating nests which were reportedly either undisturbed or only experienced
wave wash-over, 2947 nests were considered to evaluate the effects of wave wash-over on
nest productivity. Nests with reported in situ wash-over had a 45.4% lower hatching success
and 45.8% lower emergence success relative to undisturbed nests (Table 2, binomial GLM
p < 0.001 for both analyses). By comparison, (1) predated nests (n = 721) experienced a 28.2%
and 27.5% reduction in hatching and emergence success compared to undisturbed nests,
and (2) nests with reported inundation at the time excavation (n = 48) had reductions of
61% in both productivity metrics. Complete wash-outs resulted in no hatchling production
while the productivity from partially washed-out nests was impossible to determine
without a known clutch size prior to erosion, which was not available for our dataset.

Table 2. Hatching and emergence success for undisturbed and wave-exposed loggerhead turtle nests
in the Florida Panhandle from 2016 to 2019. Number of nests and complete and partial wash-outs are
derived from the full available dataset (n = 6773). Hatching and emergence success from undisturbed
and washed over nests were evaluated from a subset of the available data (n = 2947) to remove
potential covariance effects. NA: productivity from partially washed-out nests is impossible to
determine without a known clutch size prior to erosion.

Number of Nests Hatching Success
(%, Mean ± SD)

Emergence Success
(%, Mean ± SD)

Undisturbed 2104 78.1 ± 29.7 76.3 ± 30.2
Washed Over 1665 27.3 ± 36.8 25.0 ± 35.4

Partial Wash-Out 79 NA NA
Complete Wash-Out 1121 0 0
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Figure 2. Nesting beach priority category (C) based on loggerhead sea turtle nesting frequency (A) and the proportion
of nest GPS locations exposed to modeled wave wash-over (B). Any future consideration for addressing wave exposure
impacts would vary with the proportion of nesting exposed to waves. For example, within the nine “very high priority”
beaches, three have a “very high” nesting frequency and “very high” wave exposure and two have a “very high” nesting
frequency and “low” wave exposure (D).
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3.2. Modeled Spatial Extent of Wave Exposure

The wave runup model correctly identified the presence or absence of wave wash-over
at any point during a given nest’s incubation 89.2% of the time. Chi-squared analyses
indicated a statistically significant relationship between modeled and reported in situ
wave wash-over (p < 0.001). False positives (i.e., modeled wave wash-over when no wash-
over was reported in situ) were common (33.0%), indicating that the model tended to
over-identify affected nesting locations.

The majority of wave exposure was concentrated around the narrow beach face and
onto the berm crest (i.e., the shore-parallel ridge where the sloped beach face transitions
to the flat berm above the swash zone, Figure 3). Nests from 2016 to 2019 exhibited a low
average risk of exposure (12.2 ± 24.3% SD, meaning only ~12% of daily TWL estimates from
2016–2019 reached nest GPS locations on average). Nests with reported in situ wave wash-
over had significantly higher modeled risk of wave exposure (13.6 ± 25.0%, n = 1665) than
non-washed over nests (9.9 ± 21.9%, n = 3908, ANOVA p < 0.001). Nests reported as either
partially or completely washed out exhibited still higher modeled risk of wave exposure
(25.1 ± 34.4%, n = 79, and 17.3 ± 29.0%, n = 1121, respectively). Despite the low overall
risk across the four-year period, storm conditions present during the 2016 to 2019 nesting
seasons resulted in modeled wave exposure which impacted a significant percentage of
the available nesting area at each nesting beach in the Florida Panhandle (50.4 ± 7.5% SD,
range: 36.4–65.9%, Table 3: Proportion Area Exposed). This area encompassed, on average,
34.2% of the nest GPS locations (±17.9% SD, range: 0–77.3%, Figure 2B, Table 3: Proportion
Nesting Exposed).
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Table 3. Nesting beach prioritization for future consideration of wave exposure impacts based on the mean nesting frequency and the proportion of nest GPS locations exposed to modeled
wave activity during the 2016 to 2019 nesting seasons. Nesting beaches are presented according to the mean number of at-risk nests (i.e., nest frequency multiplied by the proportion of
nesting exposed). * Denotes nesting beaches in the highest quartile of nesting frequency and highest quartile of wave exposure. † Denotes nesting beaches in the highest quartile of nesting
frequency and lowest quartile of wave exposure.

Beach Name Figure 1
Code

Mean Nest
Frequency (n yr−1)

Nest Frequency
Category

Proportion Area
Exposed

Proportion Nesting
Exposed

Wave Exposure
Category

Mean Nests at Risk
(n yr−1) Priority Category

* Saint Joseph Peninsula State Park BB 158.5 Very High 0.527 0.541 Very High 85.75 Very High
Saint Joseph Peninsula CC 194.25 Very High 0.532 0.404 High 78.48 Very High
† Saint George Island HH 372.75 Very High 0.39 0.141 Low 52.56 Very High

* Cape San Blas EE 64 Very High 0.588 0.773 Very High 49.47 Very High
† Cape Saint George Island GG 248 Very High 0.452 0.146 Low 36.21 Very High

Tyndall Air Force Base Y 80.75 Very High 0.656 0.443 High 35.77 Very High
* Cape San Blas AFB DD 67.75 Very High 0.611 0.517 Very High 35.03 Very High
Saint Vincent NWR FF 91.75 Very High 0.562 0.351 High 32.20 Very High

Saint George Island State Park II 81.75 Very High 0.5 0.306 High 25.02 Very High
Panama City Beach W 46.75 High 0.426 0.497 High 23.23 High

Pensacola Beach E 27.25 High 0.483 0.358 High 9.76 High
Mexico Beach Z 16 Moderate 0.474 0.547 Very High 8.75 High

Eglin AFB East K 19 High 0.424 0.421 High 8.00 High
Perdido Key A 11.67 Moderate 0.426 0.657 Very High 7.67 High

GINS—Fort Pickens D 24.75 High 0.546 0.222 Low 5.49 High
GINS—Santa Rosa F 21 High 0.424 0.25 Moderate 5.25 High

Walton East U 23.5 High 0.571 0.223 Moderate 5.24 High
Saint Joe Beach AA 14.25 Moderate 0.463 0.333 High 4.75 Moderate
Miramar Beach O 8.33 Moderate 0.556 0.52 Very High 4.33 Moderate

GINS - Perdido Key C 33 High 0.456 0.129 Low 4.26 Moderate
Eglin AFB West I 25.67 High 0.42 0.156 Low 4.00 Moderate
Navarre Beach G 5 Low 0.659 0.667 Very High 3.34 Moderate

Saint Andrews State Park X 13.5 Moderate 0.551 0.241 Moderate 3.25 Moderate
Walton West Q 10.75 Moderate 0.563 0.302 Moderate 3.25 Moderate

Eglin Air Force Base H 11 Moderate 0.515 0.273 Moderate 3.00 Moderate
Grayton Beach State Park R 4.75 Low 0.48 0.526 Very High 2.50 Moderate

Walton Mid S 9 Moderate 0.553 0.25 Moderate 2.25 Low
Okaloosa Mid L 5.75 Low 0.441 0.261 Moderate 1.50 Low
Okaloosa East N 3 Low 0.556 0.5 Very High 1.50 Low

Topsail Hill State Park P 10 Moderate 0.515 0.133 Low 1.33 Low
Perdido Key State Park B 5 Low 0.389 0.2 Low 1.00 Low

Okaloosa West J 4 Low 0.364 0.167 Low 0.67 Low
Henderson Beach State Park M 2.67 Low 0.5 0.25 Moderate 0.67 Low

Deer Lake State Park T 1.33 Low 0.6 0.25 Moderate 0.33 Low
Bald Point State Park NN 1.5 Low 0.467 0 Low 0.00 Low
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3.3. Identification of Priority Nesting Beaches Based on Exposure to Waves

Nine beaches ranked as “very high” priority for future consideration when considering
mean annual nesting frequency and the proportion of nesting locations exposed to modeled
wave activity (Table 3: Priority Category, Figure 2C). Each of these nesting beaches were
located in the eastern half of the Florida Panhandle and represent 79% of loggerhead
nesting in the Florida Panhandle (Table 3: Nest Frequency Category, Figure 2A). The
percent of nesting locations during our study exposed to modeled waves was highly
variable within these priority beaches—ranging from 14.1% to 77.3%. Three beaches (Saint
Joseph Peninsula State Park, Cape San Blas, and Cape San Blas Air Force Base) ranked as
“very high” for wave exposure while four beaches ranked “high” and two ranked “low”
(Saint George Island and Cape Saint George Island; Table 3: Wave Exposure Category,
Figure 2B,D).

4. Discussion

Wave exposure is a significant threat to incubating loggerhead turtle nests in the
Florida Panhandle, with approximately 17% of nests laid during our study being completely
lost to wave wash-out while another 25% reported in situ wave wash-over at least once
during the nest’s incubation resulting in reductions in hatching and emergence successes of
45% and 46%, respectively, compared to their undisturbed counterparts. Such reductions
in nest productivity are consistent with values reported from other sea turtle species
and nesting locations during wave exposure, inundation, protracted rainfall, or storm
activity [4,5,9,39,54,64–67]. For example, nests exposed to inundation or partial wave
wash-out from 2002 to 2009 were reported by Brost et al. [39] to have declines in hatching
and emergence success ranging from 28% to 50% for loggerhead turtle nests—and 28% to
43% for green turtle nests—in South Brevard County Beach on Florida’s Atlantic seaboard.

Given the potential impacts from wave exposure, identifying where and under what
conditions nests are at increased risk can be a powerful tool for sea turtle conserva-
tion [27,53,64]. For example, Osorio et al. [52] created flood maps based on the nearshore
hydrodynamic environment to identify safe sea turtle nesting areas on Gorgona Island,
Colombia and Ware et al. [53] modeled wave exposure on nesting beaches along the Fort
Morgan Peninsula of Alabama, USA. Information from the wave runup modeling con-
ducted here together with nesting frequency data allowed us to identify nine nesting
beaches concentrated in the eastern Florida Panhandle where future efforts (e.g., research,
habitat preservation, management strategies) may be most effective at addressing wave ex-
posure. From 2016 to 2019, these nine beaches represented 79% of the total loggerhead sea
turtle nesting numbers in the region and within these beaches, 430 nest locations (i.e., 25%
of total loggerhead nesting in the Panhandle) were potentially at-risk from wave exposure.

Studies such as this one that use remote sensing and modeling approaches within
a geographic information system can be used to identify priority locations or conditions
which may warrant management actions when considering wave exposure at sea turtle
nesting grounds. The wave runup modeling approach used here is customizable to satisfy
a range of other research or management questions including risk assessments under
current or future environmental conditions [68–72]. Using past nest distributions, projected
changes in wave exposure can be mapped to account for projected changes in beach slope
(e.g., beach renourishment, coastal armoring), tide height (e.g., sea level rise), and wave
energy (e.g., climate change-induced alterations to wave climatology or cyclonic storm
intensity) [73–75]. The maps can be modified to show wave exposure for a given year,
average monthly conditions (using mean values from buoy and tidal station climatologies),
or specific storms [76–78]. Such ‘snapshots’ can be useful for modeling changes in wave
exposure through time, linking the spatiotemporal frequency of sea turtle nests throughout
the nesting season to temporal changes in wave climatology or storm frequency, to assess
alterations to habitat use patterns in response to wave exposure changes, or studying the
effects of a given event on beach geomorphology and ecology [57,79–82].
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However, as presently calculated, the maps are not predictive of future wave ex-
posure but may describe the likelihood of future exposure. Nests falling within current
high-exposure areas will likely face a greater risk of wash-over, wash-out, or inundation,
assuming future conditions are similar to those of the present. To better inform future
risks of wave exposure, historical shoreline change rates should be incorporated into the
wave modeling exercise to predict changes in nesting beach availability and potential wave
exposure. Importantly, the current wave exposure maps can only identify areas of potential
exposure to waves and not the direct result or impact of the exposure.

This leaves several knowledge gaps which need to be addressed before any manage-
ment action or intervention takes place. These questions include [4,7,9,64,83–89]:

1. At what frequency or duration of exposure does wave wash-over cause significant
harm to a developing sea turtle embryo?

2. Do these exposure thresholds vary with the developmental stage of the embryo?
3. How does this tolerance, or lack thereof, vary across species and populations?
4. What are the benefits on non-lethal levels of wave exposure (e.g., reduced incubating

temperature, increased male production, larger body size, faster crawling speeds)?
5. Would relocating the nest introduce other threats which may cause as much or greater

impacts than wave exposure in the nest’s current location (e.g., warmer incubating
temperature leading to feminization or hyperthermia, reduced sand moisture leading
to desiccation, increased predation or disorientation, movement-related mortality)?

Answering these questions was beyond the scope of this study since nests were only
reported (1) in a binary washed over/not washed over rather than the number and dates
of wash-over events throughout a nest’s incubation, (2) there was no hatchling sex ratio
assessment as part of the nest inventory, and (3) nest-to-surf mortality of the emergent
hatchlings was not determined.

Any management action taken to address wave exposure would have to be based on
the ecological costs and benefits of the considered action, as well as its logistical, regulatory,
and/or economic requirements and any additional data requirements necessary to make
an informed decision [4,84,85,90]. For example, nest relocation is a commonly suggested
management intervention which has shown promise in reducing nest productivity losses
due to wave exposure in certain circumstances [91–97]. However, this intervention may
require a significant investment in manpower and equipment which may not be available
or reasonable given the nesting beach location, distance to a “safer” incubation site, and
number of nests deposited on the original nesting beach [4,84,85,98]. Nest relocation may
also cause embryonic mortality during the egg transfer, reduce hatching and emergence
success, increase rates of predation, and increase incubation temperatures leading to a
highly female-biased hatchling sex ratios or even lethality [85,99–102]. Determining when
nest relocation or any other management action is necessary and closing key knowledge
gaps enumerated earlier will be critical to improving sea turtle population resistance and
resilience to a myriad of threats including wave exposure [4,45,53,84,85,103].

Different conservation actions might be required depending on the wave exposure
conditions and nesting frequency at each beach. Three priority beaches (i.e., Saint Joseph
Peninsula State Park, Cape San Blas, and Cape San Blas Air Force Base) fall in the top quar-
tile of both nesting frequency and proportion of nest GPS locations exposed to wave runup.
These beaches are prime locations to investigate the previously discussed knowledge gaps
related to the need for, and the consequences of, nest management strategies. Similarly,
in-depth studies are required to assess relative threats at the particular beach and the ethical
and practical implications of an active, interventionist approach to nest management. At
the opposite end of the spectrum, two priority beaches (i.e., Saint George Island and Cape
Saint George Island) are in the top quartile for nest frequency but the bottom quartile for
wave exposure. These beaches may represent refugia for sustained hatchling production,
assuming they are otherwise suitable and productive nesting habitat [45,84]. Preserving
such beaches should be of importance because it would allow incubating nests to proceed
without human interference or unintended consequences resulting from management
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interventions implemented to reduce negative impact of wave exposure. Considering
projected rise in sea level and increase in hurricane frequency and/or intensity over the
next several decades, beaches with extensive nesting and low wave exposure may provide
resilience to the Northern Gulf of Mexico Loggerhead Recovery Unit as a whole through
sustained hatchling production [37,46,86].

5. Conclusions

Through the use of a geographic information system coupled with remote sensing
and wave runup modeling, this study outlined the significant threat posed by wave
exposure to loggerhead sea turtles nesting in the Florida Panhandle. Nine beaches in the
eastern Florida Panhandle were identified as priority sites for future efforts to investigate
research, habitat preservation, and management strategies to address wave exposure-
related reductions in nest productivity. Few other studies have integrated wave exposure
into species management or habitat suitability models, despite the data being widely
accessible in some cases. This flexible approach for threat assessment can be readily applied
to other sea turtle species or nesting beaches to direct basic biological and ecological
questions needed for endangered species management, especially given the potential
for model improvements. In addition, wave runup modeling can be used to inform
multi-species management including shorebirds, beach mice, and human uses of the
coastal system.
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temporally- and spatially-averaged digital elevation model of nesting beach in the Florida Panhandle,
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productivity by nesting beach from 2016 to 2019, File S1: offshore wave height and wave period
data summary RMarkdown, File S2: tidal height data summary RMarkdown, File S3: wave runup
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