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1. Introduction

Escalating human impacts on the Earth are creating unprecedented challenges, in-
cluding the drastic degradation and loss of biodiversity worldwide. As human activities
are powerful forces of change and degradation, causing about 25% of plant and animal
species to be at risk of extinction over the past 50 years [1], it is imperative to obtain
timely and up-to-date information on the abundance and distribution of species and their
temporal dynamics, particularly for establishing successful conservation approaches. Such
detailed information is prohibitively expensive to obtain through traditional field surveys
due to their infrequent nature, together with their limited spatial extents. Thus, recent
advances in remote sensing have become crucial for obtaining such information across
broad geographic extents and at shorter and more frequent temporal intervals. Based on a
combination of in situ and remote sensing data and analytics, such approaches open new
windows of opportunity for not only expanding our knowledge of biodiversity, but also for
evaluating the processes structuring its spatio–temporal dynamics, including the impact of
human activities.

Many attempts to assess biodiversity patterns through remote sensing techniques
have relied on the relationships between species diversity and land cover obtained from
the numerical classification of remotely sensed data. While useful, information acquired
through such relationships may be insufficient for assessing biodiversity patterns, particu-
larly within individual land cover types, which by definition are assumed to be spatially
homogeneous while in reality they are heterogeneous. Alternative studies have discerned
pixel-based relationships between patterns of biodiversity across broad geographic regions
and multispectral imagery [2]. Other studies have amassed spectral libraries of different
species to develop relationships between species diversity and spectral heterogeneity based
on hyper-spectral imagery [3], have related species diversity and composition with land
surface phenology [4], or have evaluated functional diversity based on remotely sensed
data using multicriteria approaches [5]. However, several of these advances, while success-
ful, are constrained to particular geographic locations, species, and/or species assemblages.
Therefore, much more research is urgently needed to develop and test effective techniques
applicable at multiple scales, in different geographic settings and over time, together with
their successful incorporation into ecological research and biodiversity conservation.

2. Scope of the Special Issue

The works included in this Special Issue present some scientific and technological
innovations in remote sensing for assessing the spatio–temporal dynamics of wildlife
species and their habitats. Although constituting a very small set of studies, they cover a
diverse array of geographic settings distributed throughout the world and comprising both
terrestrial [6–14] and aquatic [9,12,15,16] systems (Figure 1). They also evaluate individual
species groups, including corals [15], reptiles [6,9], birds [7,10], mammals [8,11,13,14], or
a combination of different species groups [12,16]. These studies used diverse analytical
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approaches applied to remotely sensed data acquired by different sensor systems at dif-
ferent scales ranging from high spatial resolution sensors onboard unoccupied aircraft
vehicles [16], underwater systems [15], and space-borne vehicles [12], to intermediate spa-
tial resolution multispectral imagery acquired by operational satellite sensor systems such
as the Landsat [6–8,10,11,14], SPOT [7], and MODIS [8,13] satellite series, together with
coarser spatial resolution data acquired by weather satellite systems [9]. This diverse array
of sensors and analytical approaches proved useful for evaluating habitat requirements
and distribution [7,8,10,12,16], species distribution and occurrence [11,15], population
dynamics [7], human–wildlife conflicts [13,14], the negative impacts of natural [9] and
human-driven [8] disturbances on species distribution, and for assessing the potential
impacts of climate change [6].
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3. Conclusions

The scientific and technical information generated by the articles in this Special Issue
not only expand methodological frontiers for the incorporation of remotely sensed data
into biodiversity research, but also have direct implications for biodiversity conservation
at multiple spatial and temporal scales. As such, these studies represent a microcosm of
the range of possibilities provided by remote sensing for studying not only the occurrence
and distribution of wildlife species and their habitats, but also their changes through space
and time. Such approaches also proved suitable to be incorporated into management
and conservation. Given the current trends of biodiversity loss and degradation, together
with the development of evermore refined sensor systems, this is a crucial and dynamic
time for biodiversity research aided by the spatial and temporal scopes uniquely provided
by current remote sensors. This also offers many opportunities for addressing complex
global sustainability challenges. Therefore, this Special Issue provides a foundation upon
which further technological and analytical innovations can be developed, to increase our
under-standing of the spatio–temporal patterns of biodiversity and the processes, both
natural and human-driven, influencing them.
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