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Abstract: The probe of China’s first Mars exploration mission, Tianwen-1, has been successfully
launched. It will carry out scientific exploration on the topography, soil characteristics, water ice,
climate, ionosphere, and physical fields of Mars. Different from other rovers landing on the moon and
Mars, the Zhurong rover is equipped with a full polarimetric subsurface penetrating radar (FP-SPR)
system for the first time. The radar’s mission is to depict the shallow subsurface structure of Mars
and search for possible water ice. Therefore, in this paper, a 3D realistic structure model is established
and numerically simulated based on the possible subsurface structure of Utopia Planitia (the landing
area). Influencing factors such as topographical fluctuations, rocks, water ice, and the variation of
dielectric constant of different layers are added to the model. The analysis of the acquired FP-SPR
data set shows that the two-dimensional principal component analysis (2D-PCA) method can extract
effective reflected signals from the radar data with noise interference and improve the data quality.
These clearly imaged targets may be water ice blocks, so the application of 2D-PCA to FP-SPR data
increases the imaging quality of suspected water ice targets. The results of this paper are the basis for
future processing of the measured FP-SPR data on Mars, which will help to identify more details of
subsurface structures.

Keywords: Zhurong; Utopia Planitia; 3D realistic structure model; FP-SPR; water ice detection

1. Introduction

The probe of China’s first Mars exploration mission Tianwen-1 was successfully
launched on 23 July 2020, and aims to complete orbiting, landing, and roving in one
mission. It will carry out a global and comprehensive orbital exploration of the entire
planet and conduct high-resolution detailed exploration in the landing area [1]. Tianwen-1
is comprised of an orbiter, a lander, and a rover. On 22 May 2021, the Zhurong rover
successfully reached the pre-selected landing area in the southern Utopia Planitia of
Mars. The scientific payloads on the rover include a subsurface penetrating radar (SPR), a
surface composition detector, a surface magnetic field detector, a climate detector, and two
cameras to characterize Mars’ topography, geological structure, soil characteristics, water
ice distribution, physical field, Martian climate, and surface material composition [2]. The
SPR carried on Zhurong consists of two channels for the completion of Martian terrain,
subsurface structures, and water ice detection missions. In the low frequency mode, two
monopole antennas installed under the apical plate of the rover are used, which operate
in the frequency range 15 to 95 MHz. In the high frequency mode, the Vivaldi antennas
installed on the front plate are used for full polarimetric exploration, and their operating
frequency ranges from 0.45 to 2.15 GHz [3].
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Water ice detection is an important way to explore for life on Mars. The Martian
hydrological model shows that due to the low temperature, water ice can be distributed
on the surface at a latitude greater than 40◦, and it can be stable at a depth of 1~2 m in
low latitude areas [4,5]. The radar installed on the orbiter has been successfully used for
planetary detection many times, but only a few landing patrol missions are equipped with
ground penetrating radar. The CH1 of Lunar Penetrating Radar on Chang’e-3 mission
obtained poor quality radar data, which may be caused by the noise generated by the
instrument and the complicated lunar acquisition situation [6]. Bandpass filtering is a
commonly used method to improve the signal-to-noise ratio of radar data, and it is used in
processing radar data from Chang’e-3 and Chang’e-4 missions [7,8]. However, bandpass
filtering cannot completely filter out noise. Combining it with other methods can further
improve the data quality. The high-frequency radar installed on the rover of Tianwen-1 can
obtain full polarimetric subsurface penetrating radar (FP-SPR) data, so it is possible to find
the correlation between the data set to improve data quality.

In this paper, a 3D realistic structure model is established based on the possible
subsurface structure of Utopia Planitia (the landing site of Zhurong rover). The model
contains influencing factors such as topographical fluctuations, rough interface, rocks
buried in the soil, and water ice that may exist subsurface. The model consists of four
layers, simulating the structure of Utopia Planitia from surface to two meters underground.
For FP-SPR simulation data with Gaussian white noise, the two-dimensional principal
component analysis (2D-PCA) method is used to extract the effective reflection signal from
the background noise to improve the data quality [9]. These clearly imaged signals include
reflections from water ice blocks, so the application of 2D-PCA to FP-SPR data increases
the imaging quality of suspected water ice targets. The research results in this paper lay
the foundation for future processing of Zhurong’s FP-SPR data, which will help to identify
more details of the subsurface structure.

2. Establish a 3D Realistic Structure Model of Utopia Planitia

The chronostratigraphic age of the Lowland units in the northern hemisphere of Mars
is concentrated in the Late Hesperian and Mid-Aazonian, and its material composition is
mainly lava, pyroclastic rocks, water erosion sediments, and glacial clastic sediments [10].
In the Elysium-Utopia region, extensive basaltic lava flows erupted from the Elysium
volcanic province covered the Vastitas Borealis Formation (VBF) unit [11]. Recent research
indicates that the young terrain at 30–60◦ latitude in the northern hemisphere represents
the recent and now-decaying expansion in the low latitude region. It is inferred to be an
extensive and longer term, latitude-dependent near-surface ground-ice-cemented dust or
loess layer [12]. Mars undergoes oscillations which strongly affect the climate cycle and
lead to north polar layered deposits exchanging substantial amounts of water with the mid-
latitudes over the course of an obliquity cycle, and sometimes causes Mars to have abundant
ice coverage over a wide range of latitudes [13]. The lower and middle latitudes of Utopia
Planitia showing many types of landforms suggest the presence of ice-rich permafrost,
such as thermal contraction polygonal networks and scalloped terrains [14]. The periglacial
landforms in Utopia Planitia including polygons and pingo-like features were suggested to
be developed by melting of ground-ice and the sublimation process [15]. The estimate of
the stability of water ice at the surface of Mars indicates that water ice should be stable at
the mid-latitude at depth >1 m and at depth <1 m for higher latitudes [14]. As a result of
volcanic flows and crater ejecta, there are a considerable amount of rocks buried within the
near surface [16]. The global rock survey results of the Mars Global Surveyor show that the
surface of Mars is mainly covered by basalt and andesite. The older surface in the south is
rich in basalt, and andesite is concentrated in the younger northern plains [17].

The above analysis shows that the subsurface situation of Utopia Planitia may be: the
basalt formation is covered with ice-rich permafrost; after the glacier melts, it condenses
into water ice blocks locally, and the water ice sublimates within a depth of one meter
below the surface of Mars to form dry eolian sediment. We considered the case where the
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subsurface rocks are andesite. In this case, the dielectric constants of rock and water ice
are less than that of the formation, and the dielectric constants of rock and water ice are
similar. The reflection signals of rock and water ice are relatively weak, so it is difficult to
extract effective signals and distinguish these two types of anomalous bodies. Based on
the possible subsurface structure of Utopia Planitia and the penetrating depth of FP-SPR, a
four-layer 3D realistic structure model was established (Figure 1). The size of the model
is 4.5 m × 0.8 m in the horizontal direction and 2 m in the depth direction. The model’s
parameters are shown in Table 1. From the surface to the bottom, there are regolith, dry
eolian sediment, ice-bearing eolian sediment, and basalt formations filled with water ice in
pores. The estimated dielectric constant is 2.4 for drift (sand), 2.8 for cloddy (soil) measured
by the Viking Landers and Mars’ average visible reflectivity [16]. The permittivity is
5.1 when the eolian sediment has a porosity of 50% and is completely filled with water
ice [18]. When the porosity of the basalt formation is 10% and 50% of which is filled with
water ice, the real part of the dielectric constant is 6.9 [18]. The dielectric constant of andesite
is 3.5 quoted from the study of Jin [19]. On the top of the model, a vacuum layer (0.4 m thick
above the surface) is placed so that the emitter can be placed 0.3 m above the surface. In
the process of model design, influencing factors such as topographical fluctuations, rough
interface, rocks buried in the soil, and possible water ice were added to make the model
more realistic. The model contains three pieces of pure water ice blocks, whose centers
in x, y and depth directions are (0.96, 0.55, 1.04), (1.44, 0.41, 1.22), and (2.94, 0.40, 1.16) in
meters (red circles in Figure 1). The positions of water ice blocks in the depth direction are
designed according to the depth at which the water ice can exist stably. The positions of
water ice blocks in x and y directions are randomly selected in the model, and there is no
contact between water ice blocks and rocks. The specific algorithms for constructing the
model include using “Diamond-Square algorithm” to generate 3D stochastic fractal terrain,
and abrasive grains to simulate irregular rocks and water ice blocks [20].
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Figure 1. The 3D realistic structure model of Utopia Planitia.

Table 1. Parameters of the 3D realistic structure model.

Interfaces

Types Range of Fluctuation (m)

Regolith surface ±0.02
Eolian sediment (dry/icy) ±0.03

Ice-bearing eolian sediment/ Basalt formation ±0.05

Rocks &
Water ice

Types Quantity Diameter (m) Relative permittivity

Rocks 21 0.05–0.35 3.50

Water ice 3 0.10–0.30 3.15
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Table 1. Cont.

Layers

Types Depth (m) Relative Permittivity

Regolith 0–0.10 2.4
Dry eolian sediment 0.10–0.85 2.8

Ice-bearing eolian sediment 0.85–1.55 5.1
Ice-bearing basalt formation 1.55–2.00 6.9

3. Simulation of the 3D Realistic Structure Model

In this paper, 3D finite-difference time-domain (FDTD) approach has been used to
simulate the 3D realistic structure model of Utopia Planitia to obtain FP-SPR data. The
main code of FDTD was written by Feng et al. [21]. The FP-SPR system includes four
polarization modes, VV mode, HH mode, VH mode, and HV mode, in which HH and
VV are co-polarization modes, VH and HV are cross-polarization modes. The 1.3 GHz
Ricker wavelet is selected as the transmitting source. In the forward simulation process,
the transmitter is placed 0.3 m above the ground surface, the receiver and the transmitter
are at the same height, and the distance between the two is 0.3 m. We arrange the survey
line along the x direction when y is equal to 0.37 m, and the distance between the survey
points is 2 cm. The position of the survey line is shown in white in Figure 1. We obtain the
FP-SPR data through forward simulation of the 3D model, and the normalized data can be
represented as follow:

[S] =
[

SVV SVH
SHV SHH

]
, (1)

where SVV, SHH, SVH, and SHV are the radar data in VV, HH, VH, and HV polarimetric
modes, respectively. During the FP-SPR detection process on Mars, the signal artifacts
generated by the system and the electromagnetic interaction between the system and the
metallic rover are to be expected. We ignored the artifacts generated by the rover on the
radar response in simulation, because the overall coupling between the full polarimetric
radar antennas and the rover structure is minimized by adjusting the angle between the
antenna element and the rover to 45◦ [22]. In addition, the SPR system was calibrated
and tested on earth before launching, and the false reflections caused by the rover can be
eliminated through the comparative analysis of the data of earth and Mars [23]. In addition
to the interference from the rover and other instruments, Mars also oscillates, which affects
the climate cycle. Mars contains an atmosphere and sometimes there are sandstorms, so the
FP-SPR will also be disturbed by the Martian environment. Therefore, Gaussian noise is
added into the normalized FP-SPR data to simulate the strong noise interference received
by the radar in deep space exploration. The formula used to add noise is as follows:

SN
xy =

Sxy

max(|S|) +
max(|S|)

10
SNR

20
·Randn(0, 1), (2)

where the SN
xy and Sxy represent the noise added signal and the original signal, respectively.

x and y represent the polarimetric modes of receiving and transmitting electromagnetic
waves, respectively. Randn(0,1) denotes the Gaussian noise with the mean and variance are
0 and 1, respectively. SNR is the signal-to-noise ratio (SNR) of the noise. In this text, the
SNR is set to be 15. The noisy FP-SPR data can be expressed as:[

SN
]
=

[
SN

VV SN
VH

SN
HV SN

HH

]
. (3)

The noise added data are shown in Figure 2. In the radar profile of the co-polarization
modes, only reflections from the stratum interfaces can be seen. In the cross-polarization
modes, the response from the smooth interfaces is weaker than that of the co-polarization
modes due to the weak polarization rotation effect. Under the strong noise interference,
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the effective reflection information is masked and difficult to be picked up directly from
the acquired radar profile.
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For the acquired noise added FP-SPR data, the preliminary processing including the
direct wave removal and the weakening of surface reflections is performed. Bandpass
filtering is used to weaken the high-frequency and low-frequency interference caused by
background noise; Parameters for the filter included a low stopband cutoff frequency, a
low passband cutoff frequency, a high passband cutoff frequency, and a high stopband
cutoff frequency of 0.2, 0.6, 1.8, and 2.3 GHz. Then, the velocity analysis method is used
to determine the interval velocity of each layer, and then the root mean square velocity
of each depth position is obtained. The root mean square velocity is used for Kirchhoff
integral migration to make the diffraction wave return to a diffraction point (Figure 3).
After processing, FP-SPR data can be expressed in the following form:[

SP
]
=

[
SP

VV SP
VH

SP
HV SP

HH

]
, (4)

where SP
VV , SP

VH , SP
HV , and SP

HH are the processed radar data in VV, HH, VH, and HV
polarimetric modes, respectively. In our model, the ground surface is horizontal, so the
reflection signal of the surface is lost after processing, but the arriving time of the ground
surface can be obtained by the antenna height and the propagation velocity of electromag-
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netic wave in vacuum. The reflection information from the stratigraphic interface and some
interlayer abnormal targets can be picked up from the radargrams of the co-polarization
modes. It is difficult to pick up the positions of the reflective interfaces in the profile of
cross-polarization. Bandpass filtering and Kirchhoff integral migration processing reduce
the background noise, and the position information of the stratigraphic interface and
reflector can be obtained from the profile. Since the data of the four polarization modes
should contain the reflected signals from the anomalies, we can extract effective signals
based on the correlation of the data to improve data quality.

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 12 
 

 

surface can be obtained by the antenna height and the propagation velocity of electromag-

netic wave in vacuum. The reflection information from the stratigraphic interface and 

some interlayer abnormal targets can be picked up from the radargrams of the co-polari-

zation modes. It is difficult to pick up the positions of the reflective interfaces in the profile 

of cross-polarization. Bandpass filtering and Kirchhoff integral migration processing re-

duce the background noise, and the position information of the stratigraphic interface and 

reflector can be obtained from the profile. Since the data of the four polarization modes 

should contain the reflected signals from the anomalies, we can extract effective signals 

based on the correlation of the data to improve data quality. 

 

Figure 3. Profiles of preliminary processed FP-SPR data. (a) VV mode. (b) HH mode. (c) VH mode. (d) HV mode. 

4. Extract Effective Reflection Signal Based on 2D-PCA 

The principal component analysis (PCA) is a widely used feature extraction tech-

nique in the field of SAR, but the image matrices must be transformed into vectors previ-

ously, which will destroy the structure of the 2D SAR image [9]. The 2D-PCA method 

directly extracts features from 2D SAR image matrices, which can keep and extract the 

scattering information of the target. 

{𝑆𝑉𝑉
𝑃 , 𝑆𝐻𝐻

𝑃 , 𝑆𝑉𝐻
𝑃 , 𝑆𝐻𝑉

𝑃 } is the imagery data set of m*n dimensions, X is the projection space 

represented by the n-dimensional column vector, and Y is the m-dimensional projection 

eigenvector that projects matrix 𝑆𝑥𝑦
𝑃  to X [24]: 

Figure 3. Profiles of preliminary processed FP-SPR data. (a) VV mode. (b) HH mode. (c) VH mode. (d) HV mode.

4. Extract Effective Reflection Signal Based on 2D-PCA

The principal component analysis (PCA) is a widely used feature extraction technique
in the field of SAR, but the image matrices must be transformed into vectors previously,
which will destroy the structure of the 2D SAR image [9]. The 2D-PCA method directly
extracts features from 2D SAR image matrices, which can keep and extract the scattering
information of the target.

{SP
VV , SP

HH , SP
VH , SP

HV} is the imagery data set of m × n dimensions, X is the projec-
tion space represented by the n-dimensional column vector, and Y is the m-dimensional
projection eigenvector that projects matrix SP

xy to X [24]:
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Y = SP
xyX, (5)

where the Sp
xy represents the processed FP-SPR data, x and y represent the polarization

mode of transmitter and receiver, respectively. In the 2D-PCA algorithm, the optimal
projection vector X depends on the dispersion degree of the sample after projection. The
higher the dispersion degree is, the stronger the resolution of the projection vector X to
the samples is [24]. The trace of the covariance matrix constructed by projected features is
introduced to measure the optimal projection vector X. The trace of covariance matrix is
defined as follows:

J(X) = trace(Sx) (6)

where Sx denotes the covariance matrix of the projection feature vectors. The covariance
matrix Sx can be expressed as:

Sx = E(Y− EY)(Y− EY)T = E
[(

SP
xy − ESP

xy

)
X
][(

SP
xy − ESP

xy

)
X
]T

. (7)

Therefore,

J(X) = trace(Sx) = XT
[

E
(

SP
xy − ESP

xy

)T(
SP

xy − ESP
xy

)]
X. (8)

The image covariance matrix G is defined as:

G = E
[(

SP
xy − ESP

xy

)T(
SP

xy − ESP
xy

)]
. (9)

when X takes the eigenvector corresponding to the maximum eigenvalue of G, J(X) takes
the maximum value. The covariance matrix G can be directly calculated from the original
training image sample matrix by:

G =
1
4

[(
SP

VV − S
)T(

SP
VV − S

)
+
(

SP
VH − S

)T(
SP

VH − S
)
+
(

SP
HV − S

)T(
SP

HV − S
)
+
(

SP
HH − S

)T(
SP

HH − S
)]

, (10)

where the notation T is the transposition operation; S represents the average of all matrices
which is given by:

S =
1
4

(
SP

VV + SP
HH + SP

VH + SP
HV

)
, (11)

and the image of S is shown in Figure 4a. Finally, J(X) is converted to:

J(X) = XTGX. (12)

We can obtain the eigenvalues and eigenvectors of the covariance matrix G. The
eigenvalues are arranged from large to small, and the eigenvectors corresponding to the
first L eigenvalues are selected to form the projection space, X = [x1, x2, . . . , xL] (L < n),
xi is the eigenvector corresponding to the eigenvalue, and each eigenvector is orthogonal
to each other. In this text, the L is set to be 70. Such an optimal vector X can maximize J(X).{

[x1, x2, . . . xL] = argmaxJ(X)
xT

i xj = 0, i 6= j, i, j = 1, 2, · · · , L . (13)
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Figure 4. 2D-PCA denoising effect comparison. (a) Average profile of FP-SPR data after Kirchhoff integral migration
processing. (b) Profile reconstructed by 2D-PCA.

The reconstructed matrix S̃ of the data set S can be evaluated by:

S̃ = SXXT , (14)

and the profile is shown in Figure 4b. Comparing the reconstructed profile with the
average profile after preliminary processing, it can be found that the 2D-PCA method
retains the reflection information of the original image, makes the background smoother,
and highlights the positions of the effective reflection signals.

In the field of ground penetrating radar, the instantaneous amplitude reflects the
energy size and energy attenuation of the reflected signal at a given moment, which can
infer the change of underground medium properties. Therefore, it can be used to highlight
the change of medium. In order to analyze the denoising effect of the 2D-PCA method more
clearly, the difference between them is further analyzed by instantaneous amplitude. The
instantaneous amplitudes of the two profiles are shown in Figure 5. The image entropy (IE)
is introduced to quantitatively analyze the denoising effect of 2D PCA which is given by:

IE =

∣∣∣∣∑m ∑n

∣∣∣S̃(m, n)
∣∣∣2∣∣∣∣2

∑m ∑n

∣∣∣S̃(m, n)
∣∣∣4 , (15)

where m and n denote the vertical and horizontal size of the matrix. The larger IE value
indicates the greater interference of noises [25]. In this text, the IE values before and after
denoising are 4.79 × 104 and 4.73 × 104 within 5–11.5 ns, and 3.81 × 104 and 3.14 × 104

within 15–22 ns. After 2D PCA processing, the image entropy is reduced, the clutter is
effectively minimized. Therefore, we have achieved the purpose of reducing the back-
ground noise and improve the data quality for subsequent analysis. These clearly imaged
targets may be water ice blocks, so the application of 2D-PCA to FP-SPR data increases the
imaging quality of suspected water ice targets.
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5. Discussions

In this section, the denoising effects of 2D-PCA and Pauli decomposition are discussed.
The processed FP-SPR data can form the scattering matrix shown in Formula (4). Since the
antenna system satisfies the principle of reciprocity, VH and HV are regarded as the same
polarization mode. So, SVH = SHV and the Formula (4) can be changed to (16).[

SP
]
=

[
SP

VV SP
VH

SP
VH SP

HH

]
. (16)

Pauli decomposition is a method of extracting polarization characteristics by defin-
ing different polarimetric basis matrices. Different polarimetric basis matrices represent
different types of ground objects. The Pauli basis {[s]a, [s]b, [s]c} denotes single scattering
mechanism, even scattering mechanism, and volume scattering mechanism, respectively,
which can be represented by the following matrix:

[S]a =
1√
2

[
1 0
0 1

]
, [S]b =

1√
2

[
1 0
0 −1

]
, [S]c =

1√
2

[
0 1
1 0

]
. (17)

Based on the defined Pauli basis, the scattering matrix
[
SP] can be written as follows:[

SP
]
= α[S]a + β[S]b + γ[S]c, (18)

where α, β, and γ are the coefficients representing the contribution of [S]a, [S]b, and [S]c to[
SP], respectively [26]. They are given by:

α =
SHH + SVV√

2
, β =

SHH − SVV√
2

, γ =
√

2SVH. (19)

Pauli decomposition is applied to the processed FP-SPR data set, and three parameters,
α, β, and γ, are obtained. We fuse the above three parameters to draw the RGB image,
in which single scattering is represented by blue, even scattering is represented by red,
and volume scattering is represented by green, the result is shown in Figure 6a. It can be
found that the subsurface scattering mechanism is dominated by single scattering. Both the
stratum interfaces and interlayer reflectors present strong single scattering characteristics,
which can be used to locate the underground anomalies; due to the influence of roughness
added in the design of formation, the interfaces exhibit not only single scattering mecha-
nism but also the phenomenon of even scattering; the entire profile contains weak volume
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scattering, and effective underground scattering information is not specified. This color
assignment method can distinguish three scattering mechanisms in the image, but it is
not clear enough to use blue to distinguish reflectors, so we use green to represent single
scattering, red to represent even scattering, blue to represent volume scattering, and get
the result shown in Figure 6b. In this image, the green single scattering conceals the other
two scattering intensities, but the underground reflectors can be located more clearly.
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Pauli decomposition extracts the effective reflection information from the profile based
on the polarization properties of the target to achieve the purpose of denoising. 2D-PCA
is a widely used feature extraction method. Compared with Pauli decomposition, its
advantage lies in that it does not destroy the structure of the original profile, so that the
reconstructed image retains the waveform information and can be further processed by
other methods in the future. However, the extraction ability of the reflector is slightly
weaker than that of the Pauli decomposition method, the background interference removal
effect is weak, the difference between the energy cluster and the background amplitude
is not obvious enough, and part of the strong interference also gathers in the form of
energy clusters, which brings disturbance to artificial interpretation. Therefore, in the
process of FP-SPR data processing, the choice should be based on the advantages of the
two methods: choosing the Pauli decomposition method can pick up the underground
reflection information more clearly; choosing the 2D-PCA method, the denoising ability is
slightly weaker, but the structure of the original image is not destroyed, and the waveform
signal in the profile is retained.

6. Conclusions

In this paper, a 3D realistic structure model is established and numerically simulated
based on the possible subsurface structure of Utopia Planitia. Influencing factors such
as topographical fluctuations, rough interfaces, rocks, and water ice are added to make
the model more realistic. Then multiple 3D forward simulations are performed along
the x direction at y = 0.37 m to obtain FP-SPR data. Gaussian noise is added to the
data to simulate the background noise interference of the radar during patrol detection.
Preliminary processing results show that the position of the formation interfaces and
some interlayer reflectors can be identified in the co-polarization profile. However, since
the polarization rotation effect of the cross-polarization mode on the smooth interface
is weak, the effective signal in the cross-polarization profile is covered by background
noise and is difficult to identify. Then, we introduced the 2D-PCA method to achieve
the purpose of weakening the background noise and extracting the effective reflected
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signal. The reconstructed radar profile can more clearly image the underground targets,
which contain the suspected water ice signal, so the application of 2D-PCA to FP-SPR data
increases the imaging quality of suspected water ice targets. Finally, the denoising effects
are discussed, Pauli decomposition has stronger ability to pick up reflectors; 2D-PCA has a
weaker denoising effect, but it does not destroy the structure of the original profile, and
can retain the waveform signal.
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