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Abstract: LiDAR (light detection and ranging), as an active sensor, is investigated in the simultaneous
localization and mapping (SLAM) system. Typically, a LiDAR SLAM system consists of front-end
odometry and back-end optimization modules. Loop closure detection and pose graph optimiza-
tion are the key factors determining the performance of the LiDAR SLAM system. However, the
LiDAR works at a single wavelength (905 nm), and few textures or visual features are extracted,
which restricts the performance of point clouds matching based loop closure detection and graph
optimization. With the aim of improving LiDAR SLAM performance, in this paper, we proposed
a LiDAR and visual SLAM backend, which utilizes LiDAR geometry features and visual features
to accomplish loop closure detection. Firstly, the bag of word (BoW) model, describing the visual
similarities, was constructed to assist in the loop closure detection and, secondly, point clouds re-
matching was conducted to verify the loop closure detection and accomplish graph optimization.
Experiments with different datasets were carried out for assessing the proposed method, and the
results demonstrated that the inclusion of the visual features effectively helped with the loop closure
detection and improved LiDAR SLAM performance. In addition, the source code, which is open
source, is available for download once you contact the corresponding author.

Keywords: LiDAR; graph optimization; loop closure detection

1. Introduction

The concept of simultaneous localization and mapping (SLAM) was first proposed
in 1986 by Cheeseman [1,2]. Estimation theory was introduced into robots mapping and
position. After more than 30 years of development, SLAM technology is no longer limited
to theoretical research in the field of robotics and automation; it is now promoted in
many applications, i.e., intelligent robots, autonomous driving, mobile surveying, and
mapping [3].

The core of SLAM is to utilize sensors, i.e., a camera and LiDAR, to perceive the
environment and estimate states, i.e., position and attitude [4]. Generally, a typical SLAM
includes two parts: a front-end odometer and a back-end optimization [5]. The front-end
odometer estimates the state and maps the environment. The back-end optimization cor-
rects the cumulative errors of the front-end odometer and improves the state estimation
accuracy. In the back-end optimization, loop closure detection is also included for im-
proving the performance of the back-end optimization. Traditionally, SLAM technology
is divided according to the employed sensors, i.e., visual SLAM employs cameras as the
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sensor, while LiDAR SLAM utilizes LiDAR as the sensor to scan the environment [6–12].
Researchers have conducted numerous investigations on the above-mentioned visual and
LiDAR SLAM.

Visual SLAM, with the advantages of low cost and rich features, is widely investigated
by researchers in both the academic and industrial communities. According to the image
matching methods employed, visual SLAM is divided into two categories: features-based
SLAM and direct SLAM [6]. The first real-time monocular visual SLAM was presented in
2007 by A. J. Davison, and, the so-called Mono-SLAM, was a milestone in the development
of visual SLAM. Mono-SLAM estimates the state though matching images and tracking
the features. An extended Kalman filter (EKF) is employed in the back-end to optimize the
state estimation. Klein et al. proposed a key frame-based visual SLAM algorithm, PTAM
(parallel tracking and mapping) [7]. The front-end and back-end concepts are first revealed,
and, in PTAM, the features tracking and mapping run parallelly. In addition, PTAM first
realized non-linear optimization (NO) to replace traditional KF methods. The NO method
employs a sequence of key frames that optimize the trajectory and the map. Starting
from this, NO, rather than KF methods, became the dominant method in visual SLAM.
Based on the LTAM, ORB-SLAM was developed based on the PTAM, and it innovatively
realizes real-time feature point tracking, local light speed adjustment optimization, and
global graph optimization [8]. Shen, from the Hong Kong University of Science and
Technology, proposed a robust monocular visual-inertial state estimator (VINS) [13–15]
by fusing the pre-integrated inertial measurement unit (IMU) measurements and feature
tracking measurements to obtain high-precision visual-inertial odometry.

Since the feature points extraction and tracking are time-consuming and difficult
to meet real-time requirements, researchers have proposed some more direct methods,
i.e., LSD [16], SVO [17], and DSO [18], to improve the processing efficiency. The direct
method skips the feature extraction and directly utilizes the photometric measurement
of the camera and establishes its relationship with the motion estimation. Engel, from
the Technical University of Munich, proposed the LSD-SLAM (large direct monocular
SLAM) in 2014. In the LSD SLAM, the uncertainty of the depth, with the probability, is
estimated, and the pose map of the key frame is established for optimization. Forster et al.
released the semi-direct visual odometry (SVO) in 2014. The direct method and the feature
point method were mixed to greatly increase the speed of calculation, allowing for the
SLAM method to be suitable for drones and mobile phone handheld devices. Real-time
performance can also be achieved on low-end computing platforms. Engel’s open source
direct visual odometry (DSO), created in 2016, claimed that it could achieve five times the
speed of the feature point method, while maintaining the same accuracy. The original DSO
system was not a complete SLAM, and did not include loop closure detection and back-end
optimization functions. On this basis, other members of Engel’s laboratory implemented
stereo DSO [18] and DSO with loop closure detection (LDSO) [5].

Compared with vision cameras, LiDAR has the advantages of high accuracy, low
calculation volume, and easy to realize real-time SLAM. LiDAR actively collects the point
clouds of the environment, and it is not affected by environmental lighting conditions.
The disadvantages of LiDAR are that it is expensive, and the sensor size and power
consumption are difficult to meet the requirements of mobile smart devices. In recent
years, with the rapid development of artificial intelligence (AI) and autonomous driving,
LiDAR SLAM technology has also achieved many breakthroughs. Google revealed the
representative LiDAR SLAM system Cartographer in September 2014. The first version of
the Cartographer consisted of two Hokuyo multi-echo laser scanners and an IMU, and the
upgraded version includes two Velodyne 16-line LiDARs.

The solutions for LiDAR SLAM can be divided into two categories: Bayes-based estima-
tion methods (Bayes-based) and graph-based optimization methods (graph-based) [19,20].
Bayes-based SLAM is regarded as a mobile platform’s pose state estimation problem, and it
continuously predicts and updates the current state of motion based on the latest measured
values. According to different filtering algorithms, it can be divided into an extended
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Kalman filter (EKF) SLAM method, particle filter (PF) SLAM method, and information
filter (IF) SLAM method. Representatives of Bayes-based LiDAR SLAM include Hector
SLAM, and Gmapping, etc. Hector SLAM solves the two-dimensional plane translation and
yaw angle matched by the single-line LiDAR scan using the Gauss Newton method [12].
Multi-resolution raster maps are utilized to avoid the state estimation falling into the
local optimum. EKF is employed to fuse the information from the IMU and the LiDAR.
Gmapping is an algorithm based on particle filtering [11]. It can achieve better results when
there are more particles, but it also consumes higher computing resources. It lacks loop
closure detection and optimization; therefore, the accumulated errors cannot be effectively
eliminated.

The graph-based SLAM [19–21] method is also known as full SLAM. It usually takes
observations as the constraints to model the graph structure and perform global optimiza-
tion to achieve state estimation. Representative open-source algorithms include Karto
SLAM [7], and Cartographer [9], etc. Karto SLAM is an algorithm based on graph optimiza-
tion, which utilizes highly optimized and non-iterative Cholesky matrix decomposition
to decouple sparse systems to solve the problem. The nodes represent a pose state of the
robot or sensor observations, and the edges represent the constraints between nodes. When
each new node is added, the geometric structure of the entire graph will be calculated and
updated. Cartographer includes local matching in the front terminal graph and global
back-end loop closure detection and subgraph optimization [22]. Cartographer has strong
real-time performance and high accuracy, and it utilizes loop closure detection to opti-
mize and correct the cumulative errors. In recent years, Zhang, from Carnegie Mellon
University, proposed the LiDAR SLAM algorithm LOAM (LiDAR odometry and map-
ping) [10]. The core idea of LOAM is to run both high-frequency odometry pose estimation
and low-frequency point clouds mapping in parallel. Two threads to achieve a balance
between positioning accuracy and real-time performance; a generalized ICP algorithm is
employed for adjacent frame point clouds matching method for high-frequency odometer
pose estimation. The accuracy of geometric constraints is difficult to guarantee, and the
results are easy to diverge when solving nonlinear optimization.

As mentioned previously, both visual SLAM and LiDAR SLAM have their own
advantages and disadvantages. The visual camera outputs 2D image information, which
can be divided into grayscale images and RGB color images. LiDAR outputs 3D discrete
point clouds, and the radiation intensity is unreliable. The 3D here is strictly 2.5 D, because
the real physical world is a 3D physical space, and the LiDAR point clouds are just a
layer of surface models with depth differences, and the texture information behind the
surface cannot be perceived by the single-wavelength LiDAR. Abundant investigations
have revealed that the positioning accuracy of LiDAR SLAM is slightly higher than that of
visual SLAM. In terms of robustness, the LiDAR point clouds are noisy at the corner points,
and the radiation value of the visual image will change under different lighting conditions.
It can be seen that if the laser LiDAR and vision camera can be externally calibrated with
high precision, the point clouds and image data registration can make up for each other’s
shortcomings and promote the overall performance of the SLAM.

At present, research conducted on the SLAM technology of LiDAR/visual fusion
is considerably less than the above two single-sensor SLAMs. Zhang proposed a depth-
enhanced monocular visual odometry (DEMO) in 2014 [23], which solves the problem of
the loss of many pixels with large depth values during the state estimation of the visual
odometry front-end. Graeter proposed the LiDAR-monocular visual odometry (LiDAR-
LIMO) [24], which extracts depth information from LIDAR point clouds for camera feature
point tracking, which makes up for the shortcomings of monocular visual scale. The core
framework of the above two methods are still based on visual SLAM and the LiDAR
works only as a supplemental role, and similar schemes include binocular visual inertial
navigation LiDAR SLAM (stereo visual inertial LiDAR SLAM, VIL-SLAM) proposed
by Shao [25,26]. In addition, Li implemented a SLAM system combining RGBD depth
camera and 3D LiDAR. Since the depth camera itself can generate deep point clouds, the
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advantages of 3D LiDAR are not obvious. On the basis of EMO and LOAM, a visual/LiDAR
SLAM (visual-LiDAR odometry and mapping, VLOAM) was developed [27,28]. The visual
odometer provides the initial value for LiDAR point clouds matching, and its accuracy
and robustness are further improved via the LOAM. VLOAM has achieved relatively
high accuracy in the state estimation of the front-end odometer, but the lack of back-end
loop closure detection and global graph optimization will inevitably affect the positioning
accuracy and the consistency of map construction, and it will continue to degrade over
time.

Loop closure detection is of great significance to SLAM systems. Since loop closure
detection realizes the association between current data and all historical data, it helps to
improve the accuracy, robustness, and consistency of the entire SLAM system [28]. In this
paper, a LiDAR/visual SLAM based on loop closure detection and global graph optimiza-
tion (GGO) is constructed to improves the accuracy of the positioning trajectory and the
consistency of the point clouds map. A loop closure detection method, based on visual
BoW similarity and point clouds re-matching, was implemented in the LiDAR/Visual
SLAM system. KTTI datasets and WHU Kylin backpack datasets were utilized to evaluate
the performance of the visual BoW similarity-based loop closure detection, and the posi-
tion accuracy and point clouds map are presented for analyzing the performance of the
proposed method.

The remainder of the paper is organized as follows: Section 2 presents the architec-
ture of the LiDAR/visual SLAM, the flow chart of the loop closure detection; Section 3
presents the graph optimization, including the pose graph construction and the global pose
optimization; and Section 4 presents the experiments, including the results and analysis.
Section 5 concludes the paper.

2. System and Methods
2.1. System Architecture

The whole LV-SLAM also includes two parts: front-end odometry and back-end
optimization. The system architecture is presented in Figure 1. The front-end used in this
paper was an improved LOAM method, and the front-end problem was divided into two
modules. One module performed odometry at a high-frequency, but at low fidelity, to
estimate the velocity of the laser scanner. A second module ran at a frequency of an order
of magnitude lower for fine matching and registration of the point clouds. In the original
LOAM, feature points located on sharp edges and planar surfaces are extracted, and the
feature points to edge line segments and planar surface patches are matched, respectively.
The original LOAM belongs to the feature-based methods. Comparatively, our improved
LOAM utilized the normal distributions transform (NDT) method instead of extracting
feature points to the scans, matching directly and efficiently in the odometry module. In
other words, the NDT-based odometry is referred to as direct odometry (DO). The mapping
module is similar to the LOAM algorithm. Therefore, the front-end of the improved LOAM
is also called DO-LFA.
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The back-end global map optimization (GGO) was to construct global pose map
optimization and point clouds map after loop detection. After the front-end DO-LFA
outputs the odometry, we first combined the BoW similarity score of the visual image
and the point clouds re-matching judgment to realize the loop detection. Then, the edge
constraints between the key frames were calculated to construct the pose map of the
global key frames. Finally, the graph optimization theory was utilized to reduce the global
cumulative error, improve the global trajectory accuracy and map consistency, and obtain
the final global motion trajectory and point clouds map.

2.2. Loop Closure Detection

There are two solutions to realize loop closure detection: the geometry-based method
and the features-based method. The geometry-based method means detecting the loop
closure with the known movement information from the front-end odometer, such as, for
example, when the platform returns to a certain position that it passed before, to verify
whether there is a loop [28,29]. The geometry-based idea is intuitive and simple, but it is
difficult to execute when the accumulated error is large [30]. With regards to the features-
based loop closure detection method, it has nothing to do with the state estimation of the
front-end and the back-end. It utilizes the similarity detection of two frames of images
to detect the loop closure, which eliminates the influence of accumulated errors. The
features-based loop closure detection method has been applied to multiple visual SLAM
systems [31,32]. However, while using the features similarity in the detection, the current
frame needs to be compared and calculated with all previous frames, which requires a
large amount of calculation, and it will be invalid for a feature’s repetitive environment,
i.e., the decoration of multiple adjacent rooms in a hotel. Due to the explosive development
of computer vision and image recognition cognitive technology in recent years, compared
to the features’ similarity detection with point clouds, visual images containing various
features are more mature and robust in loop closure detection. However, the point clouds
can provide more accurate quantitative verification for the loop through re-matching based
on the image similarity detection.

Based on the above analysis, we comprehensively considered geometry-based and
features-based methods, and made full use of visual and point clouds information. A loop
closure detection method utilizing visual features is presented in Figure 2. DO-LFA outputs



Remote Sens. 2021, 13, 2720 6 of 29

data (pose, point clouds, and image) after the key frame preprocessing, and preliminary
candidate frames were obtained by rough detection based on geometric information, such
as the distance of the motion trajectory, and then the suspected loop frames were obtained
through the BoWs similarity. Finally, the point clouds re-matching was conducted to verify
the suspected loop closure.
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Figure 2. Flow-chart of the loop closure detection.

The geometric rough detection was based on the pose or odometry output by the
DO-LFA, wherein we selected the preliminary candidate frames from the historical key
frames and matched with the current frame to carry out loop closure detection. There are
three threshold judgment conditions (Figure 3): (1) when the search area threshold d1 (red
circle radius) of key frames was less than the threshold range, it might be a potential loop
closure frame; (2) the interval threshold d2 must be greater than the threshold; and (3) the
ring length threshold d3 should be greater than the threshold. The key frames that meet
the above conditions were saved as preliminary candidate loop closure frames for further
processing.
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2.2.1. Visual BOW Similarity

The bag of words (BoW) model [32,33] originated from the fields of information
retrieval and text classification, and is now widely used in the recognition of visual images
and loop closure detection in SLAM. The general idea is to use k-means or k-means++
to perform cluster analysis based on image feature points, i.e., SURF or ORB to obtain
a “word” vector composed of ID numbers and weights. A K-d tree, with k branch and
d depth, is utilized to express the vectors as a dictionary; then the image is described
according to the statistical histogram of the word, and finally the similarity is calculated
for judgment.

The dictionary training is regarded as an unsupervised classification process. Similar
to many models in the field of deep learning, the sample size and scale directly affect the
effectiveness of the model. Training a large dictionary may require a machine with large
memory and high performance, and it will take a long time. Here, we utilized a large
dictionary that is widely used by the open-source community. It is trained from about
2900 images. The size of the dictionary is k = 10 and d = 5, that is, up to 10,000 words. The
program uses the open-source library DBOW3 (https://github.com/rmsalinas/DBow3,
accessed on 7 June 2021) to assist the implementation.

With the dictionary, the corresponding word wj of the specific features can be retrieved.
After obtaining the N features of an image and the corresponding words, it is equivalent
to obtaining the histogram of the distribution of the image in the dictionary. However,
considering the different importance of different words in distinguishability, they are often
weighted, similar to the method in text retrieval, which is called term frequency-inverse
document frequency (TF-IDF) [34,35]. TF refers to the frequency of a word in a single image.
The higher the frequency of a word in the image, the higher the degree of discrimination.

Assuming an image I, the word wi appears mi times, the total amount of the occur-
rences of all words is m, where:

TFi =
mi
m

(1)

In addition, when the BoW model is established, assuming that the number of all
features in the dictionary is n, and the number of features in a leaf node wi is ni, the IDF of
the word is defined as:

IDFi = log
n
ni

(2)

Then, the weight of wi is the product of TF and IDF

ηi = TFi × IDFi (3)

For image A, its multiple feature points retrieve multiple words in the dictionary.
Considering the weight, the BoW vector constituting the image is written as:

A = {(w1, η1), (w2, η2), · · · , (wN , ηN)} , vA (4)

The number of words in the dictionary is often very large, and there may be only some
features and words in the image, and, thus, it will be a sparse vector with a large number

https://github.com/rmsalinas/DBow3
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of zero values. The non-zero part of vA describes words corresponding to the features in
image A, and the values of non-zero parts are the TF-IDF values.

Therefore, assuming two images A and B, their BoWs vectors vA and vB can be
obtained. There are multiple representation methods for similarity calculation. Here, we
chose the L1 norm to measure their similarity, and the result value falls within the interval
(0, 1). If the images are exactly the same, the result is 1, and the similarity calculation is
presented as [36]:

s(vA − vB) = 1−1
2

∣∣∣∣ vA

|vA|
− vB

|vB|

∣∣∣∣ = 1
2

N

∑
i=1

(|vAi|+ |vBi| − |vAi − vBi|) (5)

In the loop closure detection phase, we calculated the BoW similarity between the
current frame and all the candidate frames. The frames with similarity less than 0.05 were
directly eliminated, and the rest of the suspected loop closure frames were sorted according
to the similarity values, from high to low, and processed in the following step for further
verification.

2.2.2. Loop Closure Detection Verifying and Its Accuracy

In order to verify the suspected loop closure frames, we matched the current frame and
the suspected loop frames one by one in the sorted order, and counted the Euclidean fitness
score for each match. The Euclidean consistency score is the mean value of the square of
the distance from the source point clouds to the target point clouds. Corresponding points
exceeding a certain threshold are not considered in the calculation. If the score is lower
than the threshold (0.2 m), then this frame is the final loop closure frame of the current
frame, and the matched relative pose is utilized as a constraint for subsequent pose map
optimization.

When detecting the loop closure, there are usually four conditions, which are summa-
rized in the Table 1: true positive (TP), false positive (False Positive, FP), true negative (TN),
and false negative (FN). True positives mean that the frame is a loop closure frame; while
true negatives mean that the frame is not a loop frame. False positives mean the frame is
not a loop closure, but the algorithm judged it to be one; while false negatives mean that
the frame is a loop closure, but the algorithm judged it not to be.

Table 1. Loop closure detection examples.

Detection Results Reference True False

True True Positive False Positive
False False Negative True Negative

In our results, we hoped that TP and TN would appear as much as possible, whereas
we hoped that FP and FN would appear as little as possible or not at all. For a certain loop
detection algorithm, the frequency of occurrence of TP, TN, FP, and FN on a certain sample
data can be counted, and the accuracy (precision) and recall rate (recall) can be calculated:

Accuracy(%) =
TP

TP + FP
(6)

Recall(%) =
TP

TP + FN
(7)

3. Global Graph Optimization
3.1. Global Pose Construction

Compared with the back-end GGO, the motion trajectory obtained by the DO-LFA is,
broadly speaking, referred to as a front-end odometer. It mainly utilizes the point clouds
matching between the current frame and adjacent or local multi-frames to estimate the
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current pose. These point clouds and their features may also be referred to as landmarks.
While different from the visual SLAM, the direct method and abovementioned point
clouds match method both fix the connection relationship and then solve the Euclidean
transformation. In other words, DO-LFA does not optimize the landmarks, and only solves
for the pose node.

As time accumulates, the trajectory of the platform will become longer, and the scale
of the map will continue to grow. Since the scanning space of LiDAR is always limited,
the scale of point clouds or road signs cannot grow indefinitely with the map, and the
constraint relationship between the current frame and earlier historical data may no longer
exist. In addition, there are errors in direct method matching and feature point method
optimization. The cumulative errors obtained by DO-LFA will become larger, and the
inconsistency of the global map will become more obvious.

In order to improve the pose accuracy of the key frame nodes and ensure the quality
of the global point clouds map, we can save the trajectory of the DO-LFA and construct a
back-end global map optimization to reduce the cumulative errors. The global pose graph
utilizes the pose of the key frame as the node, and the relative motion between the two
pose nodes, obtained by the point clouds matching, is employed as the constraint edge.
The nonlinear least squares adjustment method is used to solve the problem to obtain
better results.

Figure 4 visually introduces the process of constructing a pose graph, where the arrow
is the pose and the blue dashed line is the motion trajectory. Figure 4a presents the DO-LFA,
where the red circle may be understood as overlapping point clouds or road signs for
matching. The green line represents the constraint between two adjacent frames of DO.
The green and red lines together represent the current frame and constraints between
historical, local data. In the key frame screening, the pose nodes are reduced, and the
trajectory of the DO-LFA is reserved as the constraint edge between the adjacent key
frame pose nodes. Figure 4b presents the prepared frames for loop closure detection and
global pose graph optimization. Figure 4c presents the loop detection process, where the
green arrow represents the current frame being processed, the red dashed line indicates
that the loop closure frame is found and constitutes a loop, and the green dashed line is
the loop constraint edge after point clouds re-matching. Figure 4d presents the result of
the optimization of the global pose graph. The pose nodes and motion trajectories are
optimized, the motion trajectory forms a complete loop, and the point clouds consistency
is improved.
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3.2. Globe Pose Graph Optimization

In the graph optimization theory, the node denotes the pose of the key frame, which is
represented by ξ1, · · · , ξn. The edge denotes the relative motion estimation between two
pose nodes. The ordinary edge comes from the direct method or point clouds matching in
the DO-LFA, and the loop edge comes from the rematch of the point clouds during loop
closure detection. The relative motion, ∆ξij, between ξi and ξ j nodes can be expressed as:

∆ξij = ξi
−1·ξ j = ln

(
exp

(
(−ξi)

∧
)

exp
(
ξ j
∧))∨ (8)

The corresponding relation of Lie group and Lie algebra is T = exp(ξ∧), and it can be
written with Lie group:

∆Tij = Ti
−1Tj (9)

From the perspective of the construction process of the pose graph, especially after
the loop edge is added, the above formula will not be accurately established.

We regarded the edge constraint as the measured value, and the node pose as the
estimated value, and, thus, moved the left side of the above formula to the right side,
deriving the error equation:

eij = ln
(

∆Tij
−1Ti

−1Tj

)∨
= ln

(
exp

((
−ξij

)∧) exp
(
(−ξi)

∧
)

exp
(
ξ j
∧))∨ (10)

where ξi and ξ j are the variables expected to be estimated. We used Lie algebra to find the
derivative of these two variables, adding a disturbance to the ξi and ξ j, wherein the error
equation can be re-written as:

êij = ln
(

∆Tij
−1Ti

−1 exp
(
(−δξi)

∧
)

exp
(
δξ j
∧)Tj

)∨
(11)

In order to derive the linearization of the Taylor series expansion of the above formula,
we introduced the adjoint property of SE (3):

T exp
(
ξ∧
)
T−1 = exp

(
(Ad(T)ξ)∧

)
(12)

Ad(T) =
[

R t∧R
0 R

]
(13)

Equation (12) is re-written as:

êij = ln
(

∆Tij
−1Ti

−1 exp
(
(−δξi)

∧
)

exp
(
δξ j
∧)Tj

)∨
= ln

(
∆Tij

−1Ti
−1Tj exp

((
−Ad

(
Tj
−1)δξi

)∧) exp
(
Ad
(
Tj
−1)δξ j

)∧)∨
≈ ln

(
∆Tij

−1Ti
−1Tj

[
I −

(
Ad
(
Tj
−1)δξi

)∧
+
(
Ad
(
Tj
−1)δξ j

)∧])∨
≈ eij +

∂eij
∂δξi

δξi +
∂eij
∂δξ j

δξ j

(14)

The Jacobi matrix calculation is written as:

∂eij

∂δξi
= −Jr

−1(eij
)
Ad
(

Tj
−1
)

(15)

∂eij

∂δξ j
= Jr

−1(eij
)
Ad
(

Tj
−1
)

(16)

Jr
−1(eij

)
≈ I +

1
2

[
φe
∧ ρe

∧

0 φe
∧

]
(17)
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The optimization of the graph is essentially the least squares optimization. Each pose
converter is an optimization variable. The perceptual constraint between poses is an edge,
and all pose baselines and constraint edges together form a displacement map.

Assuming C denotes the set of all edges in the pose graph, the cost function of the
nonlinear least optimization is written as:

F(ξ) =
1
2 ∑
<i,j>∈C

eij
TΩij

−1eij (18)

ξ∗ = argmin
X

F(ξ) (19)

where Ω denotes the information matrix used to describe the matching errors of the point
clouds. When the number of nodes reaches the set value, the above cost function can be
solved by the Gauss-Newton method or LM method, etc. Open-source libraries, i.e., Ceres
or g2o, also provide some solution methods for graph optimization.

4. Experiments and Results
4.1. KITTI Dataset
4.1.1. Dataset Description

With the aim of qualitatively evaluating the performance of the proposed method, we
employed the open-source KITTI dataset for testing. The KITTI data acquisition platform
and the sensors used are shown in Figure 5. The left camera, a Point Grey Flea2 (FL2-14S3C-
C), was installed at Cam2. This camera, a classic colorful industrial camera from Point
Grey, Canada, has 1.4 million pixels, a global shutter, and an acquisition frequency of 10
HZ. There were a total of seven sequences with loops in the 11 sequences: #00, #05, #06,
#07, #02, #08, and #09. We tested all the data from these seven sequences. Some important
threshold parameters used in the experiment were set as follows:
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Figure 5. KITTI data collecting platform: (a) position relationship of the installed sensors; (b) Velodyne HDL-64 LiDAR; 
and the (c) Point Grey Flea 2 (FL2-14S3C-C) colorful camera, installed in the Cam2 position in (a). 

Figure 5. KITTI data collecting platform: (a) position relationship of the installed sensors; (b) Velodyne HDL-64 LiDAR;
and the (c) Point Grey Flea 2 (FL2-14S3C-C) colorful camera, installed in the Cam2 position in (a).

(1) The distance and angle thresholds for key frame selection were 10 m and 10◦,
respectively;

(2) The thresholds d1, d2, and d3, for geometric rough detection, were 20 m, 50 m, and
100 m, respectively.

4.1.2. Results Analysis

In the experiment, all seven sequences with loops were employed in the tests, and
all the results with GGO (DO-LFA-GGO) and without GGO (DO-LFA) were saved for
analyzing the position accuracy. According to the collection environment, we divided these
seven sequences into three categories for analysis and discussion. Sequence #00 and #05
were classified as group A, sequence #06 and #07 were classified as group B, and sequence
#02, #09, and #08 were classified as group C; the experimental results are listed in Table 2
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and presented in Figures 6–8, respectively. The trajectory, loop position, and cumulative
position error (CPE) of each group of data are presented.

Table 2. KITTI data loop closure detection and global graph optimization (GGO) results.

Group Sequences Environment Distance
(m)

Amount of
Detected Loop

Closure
Accuracy (%) Errors before

GGO (m)
Errors after
GGO (m)

A
#00

Urban
3723 15 100% 6.71 0.12

#05 2205 7 100% 14.27 0.36

B
#06

Urban
1232 6 100% 0.26 0.27

#07 694 1 100% 0.29 0.21

C
#02

Urban +
Rural

5067 3 100% 8.76 0.13

#09 1705 1 100% 0.23 0.09

#08 3222 0 - - -

Group A and group B were both urban environments, including urban roads, many
loops, and many regular buildings, and the perceived structure of the environment was
better. Group C, on the other hand, was a mixed urban and rural environment with twists
and turns in the rural roads. There were few loops and relatively few buildings. Farmland
without references existed in this group, and the structure of the perceived environment
was poor. The basis for the separation of group A and B was that the DO-LFA accuracy of
group A was poor before GGO operation and the accuracy improvement effect was obvious
after GGO, whereas the DO-LFA of group B achieved high accuracy and the optimization
effect was not obvious.

In the following Figures 6–8, the white line denotes the GPS/INS reference trajectory,
the green line denotes the trajectory of DO-LFA without GGO, and the blue line denotes the
trajectory of DO-LFA with GGO (DO-LFA-GGO). Parts of the trajectories overlap, therefore,
it seems that there is only one color for the overlapped trajectories. The red squares mark
the detailed position of the loop in the trajectory. Combining with the trajectory and motion
details, the counted number of loops was utilized to confirm whether the loop was correct.
Moreover, the cumulative position errors with and without GGO are also presented in
these figures.

Trajectory, loop closure location, and the CPE values of group A (#00 and #05) are
presented in Figure 6. The environment of sequence #00 and #05 was a well-structured
town, the time length of the sequence was comparatively long, and the movement distance
was long, in excess of 2 km. In total, 15 loop closures were detected in sequence #00, while
seven were detected in sequence #05. These loop closures were evenly distributed on the
trajectory at an interval of 50 m, which is almost identical to the inter-loop threshold for
loop closure detection. The loop closure detection accuracy showed that the accuracy rate
reached 100%. The CPE of the DO-LFA of the two sequences were large, reaching 6.71 m
and 14.27 m, respectively, and dropped to 0.12 m and 0.36 m, respectively, after GGO.
The trajectory of DO-LFA-GGO was also closer than DO-LFA to the true trajectory, which
indicated that GGO achieved the expected effect and the CPE was basically eliminated.
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Trajectory, loop closure position, and the CPE of group B data (#06 and #07) are
presented in Figure 7. In this trajectory, six loop closures were detected in sequence #06,
while sequence #07 had only one loop closure, which was located at the end of the trajectory.
The most important finding was that the CPE values of the DO-LFA for these two sequences
were small and less than 30 cm and their trajectories almost overlapped with the reference
trajectory. After GGO operation, the trajectories and the CPE values did not have any
obvious changes, which indicated that the GGO process did not pose any negative influence
on the DO-LFA results and that the CPE was still kept small after the GGO operation. The
environment of sequence #06 and #07 was a well-structured town, and their scanning time
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and movement distances were shorter than group A sequences. Therefore, the DO-LFA
performed well and the GGO did not effectively reduce the errors.

The environments of group C sequences (#02, #09, and #08) were more complicated.
Their trajectories, loop closure positions, and cumulative position error calculations are
presented in Figure 8. Many of the paths from the sequences #02, #09, and #08 were in the
countryside with winding roads, bends, few loop closures, and relatively few buildings.
There was farmland without reference objects on the ground and the structure of the
environment were poor.

The collection environment of sequence #02 was a rural road with continuous large
turns. There was no loop closure for a long time in the early stage, and only three loop
closures were successfully detected during the second half of the trajectory. The CPE values
before and after GGO were 8.76 m and 0.13 m, respectively, which showed that the GGO
reduced the sequence #02 CPE values. However, we observed that the position errors of
the first half were larger than those of the second half due the fact that there was no loop
closures detected in the first part of the trajectory.
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The environment of sequence #09 also contained a number of consecutive rural roads
with large turns. There was also no loop closure in the early stage of the trajectory, and
there was only one detected loop closure at the end of the trajectory. The CPE values of the
DO-LFA with and without GGO were 4.27 m and 0.09 m, respectively, and the decrease in
the CPE indicated that the GGO effectively utilized the detected loop closure and reduced
the CPE values. Similar to sequence #02, the trajectory without loop closure performed
slightly worse in terms of position errors after the GGO; the long-term continuous country
curve and limited looping might account for this phenomenon.

The sequence #08 environment included towns and villages, the roads were regular,
there were 2-3 actual loop closure areas, but no loop closure was detected and the recall
rate was 0%. The main reason for the loop closure detection failure was that the second
time, the travel direction of the vehicle during the loop closure was opposite to that of the
first time. Thus, the viewing angle of the sensor scan was also completely opposite, which
seriously affected the interpretation of similarity during loop closure detection, especially
for image similarity. Without the loop closure, the GGO could not be carried out, and the
trajectory with or without GGO was the same.

4.2. WHU Kylin Backpack Experiment
4.2.1. Dataset Description

The major sensors of the WHU Kylin backpack included: Velodyne VLP-16 Lidar,
Mynak D1000-IR-120 color binocular camera, Xsens-300 IMU, and a power communication
module. An example of the mobile data collection is presented in Figure 9. The average
speed of the backpack was 1 m/s, and the data collection and algorithm running speed
were both 10 Hz. There were two LiDARs installed on the backpack. In this experiment,
only the horizontal LiDAR and the left camera of the binocular camera were used, and the
images were 640 × 480 respectively. The backpack was not equipped with a GPS device,
so there was no true value of the trajectory. As mentioned, we consciously walk out of a
relatively regular matrix area at the beginning and end of the acquisition path for accuracy
evaluation. Some important threshold parameters used in the experiment were set as
follows: the distance threshold and angle threshold of the key frame selection were 2 m
and 10◦, respectively; and the thresholds d1, d2, and d3 of the geometric rough detection
were 5 m, 15 m, and 25 m, respectively.
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4.2.2. Results and Analysis  
Figure 10 shows the trajectories and point clouds map comparison of sequence #01 

with and without GGO. Specifically, Figure 10a presents the trajectory comparison before 

Figure 9. WHU Kylin backpack laser scanning platform: (a) data collecting and sensors installation; (b) Velodyne VLP-16
LiDAR; and (c) MYNT D1000-IR-120 color binocular camera.
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With the backpack LiDAR scanning system, we collected three datasets, sequences
#01, #02, and #03, to assess the proposed method. The trajectories, loop closure position,
and CPE values are presented in the Figures 10–12. Similar to the results in the KITTI
experiment, the green lines denote the trajectories from the results without DO-LFA, the
blue lines denote the trajectories from the DO-LFA-GGA method, and part of the trajectories
overlapping led to the corresponding trajectories being presented in one color. The red
rectangle denotes the loop closure position in the trajectory, and we counted the loops
closure according to the red rectangle and compared it with the motions.
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4.2.2. Results and Analysis

Figure 10 shows the trajectories and point clouds map comparison of sequence #01
with and without GGO. Specifically, Figure 10a presents the trajectory comparison before
and after GGO, (b) is the overall point clouds map after GGO, while (c) and (d) are
the magnification of the black box area in (b) of the point clouds before and after GGO,
respectively.

We observed that the number of loop closures detected in #01 was 5, and that they were
evenly distributed on the path with an interval of about 10 m (10 m was also the threshold
set for loop closure detection). It showed that the loop closure detection accuracy reached
100%. The CPE of the DO-LFA of sequence #01 was large, reaching 2.89 m. However,
it dropped to 0.12 m after GGO processing. The trajectory of DO-LFA-GGO was also
more accurate than DO-LFA in the loop, indicating that the GGO achieved the expected
effect. The error was basically eliminated to 0.12 m of the DO-LFA-GGO from 2.89 m of the
DO-LFA.

Buildings, trees, and flagpoles can be described in detail with the point clouds. Here,
through comparing the point clouds map, it can be seen that the trajectory without GGO
drifted greatly, the constructed point cloud map had obvious layering and confusion, and
its consistency was poor. After using loop closure detection and global map optimization,
the optimal estimation of platform poses and point clouds was obtained. Therefore, the
consistency of the point clouds map constructed was better, and the layering and disorder
of the point clouds at the loop closure location disappeared.

Figure 11 shows the trajectory and point clouds map of sequence #02 with and without
GGO. Sequence #02 was an indoor scene of the Huawei Song Research Institute (Xibeipo
Village, Songshan Lake, Dongguan) H5. Specifically, Figure 11a presents the comparison of
the trajectories from the DO-LFA and DO-LFA-GGO method, while Figure 11b presents the
point clouds map from the DO-LFA-GGO, noting that accuracy before GGO was already
relatively high and that the point clouds were no longer compared after GGO.
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From comparing the trajectories, we observed that the number of loop closures de-
tected in sequence#02 was two, and that the loop closure detection was all correct. The
CPE of the DO-LFA method of this sequence was small, and there was little change after
performing the GGO. Specifically, the CPE values of the DO-LFA and DO-LFA-GGO were
0.19 m and 0.17 m, respectively. For the trajectory that the DO-LFA worked well for, the
DO-LFA-GGO still worked well and kept the CPE values small. In sequence #02, the point
clouds map clearly described the trees, buildings, and other objects.

Figure 12 presents the trajectories and point clouds map from the DO-LFA and DO-
LFA-GGO methods. Sequence #02 was indoor and outdoor scenes from the Huawei
Song Research Institute (Songshan Lake Streamback Slope Village, Dongguan) D4. The
terrain was undulating, including up and down stairs. Figure 12a presents the positioning
trajectories comparison between the DO-LFA and DO-LFA-GGO, while Figure 12b presents
the point clouds map from DO-LFA-GGO. Since the accuracy of the DO-LFA was already
relatively high, the point clouds were no longer compared, and Figures 12c and 12d present
corresponding point clouds of the slope stairs.
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With the plotted trajectories, we observed that six loop closures were detected in
sequence #03. The CPE of the DO-LFA in this sequence was small, and there was little
change in the CPE while operating the GGO, specifically, the CPE reduced from 0.16 m to
0.15 m. For the high-precision trajectory, the DO-LFA-GGO still maintained its original high
precision. The point clouds map had clear and accurate building outlines and targets. The
accuracy of the up and down stairs point clouds illustrated the accuracy and robustness of
the algorithm to three-dimensional position.

In aspects of the accuracy assessment, although we deliberately collected the data
with loop closures, it was difficult to ensure that the front and back positions on the loop
revisited path were exactly the same. An error of more than a dozen centimeters (less
than the length of a foot) was normal. The CPE values of #00, #01, and #02 after GGO
were 0.12 m, 0.17 m, and 0.15 m, respectively, which are all below 20 cm. Considering the
original inconsistency of true value motion, the actual error may be lower.

The above three sets of representative datasets included both indoor and outdoor
scenes, which suggests that the DO-LFA-GGO proposed in this paper can be successfully
operated. When the original DO-LFA had a cumulative position error, GGO significantly
eliminated its CPE values. When the original DO-LFA had a higher accuracy, the GGO
still maintained its high accuracy. The GGO ensured the accuracy of positioning and the
consistency of the point clouds map. The accuracy of global positioning and point clouds
mapping can reach less than 20 cm, and it had high robustness via the backpack platform
under both indoor and outdoor environments.

4.3. Comparisons with Google Cartographer

The Cartographer developed by Google is a 2D/3D LiDAR SLAM utilizing loop
closure detection and graph optimization [33]. We ran the Cartographer with the Kylin #02
and #03 datasets, and the results were compared with that from the DO-LFA-GGO.

Figures 13 and 14 present the point clouds results from the Cartographer with the
Kylin #02 and #03 datasets. The color of the point clouds from the Cartographer were
determined by the LiDAR backscatter laser intensity. Confusion and ghosts are all the
result of coaxial progressive errors, and the displacement error roughly measured by the
point clouds was approximately 5–10 m. The DLO-LFA-GGO in this paper detected the
loop closure based on visual BoW similarity and conducted the point clouds re-matching
to achieve fusion of the two data. However, the Cartographer detects the loop closure with
the point clouds similarity. As a result, the point clouds from the Cartographer have severe
layering and ghosting at the loop repeats, with a displacement error up to 5–10 m; while
the point clouds maps from the DO-LFA-GGO have clear and accurate targets with high
consistency, and the geometric CPE is only approximately 20 cm.
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5. Conclusions

In this paper, we investigated a LiDAR SLAM back-end graph optimization meth-
ods using visual features to improve loop closure detection and graph optimization per-
formance. With both experiments in open-source KITTI datasets and a self-developed
back-pack lasering scanning system, we can conclude that:

(1) Visual features can efficiently improve loop closure detection accuracy;
(2) With the detection loop closure, the graph optimization reduced the CPE values of

the LiDAR SLAM through the point clouds re-matching;
(3) Compared with Cartographer, LiDAR based SLAM, our LiDAR/visual SLAM with

loop closure detection and global graph optimization achieved much better performance,
including better point clouds map and CPE values.

The source code of this paper was uploaded to the GitHub website and is open source
for readers. We expect that the work in this paper will inspire some other interesting
investigations into visual/LiDAR SLAM. Although a satisfying performance was obtained,
the following work is of great significance for further investigation.

(1) In this paper, to guarantee the accuracy of loop closure detection using visual
features, we set strict parameters and rules, which led to some loop closures being missed.
Thus a more robust loop closure detection strategy is of great significance for improving
the use of visual/LiDAR SLAM in complex environments;

(2) As presented in the experiment, different trajectories had different numbers and
positions of detected loop closures. It is therefore interesting to explore the influence of the
loop closure number and distributions on the GGO performance.

(3) In this paper, we utilized the visual features in back-end graph optimization, and
so, it would be interesting to explore visual/LiDAR based front-end odometry.

(4) Visual/LiDAR are the most popular sensors in environmental perception. Based
on the code used in this paper, it is prospective to integrate other sensors, i.e., GNSS and
IMU, to the current visual/LiDAR SLAM in the graph optimization framework.
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