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Abstract: Landslides, often a side effect of mining activities, pose a significant risk to humans and
infrastructures such as urban areas, power lines, and dams. Operational ground motion monitoring
can help detect the spatial pattern of surface changes and their evolution over time. In this technical
note, a commercial, cost-effective method combining a network of geotechnical surface sensors
with the InSAR data was reported for the first time to accurately monitor surface displacement.
The correlation of both data sets is demonstrated in the Gediminas Castle testbed, where slope
failure events were detected. Two specific events were analyzed, and possible causes proposed.
The combination of techniques allows one to detect the precursors of the events and characterize
the consequences of the failures in different areas in proximity to the castle walls, since the solution
allows for the confirmation of long-term drifts and sudden movements in real time. The data from
the in situ sensors were also used to refine the satellite data analysis. The results demonstrate that
not all events pose a direct threat to the safety of the structure monitored.

Keywords: landslide; interferometric synthetic aperture radar (InSAR); geo-information; monitoring;
wireless; smart mining; autonomous monitoring; Internet of Things (IoT); connected operational intelligence

1. Introduction

Land displacements such as mudflows, landslides, topples, or slope failures are
triggered by the destabilization of a slope through rainfalls, seismic events, changes in
water levels, or human activity, among others. For instance, mining activities such as
excavation, blasting, material removal, and water extraction can trigger such events that
may compromise worker safety, mine stability, equipment, surrounding communications,
and power infrastructure. Landslides result in extensive damages to the environment and
infrastructures, and in thousands of lives lost every year, according to the US geological
survey [1]. The impact of mining on land stability is significant [2]. Nevertheless, mining is
an important component of the global economy. Forty companies share the vast majority of
the global mining revenue. In 2019, this represented USD 692 billion [3]. Reducing mining
activities is not an option, so reducing their impact of landslides by enabling effective,
secure, and qualitative monitoring is essential.

Several methods have been used for slope monitoring and landslide measurements.
Terrestrial laser scanning (TLS) and global navigation satellite systems (GNSS) (including
global positioning systems (GPS)) are two common techniques used for this purpose [4].
Another one is the synthetic aperture radar interferometry (InSAR) [5,6]. However, land
displacements are mostly monitored using a series of sensors disseminated on the ground
surface [7]. To detect land motion, or measure its rate, magnitude, and direction, moni-
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toring is conducted using devices such as slope movement sensors (extensometers), ac-
celerometers, inclinometers, tiltmeters, distometers, prisms, survey stations, and vibration
sensors [8]. Internet of Things (IoT) monitoring systems are often used for geotechnical
information, alone or in combination with innovative technological elements [9–11]. Tra-
ditional manual reading is being progressively replaced by the deployment of wireless
networks of commercially available instruments to collect, transmit, and process land
displacement data, as displayed in Figure 1 for a mining environment. Such monitoring
networks have several advantages:

• They do not require human interaction to collect the data;
• They require minimum maintenance;
• They are battery powered;
• They have low power consumption;
• Connectivity to the internet facilitates real-time data visualization and further analyses.

Figure 1. The IoT-based monitoring of a mining site.

Despite these advantages, however, motion sensors provide only discrete information
limited to the footprint of the sensor, and a specific time range, resulting in potential
information gaps. A considerable amount of work in the field of monitoring has lately been
focused on the modeling and forecasting of displacements, to improve monitoring systems
while reducing their cost. These predictive systems often exploit the initial geotechnical
model of the structure and the data collected by IoT devices is used to update the model
and calculate the safety factor of the structure. In particular, PLAXIS 2D and 3D are
powerful and user-friendly finite element packages intended for two-dimensional and
three-dimensional analyses of displacements and stability in geotechnical engineering
and rock mechanics. Nevertheless, it remains generally difficult to detect the long-time
precursors of such events. The InSAR technique can be used to identify such precursors,
since it allows for analysis over a wide area and a long time period of the trend of slope
displacement, velocity, and acceleration, which are the best indicators of ongoing failure
processes [12]. Photogrammetry processed aerial photography and the Light Detection
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and Ranging (LiDAR) survey are also frequently used. Here, we report on a flexible
commercial framework, which can orchestrate diverse hardware products and software
modules, addressing both large scale and in situ aspects of monitoring.

2. Materials and Methods
2.1. InSAR

Satellite InSAR is commonly used for landslide monitoring and characterization [13],
and is also used for slope failure prediction [14]. It has also been used in the mining
sector since the first mining displacement map from SAR data was obtained in 1996 [15],
although the interest in using spaceborne SAR data to investigate terrain displacement
and the integration of instrumentation and monitoring has mainly increased in the past
ten years [16]. SAR is a microwave imaging system that enables large-scale coverage
independently of the cloud cover and illumination conditions. The SAR signal contains
amplitude and phase information. The phase is determined by the distance between the
remote sensor and the target on the ground. Differences in phase between multi-temporal
scenes of the same target surface enable the mapping of ground displacement and infer
surface displacement rates at sub-meter level [17]. Figure 2 depicts the architecture of the
proposed solution. A more detailed schematic of the InSAR processing steps was proposed
here [18]. As a result of its observational capabilities, SAR has been used to investigate
volcanic processes, infrastructure stability and in many more applications, although the
most relevant to the work presented here are surface motion, terrain subsidence, landslides
and earthquakes [19–22].

Figure 2. InSAR process simplified schematic diagram.

The InSAR processing was done by SkyGeo with its own proprietary software pack-
age for PS (persistent or point-like Scatterer) and DS (distributed scatterer) InSAR data
processing [23]. The software and algorithms were developed, improved, and maintained
in-house, resulting in complete control of the entire process [24].

The processing chain includes high-precision coregistration to build up a series of
aligned SAR images [25]. Either customer-provided or publicly available topographic data
were used in the processing to remove the topographic phase component and geocode the
interferograms. The data from the in situ sensors were also used to refine the data analysis.
For time series analysis, a combined PS and DS processing scheme was applied, after which
regional InSAR estimates could be further adjusted using additional independent (e.g.,
GPS) data. The output product was visualized on a secure web service (SkyGeo Maps).

2.2. Robotic Total Stations (RTS)

An RTS is an automated electro–optical instrument used for monitoring distances
and angles from the instrument to a particular point. They can be remotely controlled
and used with automated setups. They can also be used in conjunction with a geodetic
prism that reflects the laser beam emitted by the RTS. If the reflection is obtained, the polar
coordinates of the prism (two angles and the distance) are calculated. Then, the beam is
directed to another prism, and the operation repeated for each one of them. If the reflection
is not obtained, the total station begins to scan the environment by changing the angles of



Remote Sens. 2021, 13, 2757 4 of 17

the laser beam until it detects the prism and reports the new polar coordinates [26]. In this
work, Geomax Zoom900 devices were used.

2.3. In Situ Sensors

Engineers have used field observation for a long time and geotechnical asset man-
agement has leveraged a widely used, specific methodology known as the observational
method, which was first described by Terzaghi [27] and later refined by Peck [28]. It tradi-
tionally relies on in situ sensors to provide measurements and instrumentation. The devel-
opment of affordable geotechnical monitoring devices has enabled the growing relevance
of this methodology. Inclinometers such as the ones used in this work have commonly
been used since the 1960s. The automation of such monitoring systems was initiated in the
1970s through the smart sensor and remote monitoring paradigm, which have promoted
the development of low cost, low power, mostly unattended monitoring systems that
can be deployed in vast geographic areas to provide specific monitoring. Together with
the emergence of wireless communication technologies, they have enabled the battery-
operated, isolated, remote sensing, and monitoring systems used by the geotechnical
sector to develop automated solutions [29]. The technology is still evolving towards more
innovative IoT-based monitoring systems for improved monitoring and increased safety
integrating predictive models, safety factors, cloud components, and artificial intelligence
modules [30–32]. The in situ aspect of the technology used in the work reported here is pro-
vided by Worldsensing’s Loadsensing commercial product, whose architecture is sketched
in Figure 3. It is comprised of an IoT data acquisition system and a monitoring solution
that combines wireless monitoring and advanced software tools. The main elements of the
proposed solution are:

• Sensors (here, inclinometers);
• Distributed low-power nodes;
• Powered gateways;
• Software interface (to configure the devices and manage the wireless network).

Figure 3. Loadsensing architecture.

The sensors are wired to the dataloggers wireless nodes. These devices send the informa-
tion of each sensor to the gateway using the long range (LoRa) radio communication protocol.
The information is then relayed over ethernet to the network management and dataserver
and can be displayed in a visualization software. The real-time data of the sensors and the
network is accessible to the user, and is also used to set alarms and warnings.

3. Case Study: Gediminas Castle
3.1. The Problem

Gediminas Castle was built in the 14th century under the command of the Grand
Duke of Lithuania Gediminas. It remains a symbol of the Lithuanian state. However,
historical sources recorded many landslides over the years on the erosive Gediminas Castle
Hill, which represent a risk for the castle conservation. The remaining structures of the
castle stand 40 m high, at 138 m above sea level. Geologically, Lithuania is the bottom of
the former sea, consisting of sedimentary rocks. The castle hill is composed of quaternary
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glacial, glaciolacustrine, glaciofliuvial inter-layered deposits and technogenic (cultural
layer) accumulations [33]. The years 2016 and 2017 were marked by very heavy rains
and all the hillsides were affected by landslides. The first unprecedented slope failures
occurred on the northwest slope in February 2017. New landslides were observed in 2020.
The consequences of these events are depicted in Figure 4.

Figure 4. Slope failures on the Gediminas Castle hill: (a) November 2017, southeast slope;
(b) March 2017, northwest slope; (c) June 2020, east slope; and (d) June 2020, southeast slope.
Courtesy of GPS Partneris.

3.2. The Solution

The first recent major slope failure occurred in February 2017 and prompted emer-
gency maintenance works on the hill for slope stabilization, together with installing a
digital monitoring system comprising four robotized Geomax Total stations Zoom 900,
serving 50 geotechnical prisms in the hill soil, and 28 Loadsensing bi-axial tiltmeters on
buildings and defensive and protective ramparts. Measurements are performed every
30 min. The data are sent to a gateway and eventually translated into Vista Data Vision
cloud visualization software. The monitoring program also included the installation of total
stations and monitoring prisms. During the observation period (2016–2020), the number of
sensors was periodically increased, and their location amended, the final location being
illustrated in Figure 5. In 2019, the soil reinforcement works were completed; however,
the monitoring equipment was left for post-reconstruction monitoring. The InSAR ascend-
ing and descending orbits data from Sentinel-1 were analyzed from January 2019 to October
2020 to complete the survey, and the correlation between all three data sets was studied.
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Figure 5. Gediminas Castle instrumentation location: (a) total station and prisms; and (b) tiltmeters.
Courtesy of GPS Partneris.

The tiltmeters are installed on the walls of the castle, at the top and at the bottom of
the hill, and some installation examples are displayed in Figure 6.

Figure 6. Gediminas Castle tiltmeters installation examples. Courtesy of GPS Partneris.

3.3. Results
3.3.1. June 2020

A sudden slope failure occurred on the 12th of June 2020.

Robotic Total Stations

The movement was detected by the prisms highlighted in Figure 7.
Figure 8 displays the measurements of the total stations highlighted above.
The approximate magnitude of the movements is detailed in Table 1:

Table 1. Displacement measured by the total stations during the June 2020 event, where plus and
minus represent the direction and the number of signs represents the magnitude.

ID Easting Northing Up Total (mm)

3–10 + + + - - 40
3–12 0 - - 20
3–14 + - - - - 30
3–18 + - - 20



Remote Sens. 2021, 13, 2757 7 of 17

Figure 7. Location of the total stations that detected the incident highlighted in yellow.

Figure 8. RTS data depicting the movement experienced as a consequence of the June 2020 slope failure.

Tiltmeters

Out of the 11 Loadsensing tiltmeters located on the eastern and southeastern sides of the
castle, the four devices whose location is highlighted in yellow in Figure 9 (Top) showed a clear
displacement at the moment of the event. The data are plotted in Figure 9 (Bottom).

The displacement is calculated from the angle shift experienced by the tiltmeters,
which results in the displacement of the order of the millimeter in both directions. The re-
sults are presented in Table 2:

Table 2. Displacement measured by the tiltmeters in the June 2020 event.

Tiltmeter Displacement in Each Direction (mm)

5062 (T9) [−1.5;−0.3]
5100 (T11) [−1.5;1.2]
5322 (T18) [−0.6;−0.8]
5070 (T15) [−2;−1.2]
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Figure 9. (Top) Highlighted tiltmeters detected the event; and (Bottom) highlighted tiltmeters
data plot.

InSAR

The InSAR results showed that prior displacements clearly preceded the June failure
event. The InSAR results exhibit surface displacements across and during the event itself.

In Figure 10, the linear displacement rates of several point scatterers on the slope of the
castle hill are presented. SkyGeo’s InSAR algorithm has captured several point scatterers
that show a large linear rate of displacement (in red) from January to June 2020. The labels
indicate the areas of the failures in June (Areas A and B) and July (Area C).

The temporal evolution of the displacement as estimated by InSAR over the time
period of the failures is reported below. Figure 11 depicts a point scatterer situated on
the southeastern face of the hill, Area A. From the result, it is clear that the slope has
been gradually moving since February 2019. Around the time of the first surface event
on the 12th of June 2020, the time series indicates a marked increase in the linear rate of
displacement (in green). Furthermore, the figure also illustrates that there was an increase
in the rate of acceleration of the point in the first few months of 2020 leading up to the
actual event. This implies that the slope had begun to move relatively faster prior to the
failure event.
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Figure 10. Linear displacement rates before the surface events (January–June 2020).

Figure 11. Vertical displacement of scatterer A as a function of time in the area of the June sur-
face event.

A similar result is observed in Figure 12 from another point scatterer situated on the
same face of the hill, scatterer B. Here, the gradual displacement from the beginning of
2019 is even more apparent. It also clearly depicts the increased rate of acceleration around
December 2019, six months prior to the June 2020 event.

Figure 12. Vertical displacement of scatterer B as a function of time in the area of the June sur-
face event.
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3.3.2. July 2020

On the 20th of July 2020, a ground shift was observed on the southwest slope of the
Gediminas Castle Hill, the steepest slope of the hill, on the edge of which the tower of the
castle stands.

Robotic Total Stations

The movement was detected by the prisms highlighted in Figure 13, whose measure-
ments are displayed in Figure 14.

Figure 13. Total station prisms’ locations that detected the July 2020 event.

Figure 14. RTS data for the prisms that detected the July 2020 event.

The approximate magnitude of the movements is detailed in Table 3:

Table 3. Vertical displacement measured by the total stations during the July 2020 event.

ID Easting Northing Up Total (mm)

4–5 - - - 30
4–11 - - - - - - 150

Here, minus represents the direction and their number represents magnitude.



Remote Sens. 2021, 13, 2757 11 of 17

Tiltmeters

Figure 15 presents the results of the Loadsensing tiltmeters located in the region of
interest of the event. No significant displacements were observed during July 2020 by any
of the tiltmeters.

Figure 15. Tiltmeters data in the region of interest during the July 2020 event.

InSAR

The failure in July is noted in the InSAR data, however, it showed limited displace-
ments preceding the event. The displacement rates in Area C are lower than in area A and
B (June 2020) when considering the entire time period. However, when considering only a
shorter time period preceding the failures (January–July 2020), we found that in area C,
some scatterers showed higher displacement rates (see Figure 10).

Figure 16 depicts a point scatterer situated on the southwestern face of the hill, Area
C. Compared to the eastern and southeastern faces, this facade remained relatively stable
up until early 2020. There is increased acceleration from March 2020 with a sharp increase
in subsidence around June 2020. The point scatterer rapidly moved until the slope failure
occurred on this front on the 20th of July 2020 after which the signal decelerated but
continued to remain unstable.
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Figure 16. Displacement of scatterer in Area C as a function of time in the area of the July sur-
face event.

4. Discussion

The data collected from each of the sources were compared with the visual inspection
of both the events observed in June and July 2020. A strong correlation was reported
between the actual events and the robotic total stations information since the prisms
were installed on the hill slopes themselves. False positives and false negatives were not
observed, while the direction of the vector of the displacements matches the expected
direction, given the contour lines.

2020 was the warmest year on record in Lithuania. The average annual temperature
measured was of 9.2 ◦C. This was 2.3◦ above the multi-annual average. The year 2020
was also relatively dry in Lithuania since the total amount of precipitation was 7% less
than a normal year [34]. June and July are typically two months with heavy rainfall
in Vilnius, which are condensed in few days. In particular, in 2020, there were several
days of heavy rain in the beginning of June, just before the slope failure event observed.
During July, the weather was mainly dry, although heavy rains were reported on the
same day of the slope failure event. These rains could have triggered the specific events,
although the general trend displayed in Figures 11 and 12 demonstrates that such events
are to be expected.

Since the tiltmeters are located on the castle walls, they measure the effects of the
incidents on the structure, rather than the incidents themselves. The Loadsensing data
show minor changes during the June 2020 event in the tiltmeters located in the same
direction away from the castle, while tiltmeters outside the region of interest (ROI) do not
detect the event, as reported in Table 4. The measurements were also reported in Figure 17
and are consistent with the expected behavior.

Table 4. Summary of the displacements measured during the June 2020 event.

RTS ID RTS Disp.
(mm) Tiltmeter ID

Tiltmeter
Disp. Axis 1

(mm)

Tiltmeter
Disp. Axis 2

(mm)

InSAR
Scatterer ID

InSAR Short
Term Disp.

(mm)

InSAR Long
Term Disp.

(mm)

3–10 40 5062 (T9) −1.5 −0.3 A −13 −80
3–12 20 5100 (T11) −1.5 1.2 B −18 −100
3–14 30 5322 (T18) −0.6 −0.8 - - -
3–18 20 5070 (T15) −2 −1.2 - - -
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Figure 17. Summary graph of the displacements measured in the June 2020 event.

The magnitude of the event, as reported by the tiltmeters in the ROI, has a smaller
scale than the one from the total stations. This is also consistent with expected results since
the tiltmeters are installed on a more stable structure (the castle itself, located at the top of
the hill, and the castle walls located at the bottom of the hill) whilst the landslide event
occurred on the slopes. The tiltmeters did not detect a trend in the movement but a sudden
change, which is also consistent with the type of slope failure observed: a sudden landslide.
This makes it difficult to detect trends or patterns that can be observed in other scenarios.

The tiltmeters did not detect the July event, as reported in Table 5, even in the ROI,
which demonstrates that, although the hill slopes have experienced a slope failure event,
the castle itself was not affected. This illustrates the fact that the displacement of the
surrounding area does not always pose a threat to the structure and infrastructure being
monitored. Nevertheless, the long-term shift detected by InSAR is also a precursor of
future slope failure events.

Table 5. Summary of the displacements measured in the July 2020 event.

RTS ID RTS Disp.
(mm) Tiltmeter ID

Tiltmeter
Disp. Axis 1

(mm)

Tiltmeter
Disp. Axis 2

(mm))

InSAR
Scatterer ID

InSAR Short
Term Disp.

(mm))

InSAR Long
Term Disp.

(mm))

4–5 30 5336 - - C −5 −53
4–11 150 5049 - - - - -

- - 5352 - - - - -
- - 5054 - - - - -
- - 25,638 - - - - -

The results described in Section 3.3 point towards the wide applicability of InSAR
for the estimation of displacements in cases of slope instability and failure. The success
of the approach appears to vary between failure events and specific scatterers. In this
observation of medium resolution Sentinel-1 data, the coverage of the slopes by the InSAR
measurements is not totally spatially consistent. This may be explained by one of the
key assumptions of robust InSAR data being consistent and persistent reflection results
over time. Furthermore, sudden displacements may lead to errors in the displacement
estimation. As indicated by Figure 16, the slope failure on the southwestern front was a
large and sudden movement with a magnitude of displacement that is relatively difficult
for this InSAR analysis (temporal and spatial resolution constraints) to capture. At the
castle hill area of interest, the incidence angle and geometry of the slope compounded the
challenges in correlating coherent signals with the event.
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In comparison, the combination of InSAR with other technologies has been extensively
validated, for instance with LiDAR [35], GNSS [36,37], and other remote sensing techniques
such as ground-based radar [38]. InSAR has also been used to study slope failure events
in open pit mines and show how the technique could be used to detect precursor signs
of catastrophic slope failure [36]. The combination of InSAR with 2D finite element mod-
els [39] and 3D slope stability software [40] has also been reported. Nevertheless, there
are still few studies of the combination of InSAR with underground and terrestrial struc-
tural monitoring. Selvakumaran et al. have reported comparable InSAR and automated
total station (ATS) readings [41]. In this specific work, the comparison of InSAR and ATS
readings turned out to be comparable regarding the relative movement of points along
the bridge from one another, although there was no data correlation of InSAR with other
types of in situ sensors. Lastra et al. reported a high correlation between GNSS and InSAR
measurements without correlation with the extensometer measurements [42]. The Earth
Dam of Conza della Campania was monitored with a combination of extensometers and
InSAR, showing a strong agreement between the displacements recorded by both moni-
toring techniques [43]. Finally, the comparison of InSAR results with in situ monitoring
by inclinometers was reported, which validates InSAR as a valuable technique to monitor
landslide displacements [44,45].

The results proposed here demonstrate the complementarity of both techniques. This
might be relevant for applications in mining monitoring, where slope failures frequently
occur, especially for open pit mines, quarries, and Tailings dams. Future work will include
the validation of the technology in real dormant and active mining sites, as well as the
inclusion of other types of sensors relevant for mining monitoring, such as in-place incli-
nometers. Further steps for this work will also address the improvement of the metadata
for the RTS and Loadsensing, mainly regarding location and orientation, and will be solved
by working on different use cases. Agreements have been reached for new testbeds in an
active open pit mine and a tailing storage facility. These new testbeds will also allow the
validation of this method in real mining scenarios. Other steps might involve the develop-
ment of numerical simulations of landslide failures to interpret the measured result [46,47],
and the application of relevant aspects of the theory of mining area displacement.

5. Conclusions

The authors report here the successful implementation and validation of a commercial
monitoring system which correlates the data from IoT data acquisition and monitoring
system with other data sources (robotic total stations and the SkyGeo InSAR) in a real
testbed. The data are correlated in one slope failure event, where all three technologies
have detected displacements in the same directions, with different orders of magnitude
consistent with the location of the sensors. In another event, the RTS and InSAR detected
the event in a correlated manner whilst the tiltmeters demonstrated that the structure was
not affected.

Furthermore, the complementarity of both technologies is demonstrated, since the
InSAR data observe ground displacement on a large scale and over a large period of time,
detecting displacement precursors before the slope failure events occurred, whilst the
IoT system detects the actual consequences on the structure being monitored. The in situ
sensors data are also used to optimize the InSAR data analysis.
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