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Abstract: The net primary productivity (NPP) and aboveground biomass mapping of crops based on
remote sensing technology are not only conducive to understanding the growth and development of
crops but can also be used to monitor timely agricultural information, thereby providing effective
decision making for agricultural production management. To solve the saturation problem of the
NDVI in the aboveground biomass mapping of crops, the original CASA model was improved
using narrow-band red-edge information, which is sensitive to vegetation chlorophyll variation,
and the fraction of photosynthetically active radiation (FPAR), NPP, and aboveground biomass of
winter wheat and maize were mapped in the main growing seasons. Moreover, in this study, we
deeply analyzed the seasonal change trends of crops’ biophysical parameters in terms of the NDVI,
FPAR, actual light use efficiency (LUE), and their influence on aboveground biomass. Finally, to
analyze the uncertainty of the aboveground biomass mapping of crops, we further discussed the
inversion differences of FPAR with different vegetation indices. The results demonstrated that the
inversion accuracies of the FPAR of the red-edge normalized vegetation index (NDVIred−edge) and
red-edge simple ratio vegetation index (SRred−edge) were higher than those of the original CASA
model. Compared with the reference data, the accuracy of aboveground biomass estimated by the
improved CASA model was 0.73 and 0.70, respectively, which was 0.21 and 0.13 higher than that of the
original CASA model. In addition, the analysis of the FPAR inversions of different vegetation indices
showed that the inversion accuracies of the red-edge vegetation indices NDVIred−edge and SRred−edge

were higher than those of the other vegetation indices, which confirmed that the vegetation indices
involving red-edge information can more effectively retrieve FPAR and aboveground biomass of
crops.

Keywords: improved CASA; red-edge band; NPP; biomass; seasonal variation

1. Introduction

Remote sensing technology is widely used in crop yield prediction [1–5], identification
mapping [6–8], aboveground biomass estimation [9,10], LAI inversion [11–14], and many
other fields of agricultural production, and it has always been the focus of attention in
studies of crop biomass [2,15,16]. Moreover, the use of remote sensing data during crop
growth periods to estimate crop biomass quickly and accurately is an unavoidable key
issue for agricultural remote sensing research.

At present, there are two main methods for estimation of crops biomass with remote
sensing: vegetation index regression methods and productivity models [9]. Generally,
direct modeling using vegetation indices and measured crop biomass can easily and
quickly estimate aboveground biomass of crops.

Remote Sens. 2021, 13, 2755. https://doi.org/10.3390/rs13142755 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6971-2327
https://doi.org/10.3390/rs13142755
https://doi.org/10.3390/rs13142755
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13142755
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13142755?type=check_update&version=2


Remote Sens. 2021, 13, 2755 2 of 26

With the development of multispectral sensors, many researchers have found that
the red-edge vegetation indices are more sensitive than wide-band vegetation indices.
Zheng et al. [17] established a fitting model for predicted winter wheat biomass, with the
NDVI, enhanced vegetation index (EVI), and chlorophyll red-edge index (CIre). Their work
showed that the CIre had the best correlation with the measured biomass. Kross et al. [18] used
multispectral RapidEye data with a high spatial resolution to estimate the leaf area index
(LAI) and biomass of corn and soybeans. They believed that the SRred-edge performed well
in terms of its ability to estimate the total biomass of corn. Frampton et al. [19] constructed
two new indices S2REP (sentinel-2 red edge position) and IRECI (red-edge chlorophyll
index) using the red edge band of sentinel-2 data. They reported that S2REP was more
suitable for retrieving chlorophyll concentration, while the performance of IREC was still
better, even when the saturation point was exceeded.

Various vegetation index regression models were used to accurately estimate the
vegetation biomass in previous research. However, identifying suitable variables for
developing a vegetation regression model is usually difficult and time-consuming because
many potential variables should be used. Aboveground biomass is a comprehensive
parameter related to sophisticated factors, such as canopy structure, solar radiation, and
photosynthetically active radiation [9]. In addition to the more commonly used vegetation
index regression methods, models based on NPP are also increasingly applied to biomass
mapping. NPP models are usually divided into three types: climate-related models,
physiological and ecological-related models, and light use efficiency models [20]. Generally,
light use efficiency models (CASA, GLO-PEM, etc.) are easy to combine with remote sensing
data. Therefore, increasing studies have applied this model to estimate the NPP, biomass
of vegetation and crops at global or national scales. In 1972, when Monteith [21] analyzed
the relationship between the productivity of tropical ecosystems and solar radiation, he
proposed, for the first time, that the productivity of plants depends on the solar radiation
intercepted by the leaves, the photosynthetic rate of the leaves, and other photochemical
processes. According to the theory proposed by Monteith, Potter et al. [22] used the CASA
model combined with AVHRR image data to simulate a global scale model of the carbon
sequestration cycle model and biomass of vegetation. In recent years, the CASA model
has been widely used in terrestrial ecosystem research, NPP research, biomass estimation,
etc. Bao et al. [23] proposed an improved LSWI-CASA that simplified the CASA model’s
estimation process and estimated the NPP of the Mongolian Plateau. The results illustrated
that the method improved the accuracy of NPP estimation. Using 30 m resolution HJ-AB
images, Liu [24] applied the CASA model to the estimate the biomass and yield of winter
wheat. Compared with the measured data, the CASA model had higher accuracy in crop
biomass and yield estimation. Tao [25] comprehensively compared the performance of the
CASA and GLO-PEM models in estimating the NPP of Chinese maize. He confirmed that
the CASA model had a better estimation accuracy than that of the GLO-PEM when the
crop planting density was high. On the contrary, the estimation accuracy of GLO-PEM
model was higher than that of the CASA model.

Overall, the aboveground biomass mapping of crops is an essential issue in the field of
agricultural remote sensing. The vegetation index regression methods can quickly obtain
crop biomass information, but these methods require large amounts of measured data, and
their performance is not accurate when applied at global or national scales. In addition,
these methods only fit the dry weight of the crops at mature stage with vegetation indices
and cannot reflect the growth and mechanism of the crops during the growing season. As
an NPP estimation model based on vegetation photosynthetic efficiency, CASA has been
increasingly applied to NPP estimation and carbon storage research for global or national
vegetation, and it has achieved good results. However, currently, there are few studies on
the use of the CASA model to map high-resolution crop biomass on a small irrigation scale.
By applying this model to small areas, high-resolution biomass mapping will help expand
the usage of the CASA model. In addition, much of research has demonstrated that the
wide-band vegetation index, NDVI, is easily saturated in areas of dense vegetation and
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affects the inversion of plant biophysical parameters [11,15,17]. The wide-band vegetation
index, NDVI, is used to retrieve the key parameter, FPAR, in the original CASA, which
affects the estimation accuracy of the FPAR and biomass to a certain extent. Based on the
above problems, we utilized red-edge vegetation indices, which are sensitive to changes
in vegetation chlorophyll variation, for the FPAR inversion, and applied the results to the
estimation of NPP and aboveground biomass of crops in a small irrigation scale region.

2. Materials and Methods
2.1. Study Area

The Shijin irrigation area (115.08E, 38.02N), Hebei Province, is located in the Heibei
province, and it is an important grain production area in China (Figure 1a,b). The land
use in this irrigation area is mainly cropland (69%), with a small amount of built-up (18%),
forest (11%), and water (2%) (Figure 1d). The easternmost part is close to the Bohai Sea, and
the southeastern part is close to the Haihe River. The irrigation area is flat, with an altitude
range of 0–60 m, and a total area of 14,933 km2. Irrigation facilities are complete, which
provides a large amount of water resources for agricultural production. The irrigation area
has a continental monsoon climate. The total amount of precipitation in the irrigation area
is about 488 mm, the annual frost-free period is 190–200 days, the annual sunshine hours
are about 2626 h, and the accumulated temperature above zero is 4600–5000 ◦C. The good
climatic conditions in the irrigation area provide sufficient water and heat resources for the
winter wheat and summer corn rotation system, and they are beneficial to the development
of characteristic orchards, such as apple and pear orchards, in the irrigation area. In 2019,
we made a field survey route for the irrigation area and conducted field survey for the
main crops to obtain the aboveground biomass data of winter wheat and summer maize
(Figure 1c).
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2.2. Datasets and Processing
2.2.1. Meteorological Data

The meteorological data came from the Dataset of Daily Values of Climate Data V3.0
(http://www.cma.gov.cn/2011qxfw/2011qsjgx/, accessed on 8 August 2020) provided
by the China Meteorological Data Service Center. The dataset contains the meteorolog-
ical elements, such as temperature, precipitation, evaporation, and sunshine hours, of
699 basic weather stations across the country. In addition, to obtain accurate solar radiation
data in crop growing season, we simulated the meteorological data needed for the study
using Angstrom model [26,27] based on sunshine hour data (listed in Table 1). In order
to process the original data, in this study, we used python to perform unit conversion
and default value processing for the temperature and sunshine hour data that were used.
Finally, the nearest meteorological station in the Shijin irrigation area was selected as the
meteorological element required for the research.

Table 1. Satellite data and descriptions.

Satellite Data Band Center Wavelength (nm) Resolution (m) Source

Sentinel-2

B1 443 60

European Space Agency
(https://sentinel.esa.int/web/sentinel/,

accessed on 6 November 2020)

B2 490 10
B3 560 10
B4 665 10
B5 705 20
B6 740 20
B7 783 20
B8 842 10

B8A 865 20
B9 940 60

B10 1375 60
B11 1610 20
B12 2190 20

QA10 — 10
QA20 — 20
QA60 — 60

MCD15A3H
FPAR — 500 NASA LP DAAC at the USGS EROS Center

(https://lpdaac.usgs.gov/products/mcd1
5a3hv006/, accessed on 6 November 2020)LAI — 500

2.2.2. Remote Sensing Data

Sentinel-2 satellites have high-resolution and multispectral information, and they
include 13 multispectral bands (Table 1). Among them are four 10 m resolution bands,
six 20 m bands, and three 60 m bands, with an orbital width of 290 km [28]. As Sentinel-2
has multiple narrow bands in the visible and near-infrared ranges, it plays an important
role in land use/cover [29], vegetation growth [30], water cover [31], and crop mapping [32].
Based on the Google Earth Engine [33,34] (https://earthengine.google.com/, accessed on
6 November 2020) remote sensing big data platform, we filtered many high-quality images
(cloud coverage < 20%). We obtained 133 Sentinel-2 multispectral images during the key
growing seasons of the two crops. Among them, 61 were in the key growing season of
winter wheat and 72 were in the main growing season of summer maize (Figure 2).

http://www.cma.gov.cn/2011qxfw/2011qsjgx/
https://sentinel.esa.int/web/sentinel/
https://lpdaac.usgs.gov/products/mcd15a3hv006/
https://lpdaac.usgs.gov/products/mcd15a3hv006/
https://earthengine.google.com/
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MCD15A3H LAI/FPAR data product with a resolution of 4 days and 500 m in the
main growing season of winter wheat and summer maize was selected for this study
(Table 1). The MODIS Terra and Aqua images of this product were corrected for surface
reflectance and atmospheric effect. The main inversion algorithm and backup algorithm
were used to select the highest-quality image pixels to generate LAI/FPAR product [35].
Among them, the main algorithm used the biome/canopy model to retrieve the LAI/FPAR,
and it searched for all possible values of the LAI/FPAR, according to the specific solar
angle of view, the bidirectional reflection coefficient, and the type of biome. If specific
pixels were provided for modeling, the vegetation index was used to fit the LAI/FPAR,
and the LUT was generated to obtain the LAI/FPAR value. The LAI/FPAR provided by
MODIS product has a high accuracy and is widely used in the estimation of vegetation
LAI, FPAR, and biomass [36].

2.2.3. Measured Field Data

The measured data were obtained from field measurements of winter wheat (March
to May) and summer maize (July to September) during the main observation period
(Figure 3). Eight sampling points were set for each crop survey, and all of the sampling
points were evenly distributed in the whole study area. Before sampling, the row density
and column density of the crops were measured to find the planting density information of
the crops per square meter. As it was difficult to obtain the whole crop, only the part above
the root of the crop was taken when sampling. In order to obtain the dry weight data of



Remote Sens. 2021, 13, 2755 6 of 26

the crop, it was necessary to dry the winter wheat and maize. For winter wheat, we set the
oven temperature to 105 ◦C for 1 h, and then dried it at a constant temperature of 80 ◦C for
24 h. For summer maize, we set the temperature to 105 ◦C for 3 h, and then dried it at a
constant temperature of 80 ◦C for 48 h. After the dried crop was obtained, the crop dry
weight per unit area was obtained (listed in Table 2).
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Table 2. Parameter values used for aboveground biomass estimation.

Parameter Unit Description Source

Meteorological Data

Temperature ◦C Near-surface (2 m) air temperature China Meteorological Data Service
Center (CMDSC)

Radiation MJ/m2 Surface downward shortwave radiation Angstrom model

Measured Field Data
Winter Wheat Aboveground Biomass g/m2 Aboveground biomass at maturity stage Field measurements
Summer Maize Aboveground Biomass g/m2 Aboveground biomass at maturity stage Field measurements

2.3. Methods
2.3.1. Processing Flow of the Original CASA Model

According to the research of Potter et al. [22], the CASA model involves two important
variables: one is the photosynthetically active radiation intercepted by the green vegetation
canopy, and the other is light use efficiency (Equations (1)–(4) [22,37]). The calculation
of photosynthetically active radiation involves the fraction of photosynthetically active
radiation absorbed by the vegetation canopy, and related studies have proved that there is
a significant linear relationship between the photosynthetically active radiation and the
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vegetation index, so the vegetation index can be used for the calculations. The calculation
of the light use efficiency involves factors such as temperature and water stress.

NPP = APAR × LUE (1)

APAR = PAR × FPAR (2)

FPAR = f(NDVI) (3)

LUE = Tε1 × Tε2 ×Wε × LUEmax (4)

where NPP is the net primary productivity of the vegetation. APAR is the photosynthet-
ically active radiation absorbed by the vegetation canopy. LUE is the actual light use
efficiency of the plants. PAR is the photosynthetically active radiation. FPAR is the photo-
synthetically active radiation absorption proportion. LUEmax is the maximum LUE, and
Tε1, Tε2, and Wε are scalars representing environmental stressors that reduce LUE [38,39].
According to this formula, the FPAR in the original CASA model is a function of the NDVI,
so this also means that the FPAR may be underestimated in dense vegetation areas.

2.3.2. Vegetation Indices

The red-edge band is an essential variable for retrieving the LAI, FPAR, etc., and
it plays an important role in biomass estimation. To solve the saturation problem of
the NDVI in the biomass mapping of crops, this study incorporates narrow-band red-
edge information from Sentinel-2 into the inversion of the FPAR in Table 3. Besides, in
order to analyze the inversion differences of FPAR with different vegetation indices, we
further obtained the inversions accuracies of FPAR of the red-edge indices and non-red-
edge indices including NDVI, SR, MSR, EVI, NDVIred−edge, SRred−edge, and MSRred−edge
(Table 4). The differences in the FPAR were derived by analyzing different vegetation
indices to improve the accuracy of FPAR inversion.

Table 3. Regression accuracy of the FPAR of the red-edge vegetation indices.

Crops Vegetation Indices Regression Model R2

Winter wheat
NDVIred−edge y = 0.8287x + 0.1889 0.72

NDVI y = 0.1656x + 0.7371 0.71
SRred−edge y = 0.1619x + 0.0979 0.69

Maize
NDVIred−edge y = 0.7081x − 0.0026 0.45

SRred−edge y = 0.1023x + 0.3011 0.53
NDVI y = 0.5270x + 0.3305 0.40

Table 4. Vegetation indices selected for the difference analysis. ρnir is the near-infrared band; ρred is the red band; ρred_edge

is the red-edge band.

Vegetation Indices Descriptions Equation Reference

EVI It corrects for some atmospheric conditions and
canopy background noise.

2.5(ρ nir−ρred)
(ρ nir+6ρred−7.5ρblue)

+1 (5) [40]

SR It can distinguish green leaves from other objects
and estimate the relative biomass.

ρnir
ρred

(6) [41]

SRred−edge

It is used to assess vegetation biomass and growth,
which reduces the impact of atmosphere

and topography.

ρnir
ρred_edge

(7) [42]

MSR It is an improved version of SR, which is sensitive
to vegetation biophysical parameters.

ρnir/ρred−1√
ρnir/ρred+1

(8) [43]

MSRred−edge
It uses bands in the red edge and incorporates a

correction for leaf specular reflection.

ρnir
ρred−edge

−1√
ρnir

ρred−edge
+1

(9) [44]
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Table 4. Cont.

Vegetation Indices Descriptions Equation Reference

NDVIred−edge

It is similar to NDVI but capitalizes on the
sensitivity of the vegetation red edge to small

changes in canopy chlorophyll.

ρnir−ρred−edge
ρnir+ρred−edge

(10) [45]

NDVI
Combined with red band and near infrared band, it
has strong robustness in a wide range. However, it

saturates in dense vegetation conditions.

ρnir−ρred
ρnir+ρred

(11) [46]

2.3.3. Conversion of NPP into Aboveground Biomass

Much of the research in aboveground biomass mapping has shown that the nature
of the accumulation of NPP in green plants reflects the relationship between the dry
matter formed through the photosynthesis of the vegetation and carbon fixation. With
the development of green plant stalks and leaves, their photosynthetic capacity is not
enhanced, and the carbon sequestration capacity is continuously improved. Some studies
have proposed NPP-driven biomass inversion models on this theoretical basis [47,48].
They believe that there is a significant linear relationship between plant biomass and
accumulated NPP that is affected by the root-to-shoot ratio and C ratio.

B =∑ NPP × α/β (12)

where B refers to the biomass of the plant. NPP is the net primary productivity accumulated
in growth stages. α is the ratio of the aboveground biomass of the plant to the whole
plant. β is the C ratio of a crop. It can be seen in Equation (12) that there is a simple
linear relationship between plant biomass and accumulated NPP. When the plant root-
to-shoot ratio and C content parameters are determined, the NPP can be converted into
aboveground biomass.

2.3.4. Accuracy Assessment

The retrieval accuracy and biomass estimation accuracy of the two models are de-
scribed and compared using the coefficient of determination (R2) and root mean square
error (RMSE), as shown in Equations (13) and (14).

R2= 1−∑n
i=1 (y i−ydi)

2

∑n
i=1 (y i−ya)

2 (13)

RSME =

√
1
n

n

∑
i=1

(y i−ydi)
2 (14)

where n represents the number of variables; yi represents the predicted value; ydi represents
the field-measured value; ya is the average of the field-measured values.

2.4. Workflow

The workflow is shown in Figure 4, and it mainly included the following three parts:
datasets and processing, modeling the FPAR of crops, and estimation of aboveground
biomass. For the data collection and processing, we collected the measured data, Sentinel-2
multispectral data, and meteorological data. We processed the Sentinel-2 image collections
of the two main crops growing seasons, including the cloud threshold setting, image
clipping, and other preprocessing steps. The meteorological data mainly included the
monthly precipitation, temperature, and sunshine hours, which were used to calculate the
temperature stress and solar radiation. For the crop FPAR modeling, we modeled the FPAR
based on NDVIred-edge, SRred-edge from previous research and the experiments in this study.
For the estimation of aboveground biomass, we gathered all of the input parameters of
the improved CASA model, and then input them into the model to obtain the estimated
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crop biomass. According to the root-to-shoot ratio and the ratio of carbon content, the NPP
was transformed into the aboveground biomass, and the aboveground dry weight data
of winter wheat and summer maize were used to validate the accuracy of the biomass
estimated by the improved CASA model.
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3. Results
3.1. Modeling of FPAR Based on Red-Edge Vegetation Indices

To explore the potential of the inversion FPAR with red-edge information, we first
analyzed the variation characteristics of winter wheat and summer maize in the red-edge
spectral range of Sentinel-2 data. In order to reduce the influence of other factors (cloud,
spectral noise, etc.) on crop spectral variation in the growing season, we selected the
seasonal average spectral curves of winter wheat and summer maize in the same sample
point of two crops in different growing seasons, and drew the variation curves of canopy
spectral reflectance of two crops from blue to short-wave infrared band (see Figure 5).
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Figure 5a shows the variations in the spectral reflectance curves and red-edge infor-
mation in the main growing seasons of the two crops. In Figure 5b, the rate of changes in
summer maize within 705 nm of the red-edge is higher than that of winter wheat, because
the photosynthetic efficiency of summer maize (C4 crops) is usually higher than that of
winter wheat (C3 crops) [49]. However, the change rates of winter wheat and summer
maize in the range of 740 and 783 nm of the red edge are basically the same, which indicates
that in this interval, the red-edge spectrum is insensitive to the chlorophyll of the two crops.
Previous research has also shown that the positions of the crops at a red-edge of 705 nm
are more suitable for the inversion of the bio-physiological parameters [17,50].

Therefore, we used the red-edge vegetation indices NDVIred−edge and SRred−edge to
fit the MCD15A3H LAI/FPAR products in the corresponding crop growing season, and
the inversion results are shown in the following figures.

Figure 6 shows the regression accuracy of the NDVI-related vegetation indices in the
main growing seasons of winter wheat and summer maize. The results show that the fitting
accuracy of the NDVIred−edge and SRred−edge with the MODIS FPAR data is higher than
that of the original model, NDVI. This indicated that the NDVIred−edge and SRred−edge are
more sensitive to the detection of the vegetation’s photosynthetically active radiation and
that they have better retrieval performance.

The table above lists the fitting models and accuracies of NDVIred−edge, SRred−edge,
and NDVI in the main growing seasons of the two crops. The fitting accuracies of the
NDVIred−edge, SRred−edge, and NDVI during the winter wheat growing season are 0.72,
0.71, and 0.64, respectively (Table 4). NDVIred−edge has the highest fitting accuracy, which
is higher than those of SRred−edge and NDVI by 0.01 and 0.03. In the maize growing season
in the summer, the fitting accuracies of the NDVIred−edge, SRred−edge, and NDVI are 0.45,
0.53, and 0.40, respectively. SRred−edge has the highest fitting accuracy of 0.53, which is
higher those of the NDVIred−edge and NDVI, which have fitting accuracies of 0.08 and 0.13.
The original model’s NDVI has the lowest fitting accuracy. Therefore, this study models
the inversion formula for improving key parameter, FPAR, for different crop types.

FPARwheat = 0.8287 × NDVIred−edge+0.1889 (15)

FPARmaize= 0.1023 × SRred−edge+0.3011 (16)

where FPARwheat and FPARmaize refer to the FPAR values of winter wheat and maize.
NDVIred−edge and SRred−edge refer to the red-edge vegetation indices of winter wheat and
maize. In order to reduce the influence of extreme values, 95% and 5% confidence intervals
are used for the maximum and minimum values, respectively. Equations (15) and (16),
proposed in this study, comprise the most fundamental difference between the improved
CASA and the original CASA model for the FPAR inversion method. Considering the
sensitivity of the narrow-band red-edge vegetation index in retrieving the crop LAI, chloro-
phyll content, biomass, and other biophysical parameters, the red-edge vegetation indices
are used to retrieve the FPAR. For this study, in the main growing seasons of winter wheat
and summer maize, the accuracy of the FPAR retrieved by NDVIred−edge is higher, while
SRred−edge is more accurate in retrieving the FPAR of maize.

3.2. FPAR Inversion Results Based on Red-Edge Vegetation Indices

According to Equations (8) and (9), this research used the red-edge vegetation indices
to retrieve the FPAR of crops (Figures 7 and 8). The maximum value of the FPAR in the
main growing season of winter wheat appeared in May, and the maximum value was 0.91.
The maximum value of the FPAR in the main growing season of summer maize was in
August, and it was 0.91. Accordingly, the vegetation index of the two crops also reached
the maximum in May and August, respectively.
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In March, after the greening stage of winter wheat, the stalks and leaves of the winter
wheat grew at the jointing stage, and the ability of the leaves to absorb solar radiation
was gradually strengthened. In April, the winter wheat entered the booting stage after
the jointing stage, the further growth of the leaves basically reached a normal level, and
the ability of the canopy to absorb solar radiation was significantly improved. In May, the
winter wheat leaves basically expanded to the largest area, and most plants were in the
flowering period. Moreover, the NDVIred-edge and FPAR also reached the maximum.

In July, the summer maize entered the jointing stage after the seedling stage,
three-leaf stage, and seven-leaf stage, and the height of the leaves and plants increased. In
August, the summer maize entered the flowering and tasseling period, the leaves were
basically developed, and the ability to absorb solar radiation was further improved. In
September, the summer maize gradually shifted from the vegetative growth stage to the
reproductive growth stage. After the silking and maturity stages, the grain filling was
basically completed, and the thousand-grain weight increased significantly. At this time,
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the ability of the leaves to absorb photosynthetically active radiation was reduced, which,
in turn, led to a decrease in the FPAR value.
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3.3. Improved Inversion Results Based on Red-Edge Vegetation Indices
3.3.1. Cumulative NPP and Biomass of Crops

In the above research, the improved CASA was used to model the FPAR in the main
growing seasons of the crops. It can be seen in Equation (5) that there was a significant
linear relationship between the aboveground biomass and accumulated NPP. When the
plant root-shoot ratio and C content parameters were determined, the NPP could be
transformed into the plant aboveground biomass. Winter wheat and summer maize have
different primary products that assimilate carbon dioxide in photosynthesis, and they are
divided into C3 and C4 plants. Therefore, the carbon content of the plants is also different.
At the same time, due to differences in crop types and growth characteristics, there are also
differences in the root-shoot ratios of winter wheat and summer maize (Table 5). These
factors must be considered when converting the NPP into biomass.
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Table 5. Residual carbon ratio, dry matter ratio, and root–shoot ratio of crops.

Crops
Carbon Content Ratio

Dry Matter Ratio Root-Shoot Ratio
Moisture Content

(%)Economic Production Residual Carbon Ratio

Winter
wheat 0.39 0.49 0.85 0.11 12.5

Maize 0.39 0.47 0.78 0.09 13.5

When the carbon content and root–shoot ratio parameters of winter wheat and sum-
mer maize were determined (Table 5), the cumulative NPP could be converted into the
aboveground biomass of the crops with Equation (12) (see Figure 9a,b). Figure 9c,d il-
lustrates the spatial distribution map of the aboveground biomass of winter wheat and
summer corn in the Shijin irrigation area of Hebei Province in 2019. According to the map,
we found that there were differences in the biomass changes and spatial distributions of
winter wheat and summer corn in the study area. The biomass of winter wheat varied
from 487.67 to 1585.08 g·m−2. From the perspective of spatial distribution, the biomass in
the southeastern part of the study area was the largest, while the biomass in the northwest
was relatively small. The biomass of summer maize varied from 187.27 to 2763.93 g·m−2.
The maximum biomass value was mainly distributed in the northwest, and the minimum
value was mostly distributed in the south. Due to the linear relationship between the NPP
of winter wheat and summer maize and the biomass, regardless of the influence of other
factors, the spatial distribution of the biomass was similar to the spatial distribution of the
accumulated NPP.
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According to the cumulative NPP frequency distribution maps of the two crops, the
cumulative NPP of winter wheat was mainly concentrated in the 600–700 gC·m−2 interval.
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The cumulative frequency of the NPP reached the maximum value of 670 gC·m−2, and
the relative distribution frequency was close to 40% (Figure 10a). For the cumulative NPP
distribution frequency map of maize, the cumulative NPP was mainly concentrated in the
700–800 gC·m−2 interval, the NPP cumulative frequency reached the maximum value of
753 gC·m−2, and the relative distribution frequency was close to 60% (Figure 10b).
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Figure 10. The frequency of the accumulated NPP and biomass in the main growing seasons of the crops. (a,b) The
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Moreover, in order to analyze the distribution of the aboveground biomass of winter
wheat and summer maize, the relative frequency maps of their distributions in different
intervals were calculated (see Figure 10c,d). For the distribution frequency map of the
aboveground biomass of winter wheat, the biomass was mainly concentrated in the range
of 1000–1500, and the maximum biomass frequency was 1284 g·m−2, with a relative
distribution frequency of more than 30%. For the distribution frequency map of summer
maize’s cumulative biomass, the cumulative NPP was mainly concentrated in the range of
1200–1800. The maximum biomass cumulative frequency was 1627 g·m−2, and the relative
distribution frequency was close to 50%. As such, the cumulative biomass distribution
of winter wheat and summer maize was close to the standard normal distribution, but
their concentration frequency distribution intervals were different, which indicated that
the average biomass of summer maize was higher than that of winter wheat.

3.3.2. Aboveground Biomass Estimation Accuracy of Crops

The correlation between the aboveground biomass data of winter wheat and summer
maize and the predicted aboveground biomass was analyzed (see Figure 11).
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According to the correlation analysis of the prediction results of the two models, we
found that the aboveground biomass data predicted by the improved CASA model have
an obvious linear correlation with the measured aboveground biomass data. Figure 11a
shows the relationship between the predicted biomass of the model and the measured
biomass of winter wheat. The result indicates that there is a significant linear relationship
between them, R2 is 0.73. For the predicted and measured biomass of summer maize,
the R2 is 0.70, and the linear relationship was significant. However, the accuracy of the
predicted biomass of the original CASA model is lower than the improved CASA model
(Figure 11b). The accuracies of predicted biomass of winter wheat and summer maize are
0.6 and 0.49, respectively, which are lower than those of the improved CASA model.

As such, according to the linear relationship between the predicted value and the
measured value of the improved CASA model, the correlation between the predicted value
and the measured data is significant, which can effectively estimate crops’ biomass in the
study area.

3.4. Seasonal Variation and Factors Influencing Crops Aboveground Biomass

To further explore the seasonal changes in the NDVI, FPAR, LUE, and biomass in the
key growing seasons of winter wheat and summer maize and to understand their inherent
growth rules, we analyzed the variations in the NDVI, FPAR, LUE, and biomass in different
months of the main growing seasons of winter wheat and summer maize (Figure 12), as
well as the effects of the NDVI, FPAR, and LUE on the crops’ biomass.

In the main growing season of winter wheat (March to May), the NDVI value showed
a significant increasing trend, which reached the maximum value in May (Figure 12).
At this stage, the stems, leaves, and other tissues of winter wheat grew and developed
completely. The ability to absorb solar radiation and the photosynthesis of leaves reached
the maximum. For summer maize, the NDVI increased first, and then slowly decreased,
but the overall trend was increasing. In September, summer maize turned from vegetative
growth to reproductive growth, and entered the milk stage and early mature stage. The
photosynthetic function of the leaves decreased and the NDVI gradually decreased. The
monthly average FPAR values of the winter wheat and summer maize varied in the main
growing seasons but showed an increasing trend. Moreover, the trend of the FPAR was
consistent with the NDVI.
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The LUE of the two crops also changed dramatically in the main growing season.
From March to May, the LUE value of winter wheat increased linearly from low to high,
and it was consistent with the change trend of the NDVI and FPAR parameters. In the main
growing season of summer maize, although the LUE value in August was slightly higher
than that in July, the LUE value decreased again in September, which led to the overall
downward trend in the final growing season. This is because in the main growing season
of wheat, the environmental stress factors gradually decreased and the LUE increased.
However, in the late growth stage of summer maize, it was greatly affected by temperature
and precipitation stress, and the LUE gradually decreased. For winter wheat, the seasonal
biomass showed an increasing trend. The minimum biomass value was at the jointing
stage of winter wheat, and then it began to rise. In May, the biomass of winter wheat
reached the maximum. At this stage, the flowering stage of winter wheat gradually ended,
and it later entered the milky stage. This indicated that winter wheat changed from the
vegetative growth stage to the reproductive growth stage. The seasonal biomass of summer
maize showed a slight upward trend. In August, all tissues and organs of summer maize
developed completely. Summer maize grew until September and reached the late stage of
reproductive growth. The stems, leaves, and other organs of maize began to wilt, the grain
filling of maize ended, and the 1000-grain weight reached the maximum.

The biophysical parameters NDVI, FPAR, and biomass of the two crops have an
obvious increasing trend in the main growing seasons, except for slight differences in LUE
values. In the growing season of winter wheat, the parameters NDVI, FPAR, and LUE
increased gradually due to the reduced stress from environmental factors, which promoted
the growth of biomass. In the late growth stage of summer maize, with the aggravation
of water and temperature stress, the NDVI, FPAR, and LUE showed a downward trend,
which affected the biomass accumulation.

4. Discussion
4.1. Accuracy Differences of Various Vegetation Indices

The FPAR is one of the two most important input parameters of the CASA model,
and the accuracy of its inversion directly affects the output of the model. Compared with
previous studies and experimental results, it was found that the inversion accuracy of the
FPAR based on the NDVIred−edge and SRred−edge was higher than that of the NDVI in the
original model, but the inversion effects of other vegetation indices were not compared.
Therefore, in order to discuss the uncertainty of FPAR inversion in the CASA model, this
study analyzes the inversion effects of other vegetation indices. Many studies have shown
that there is a significant correlation between crop FPAR and certain vegetation indices,
and these vegetation indices are used to invert the FPAR. Kumar, Seller et al. found a linear
relationship between the FPAR and SR through theoretical research. Potter et al. began to
use the SR to estimate the FPAR with the CASA model. Hatfield et al. [40] found that the
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FPAR and NDVI of wheat and other crops also had a strong linear relationship. Recently,
some scholars found that combining the SR and NDVI to invert the FPAR value is the most
accurate. All of these indicate that the crop FAPR has different correlations with vegetation
indices.

In improved CASA model, the FPAR values were estimated based on its relationship
with the NDVIred−edge and SRred−edge. Moreover, to explore the inversion differences of
FPAR with different vegetation indices, we analyzed the inversions accuracies of FPAR of
the red-edge indices and non-red-edge indices including NDVI, SR, NDVI-SR, MSR, EVI,
NDVIred−edge, SRred−edge, and MSRred−edge.

According to the FPAR accuracy of the NDVI-SR inversion in the original CASA model
and the FPAR correlation analysis results of the inversions of the above seven vegetation
indices (Figures 13 and 14), the FPAR accuracies of the red edge and red-edge inversion in
this study were both higher than those of the other vegetation indices. The winter wheat
FPAR retrieved with the NDVIred−edge was the largest, with an R2 of 0.71 and RSME of 0.05.
The accuracy was higher than that of the winter wheat FPAR retrieved with the NDVI-SR.
For inversion with SRred−edge, the maximum FPAR accuracy of summer corn was 0.55, and
the RSME was 0.04. The retrieval accuracy was higher than that of the summer corn FPAR
retrieved with the NDVI. This also shows that the red-edge information of Sentinel-2 helps
to improve the accuracy of the FPAR inversion.

4.2. Mapping Differences of Various Models

The FPAR and NPP are important for monitoring the growth and development of
vegetation, and they provide a good indication of the productivity of terrestrial ecosystems.
The improved CASA model based on the red-edge vegetation index proposed in this study
showed better performance in the FPAR inversions of winter wheat and summer maize
and in the estimation of aboveground biomass; it was also more indicative of the crop
production capacity. Previous studies assumed that the FPAR of vegetation would be
affected by the attributes of the leaf photochemical elements (such as chlorophyll, etc.),
spatial distribution, and canopy structure (LAI and leaf angle), such as the NDVI, SR,
etc. [37,51]. Based on the multispectral data, we found that crops’ FPAR also had a stronger
relationship with the combination of the red and red edge bands. Moreover, when the
red-edge vegetation indexes, red and red1, were fitted to the MODIS FPAR products, the
fitting accuracy was higher than the accuracy of the wide-band NDVI inversion in the
original model. Moreover, the red-edge vegetation indices NDVIred−edge and SRred−edge
were used to fit the MODIS FPAR products, and their fitting accuracies were higher than
that of the wideband NDVI in the original model. This shows that, compared with the
wide-band vegetation NDVI (near infrared: 800 nm) in the original CASA model, the
red-edge vegetation index (red edge: 705 nm) was more sensitive to the detection of crops’
photosynthetic levels. Similarly, for the estimated aboveground biomass of crops, the
accuracy of the aboveground biomass of winter wheat and summer maize estimated by the
improved CASA model was higher than that estimated by the original CASA model. This
is because the improved CASA model is based on the red-edge vegetation indices. If other
variables remain unchanged, the higher the accuracy of the FPAR retrieved by the red-edge
vegetation indices, the higher the accuracy of the final aboveground biomass estimation.
To further analyze the mapping details of the CASA model, the original CASA model, and
MODIS FPAR product, we randomly selected a sub-region in the study for discussion.
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Compared with the FPAR and MODIS FPAR product retrieved by NDVI, the red-edge
vegetation indices have a higher accuracy for FPAR mapping in sub-regions. Moreover,
those results have better consistency with the MODIS FPAR product (Figure 15). For the
two crops FPAR retrieved by NDVIred-edge and SRred-edge, we find that the 10 m FPAR
mapping based on the red-edge vegetation indices is in good agreement with the MODIS
FPAR product in spatial distribution and numerical range (Figure 15a,d). The value of
FPAR retrieved by NDVI is higher than FPAR retrieved by red-edge indices and MODIS
FPAR. This is because the NDVI value of the combination of near-infrared and red band
is larger, and it is close to saturation in dense vegetation. Moreover, Figure 14 shows
the spatial distribution of aboveground biomass based on improved CASA model, the
original CASA model and the MODIS FPAR-driven. The result shows that the aboveground
biomass of 10 m predicted by the improved CASA model and driven by MODIS FPAR
are also in accordance with spatial distribution and numerical range (Figure 16a,d). The
original CASA model based on NDVI, despite the spatial distribution consistent with
the aboveground biomass of improved CASA model and MODIS FPAR-driven, shows
a significant overestimation of its biomass (Figure 16b,e).
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The above analysis indicates that the FPAR and biomass mapping of crops with high
spatial resolution based on red-edge vegetation indices are more helpful for quantitative
analysis of crop growth and change than those with coarse resolution. According to previ-
ous studies, the CASA model based on the wide-band vegetation NDVI is effective in esti-
mating ecosystem productivity, carbon fixation, biomass, etc. [22]. The red-edge band has
been proven to have an obvious relationship with some biophysical parameters of plants.
Using the red-edge band to construct red-edge vegetation indices can help improve the
estimation accuracy of vegetation chlorophyll content, biomass, and productivity [52,53].
For global and national scales vegetation biomass estimation, the improved CASA model
based on the red-edge vegetation index still has great application potential.

4.3. Features of Improved CASA Model

The improved CASA model is applied to our work and the better estimation results
are obtained. Specifically, we believe that there are several factors that can improve the
accuracy of the improved CASA model in estimating crop biomass.

The FPAR model based on red-edge vegetation indices can better reflect the inver-
sion of crops FPAR. Since Potter first applied CASA to the study of global vegetation
NPP and carbon change model, more researchers introduced the CASA model to global
or regional vegetation, crop NPP, biomass and carbon change, which undoubtedly pro-
moted the application of the CASA model. However, limited to satellite sensors, many
researchers can only use the existing satellite images. For example, Potter and Rummy
used NOAA AVHHR data to analyze the change of global NPP. The satellite data has only
four channels, namely red light (R: 0.58–0.68 µm), near infrared (NIR: 0.73–1.1 µm), thermal
infrared 1 (10.2–11.3 µm) and thermal infrared 2 (11.5–12.5 µm). Although the NDVI based
on the combination of red and near-infrared channels can roughly reflect the growth status
of vegetation, the CASA model based on AVHHR cannot accurately monitor the change
of vegetation NPP due to the influence of spatial resolution and spectral resolution of
sensors. With the development of satellite sensors, such as MODIS, Landsat, Rapid Eye
and Sentinel-2, the higher the spatial resolution, the more detailed the spatial distribution
of vegetation.

In addition, the enhancement of spectral resolution is an important reason for the
improvement of quantitative remote sensing inversion accuracy. The difference of different
vegetation types and the capacity of photosynthesis directly affect the spectral changes. The
quantitative analysis of different spectra can more effectively reflect the growth mechanism
of crops. Various sensitive vegetation indices can also accurately retrieve crop physiological
parameters. In this study, combined with previous studies and intensive experiments, we
found that compared with the original CASA model of NDVI based FPAR, NDVIred-edge
and SRred-edge can retrieve crops FPAR more effectively. This is due to the faster change
of canopy reflectance at 705 nm of red edge, which leads to more sharp response to crops
chlorophyll. Compared with the former two, the canopy reflectance at 842 nm of NDVI
does not change dramatically, so the accuracy of FPAR inversion is lower than that of red
edge based FPAR, which leads to the low accuracy of biomass estimation.

The main feature of our work is to propose a red edge based FPAR model based on
sentinel-2msi data. The model is quickly fitted by MODIS FPAR products with higher
accuracy, and then input into CASA model. However, there are differences in spatial
resolution and radiation resolution between MODIS FPAR and sentinel-2, which affect
the accuracy of FPAR and biomass estimation to a certain extent. Some research found
that MODIS FPAR (C6) is considerably better than C5 with lower RSME [54,55]. Although
both C5 and C6 products overestimate the FPAR in sparse vegetation areas, the impact
on dense crop areas is relatively small. Overall, MODIS FPAR can accurately reflect the
photosynthetic capacity and other physiological parameters of crops in the main growing
season. In the absence of measured FPAR data, it is a practical method to use the fitting
model of vegetation index and MODIS FPAR to inverse FPAR.
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5. Conclusions

Aboveground biomass mapping is crucial for agricultural production management
and food security, and the CASA model provides important support for this purpose. The
following conclusions can be drawn:

First, the accuracy of the FPAR retrieved by the NDVIred−edge and SRred−edge is
higher than that of the wide-band vegetation NDVI. The NDVI tends to saturate in dense
vegetation, which affects the estimation of the FPAR and biomass. This research used
NDVIred−edge, NDVIred−edge that is more sensitive to vegetation changes to fit the MODIS
FPAR product. The results show that the FPAR inversion accuracies of the red edge were
13% and 20% higher than that of the original CASA model.

Second, obviously seasonal differences of the NDVI, FPAR, and LUE of different crops
are reflected in our work. The variations of biophysical parameters of crops shows that, due
to the effects of decreased temperature and precipitation stress, four biophysical parameters
all display an increasing trend. The maximum values of the parameters all appeared in
May, with a progressive increase trend. However, four biophysical parameters during the
main growth of summer maize, showed shock downward trend at an aggregate level. The
maximum of the four parameters appeared in August, indicating that the temperature and
precipitation stress of the crops was the lowest at this stage, which affect the aboveground
biomass accumulation of crops.

Overall, an improved CASA model was utilized to estimate aboveground biomass
of crops and achieved a good performance. In future research, the development of UAV
and high-revolution, real-time FPAR, biomass products will help to improve the potential
accuracy of the CASA model.
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Abbreviations
The following abbreviations are used in this manuscript:

NPP Net primary productivity NPP = APAR × LUE

APAR
Photosynthetically active radiation
absorbed by the vegetation canopy

APAR = PAR × FPAR
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FPAR
Photosynthetically active
radiation absorption proportion

FPARwheat = 0.8287 × NDVIred-edge + 0.1889
FPARmaize = 0.1023 × SRred-edge + 0.3011

PAR Photosynthetically active radiation PAR = SOL × 0.5

SOL Monthly radiation
Defined as the total radiation of crops in main
growth stage

LUE Actual light use efficiency LUE = Tε1 × Tε2 ×Wε × LUEmax

LUEmax Maximum LUE
For winter wheat, LUEmax = 1.95, for summer
maize, LUEmax = 2.55

Tε1 Effects of temperature stress Tε1 = 0.8 + 0.02 × Topt − 0.0005 × Topt
2

Tε2 Effects of temperature stress
Tε2 = 1.184/{1 + exp [0.2 × (Topt-10-Tx)]} ×
1/{1 + exp[0.3 × (−Topt-10 + Tx)]}

Topt Optimal temperature
Defined as the air temperature in the month
when the NDVI reaches its maximum

Tx Monthly temperature
Defined as monthly temperature of crops in
main growth stage

Wε Effects of water stress Wε = (1 − (1 + LSWI)/(1 + LSWImax)) + 0.5
LSWI Land Surface Water Index LSWI = (ρnir−ρSwir)/( ρnir−ρSwir)
B Aboveground biomass B =∑ NPP × α/β

α
Ratio of the aboveground
biomass to the whole vegetation

For winter wheat, α = 0.90, for summer maize,
α = 0.91,

β The C ratio of a crop
For winter wheat, α = 0.49, for summer maize,
α = 0.47,

NDVI
Normalized Difference
Vegetation Index

ρnir−ρred
ρnir+ρred

NDVIred-edge
Red-Edge Normalized
Difference Vegetation Index

ρnir−ρred−edge
ρnir+ρred−edge

SR Simple Ratio Vegetation Index ρnir
ρred

MSR
Modified Simple Ratio
Vegetation Index

ρnir/ρred−1√
ρnir/ρred+1

MSRred-edge
Modified Red-Edge Simple
Ratio Vegetation Index

ρnir
ρred−edge

−1√
ρnir

ρred−edge
+1

SRred-edge
Red-Edge Simple Ratio
Vegetation Index

ρnir
ρred_edge

EVI Enhanced Vegetation Index 2.5(ρ nir−ρred)
(ρ nir+6ρred−7.5ρblue)

+1
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