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Abstract: LiDAR data and derived canopy height models can provide useful information about
mangrove tree heights that assist with quantifying mangrove above-ground biomass. This study
presents a validated method for quantifying mangrove heights using LiDAR data and calibrating
this against plot-based estimates of above-ground biomass. This approach was initially validated for
the mangroves of Darwin Harbour, in Northern Australia, which are structurally complex and have
high species diversity. Established relationships were then extrapolated to the nearby West Alligator
River, which provided the opportunity to quantify biomass at a remote location where intensive
fieldwork was limited. Relationships between LiDAR-derived mangrove heights and mean tree
height per plot were highly robust for Ceriops tagal, Rhizophora stylosa and Sonneratia alba (r2 = 0.84–0.94,
RMSE = 0.03–0.91 m; RMSE% = 0.07%–11.27%), and validated well against an independent dataset.
Additionally, relationships between the derived canopy height model and field-based estimates of
above-ground biomass were also robust and validated (r2 = 0.73–0.90, RMSE = 141.4 kg–1098.58 kg,
RMSE% of 22.94–39.31%). Species-specific estimates of tree density per plot were applied in order to
align biomass of individual trees with the resolution of the canopy height model. The total above-
ground biomass at Darwin Harbour was estimated at 120 t ha−1 and comparisons with prior estimates
of mangrove above-ground biomass confirmed the accuracy of this assessment. To establish whether
accurate and validated relationships could be extrapolated elsewhere, the established relationships
were applied to a LiDAR-derived canopy height model at nearby West Alligator River. Above-ground
biomass derived from extrapolated relationships was estimated at 206 t ha−1, which compared well
with prior biomass estimates, confirming that this approach can be extrapolated to remote locations,
providing the mangrove forests are biogeographically similar. The validated method presented in
this study can be used for reporting mangrove carbon storage under national obligations, and is
useful for quantifying carbon within various markets.

Keywords: LiDAR; tree density; species specific allometry; mangrove allometric equations;
extrapolation

1. Introduction

Mangrove forests have amongst the highest carbon storage of any ecosystem [1].
Known as blue carbon, due to its connection to marine environments, mangrove carbon
may play an important role in mitigating climate change by sequestering atmospheric
carbon within living biomass and storing decomposing material within substrates. Whilst
the bulk of mangrove carbon storage is below-ground within roots and muddy substrates,
the carbon storage in mangrove above-ground biomass is significant and comparable to
above-ground carbon storage of terrestrial forests. Quantifying this above-ground carbon
storage is critical for leveraging the capacity of mangrove carbon storage to contribute to
climate change mitigation efforts.
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Traditionally, above-ground biomass has been calculated initially using destructive
methods, often with the objective of developing allometric relationships that describe
biomass at the plot level and based on field measurements such as diameter at breast
height (DBH), tree height (H), tree density, and wood gravity [2,3]. Plot based estimates
are then extrapolated on the basis of area to estimate total above-ground biomass for a
forest [4,5]. However, this traditional approach may not provide the necessary precision
for the inclusion of mangrove carbon within market-based carbon off-setting mechanisms.
Field-based measurements of mangrove structural parameters are resource intensive and
dependent upon plot-based estimates adequately describing the variation in mangrove
structural parameters. This can be particularly difficult when tree heights are beyond the
range whereby direct measurements using standard field equipment (e.g., measuring poles
and range finders) can be effectively used [6]. Accordingly, and for pragmatic reasons,
many allometric relationships that have been developed do not incorporate mangrove
height as a parameter; this is despite evidence indicating greater accuracy when height,
DBH, and wood gravity are parameterized [3].

Remotely sensed data that describes mangrove structure may address these limitations
in using field-based approaches to estimate above-ground biomass. Active sensors, such
as LiDAR and Radar, have been used to estimate above-ground biomass using various
approaches in regions with low and highly productive mangroves, including Malaysia,
French-Guiana Amazon, and Africa [7–20]. However, some difficulty remains when cali-
brating allometric approaches that have been developed for individual trees to remotely
sensed products that have a defined resolution that differs from the areal coverage of
individual trees [6]. High resolution analyses of individual mangrove trees have been
successfully undertaken using terrestrial laser scanning to quantify tree volume, structure,
and above-ground biomass [21–24], and may perform better than estimates derived from
allometry [23]. ntegration of these non-destructive remote-sensing approaches for esti-
mating individual of plot-level biomass may improve relationships between biomass and
LiDAR data at the scale of a forest.

This study builds upon an approach that used relationships between LiDAR return
signals and plot-based estimates of above-ground biomass derived from field measure-
ments of structural parameters to improve estimates of mangrove forest above-ground
biomass and carbon storage [6]. The previous study was undertaken at Guarás Island,
Brazil, located on the coast near the mouth of the Amazon River. Mangroves at this site
are dominated by three species of the Atlantic East Pacific region, with large variation
in tree height due to the productivity of the forest. These factors improved the capacity
of field-based measurements to adequately describe variation in structural parameters,
and subsequently increased the likelihood that LiDAR-derived above-ground biomass
estimates were accurate and well-validated [6].

The overall aim of the current study was to advance the LiDAR technique under-
taken in Brazil [6] by focusing on a location dominated by mangroves of the Indo-West
Pacific biogeographic region, and in doing so, confirm that LiDAR data can be used to
estimate mangrove above-ground biomass in a range of climatic, biogeographic, and
geomorphological settings. Accordingly, this study intentionally focuses on the tropical
mangroves of Darwin Harbour, Australia, where mangroves occupy a drowned river valley
exposed to a macrotidal regime and exhibit marked community zonation [25]. Addition-
ally, this study also assesses whether it is feasible to extrapolate relationships between
LiDAR data and field-based structural measurements from one location to another loca-
tion with similar mangrove species diversity and structure, as this provides the means
to estimate mangrove biomass at locations. This was undertaken because access to un-
dertake field-based mangrove structural measurements may often be limited; however,
extrapolation of relationships with LiDAR data may overcome this limitation. The ability
to extrapolate relationships was specifically undertaken at the West Alligator River, located
165 km east of Darwin Harbour, which, despite being a different geomorphological setting
(i.e., tide-dominated river at West Alligator River, drowned ria valley at Darwin Harbour),
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does exhibit similar species composition and climate, and was expected to exhibit similar
structural diversity as Darwin Harbour. The specific objectives of this study were to:

1. Collect field data of mangrove structure at Darwin Harbour as a training set to model
relationships with remotely sensed LiDAR data;

2. Establish optimal relationships between field-derived mangrove structural measure-
ments and remotely sensed data describing mangrove structure;

3. Validate relationships against field-based validation data;
4. Apply optimal relationships to LiDAR data, estimate mangrove above-ground biomass

at Darwin Harbour, and compare with published estimates of mangrove above-
ground biomass [26]; and

5. Extrapolate relationships to the West Alligator River and compare with published
estimates of mangrove above-ground biomass.

It is anticipated that this study will provide a validated workflow for using LiDAR
data to estimate mangrove above-ground biomass at a site with reasonable access to
generate training and validation datasets, and proximal locations where fieldwork may be
limited by resources or access. This workflow will form the basis of a validated method for
estimating mangrove above-ground biomass at a ground resolution of 100 m2.

2. Materials and Methods
2.1. Study Sites
2.1.1. Darwin Harbour, Northern Territory, Australia

Darwin Harbour (Figure 1c) is reported to support 204 km2 of mangroves [5] within a
relatively stable drowned river valley or ria [25]. Three rivers drain into Darwin Harbour;
the Elizabeth River drains the East Arm and Middle Arm mangroves, while the Darwin
and Blackmore Rivers drain the West Arm mangroves [27–31]. Darwin Harbour has a
maximum spring tidal range of 7.5 m, and the tidal range varies between a mean spring
tidal range of 5.5 m and a mean neap tidal range of 1.9 m [32]. The frequency of tidal
inundation is significantly correlated with the distribution of mangrove communities [29].

Mangrove species diversity, variation in tree density and structure are reportedly
high [26]; however, species assemblages have been identified to occur in geomorphologi-
cally defined units [31]. This formed the basis of high resolution mapping of mangrove
communities from aerial photography and an extensive field campaign [5], and subsequent
zonation mapping from Landsat imagery [25]. Striking species zonation arises as a result
of variations in salinity and inundation [27,29,31,33]. Sonneratia alba, Rhizophora stylosa, and
Ceriops tagal (C.T. White Bailment, T.J. Sm., and J.A. Stoddart, respectively) dominate the
canopy and there is very little understorey evident at Darwin Harbour. S. alba grows to
heights of up to 12 m and occurs at locations where they are inundated on most tides near
mean sea level. R. stylosa dominates tidal creeks, growing to heights of up to 16 m, and A.
marina has been noted to emerge from R. stylosa dominated canopies [34]. A tidal flat zone
has been noted to occur and landward of this C. tagal occurs in dense thickets extending
to heights of 6 m. The species Brugueira exaristata Ding Hou, B. parviflora (Roxb, Wight,
and Arn. Ex. Griffith, respectively), and Avicennia marina (Forssk. Vierh) are also reason-
ably extensive, and often occur with C. tagal [5,25,31]. Field-based estimates of mangrove
above-ground biomass report an average density of 120 t ha−1 and high biodiversity of
32 species occurring in this region [26]. For the last 20 years, this area has not suffered
excessive deforestation [12].

2.1.2. West Alligator River, Northern Territory, Australia

The West Alligator River is located approximately 165 km east of Darwin Harbour. The
estuary of the West Alligator River has a macro-tidal regime with mixed semi-diurnal tides.
The estuary drains into Van Diemans Gulf and has a tidal range of 6 m at its entrance [35].
The mangroves are conserved in the world heritage listed Kakadu National Park [28].
Within Kakadu National Park, mangroves are primarily located along the coastal margins
and the tide-dominated estuaries of the East, South, and West Alligator and Wildman
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Rivers and Field and Barrow Island, and occupy an area of approximately 183.4 km2. The
mangroves are most extensive and tallest along the banks of the West Alligator River. The
river is a mature tide-dominated estuary that is positioned on the low-lying coastal and
estuarine floodplains. The Holocene distribution of mangroves in this region has been used
to confirm the evolution of the estuary from its immature stages when sea level stabilized
approximately 7000 years ago, through a phase where mangroves dominated, known as
the ‘big-swamp’ phase. Now the mangroves are less extensive, but remain a significant
component of the West Alligator River’s ecology [36].

Dominant mangrove species include A. marina, R. stylosa, and S. alba, and some salt-
marsh species occupy the hypersaline tidal flats adjacent to the mangroves [37]. Mangroves
exhibit distinct zonation that relates to the geomorphology, with S. alba occupying the
seaward zone, R. stylosa occupying the central intertidal zone, and A. marina occupying the
landward zone, although some A. marina occur in the seaward zone [38]. Both seaward and
landward expansion of mangroves have been documented throughout Kakadu National
Park from analyses of Landsat observations from 1987 onwards [39]. However, mangrove
expansion was arrested when dieback was reported in 2015. This dieback occurred at a
time with coincident higher air and ocean temperatures, lower rainfall, and a drop in sea
level associated with the positive phase of the Indian Ocean Dipole and the negative phase
of the El Niño Southern Oscillation [29,38]. Much of this dieback has been restricted to A.
marina occupying higher elevations within the landward zone that has been expanding
since 1987.

Figure 1. Study locations in (a,b) the Northern Territory of Australia focused on (c) Darwin Harbour
and (d) the West Alligator River. Plot locations indicated at Darwin Harbour represent field-based
measurements undertaken by the authors; plot locations at the West Alligator River represent
field-based measurements undertaken by Mitchell [40].

2.2. Study Approach, LiDAR Data, and Processing

The workflow for this study is provided in Figure 2 and included LiDAR processing,
field-based measurements of mangrove forest characteristics, and model development.
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Figure 2. Workflow to develop relationships between field-based mangrove structural information,
above-ground biomass (AGB), and LiDAR data, which was subsequently applied to a canopy height
model (CHM) to estimate above-ground biomass for each species and was validated at Darwin
Harbour and the West Alligator River (WAR). DSM—digital surface model; H—height.

LiDAR overflights were conducted at Darwin Harbour in December 2009, within 2 h
of low tide to ensure measurements were not impeded by tidal influences (Table 1). LiDAR
overflights of the West Alligator River were conducted in October–November 2011. The
reported horizontal accuracy of the survey was 0.8 m [41]. A Leica ALS60 was used, which
provided 0.5 m resolution and 4903 tiled files [42].

Table 1. LiDAR flight acquisition parameter summary for Darwin Harbour and the West
Alligator River.

LiDAR Details
(Fugro Spatial Solutions) Darwin Harbour Study Site West Alligator River

Study Site

Laser model ALS50 ALS60
Nominal flying height 2012 m AGL 1425 m AGL

Full swath width 1425 m 997 m
Distance between runs 1276 m 468 m

Airspeed 145 knots 145 knots
Average point density 1.1 pts/m2 2 pts/m2

Footprint diameter 0.45 m 0.32 m
Navigation mode GPS-based GPS-based

Position mode DGPS DGPS
Vertical accuracy ±0.15 m ±0.3 m
Metadata source [43] [44]
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The full waveform LiDAR data were used to generate two data products, namely: a
digital surface model (DSM) indicating landform surface elevations and a canopy height
model (CHM) to indicate mangrove tree heights. A preliminary DSM was created using
the LiDAR data; however, as a result of issues with the classification of last-return signals
and surface interpolation, a decision was made to use the digital elevation model for
Darwin Harbour developed by Geosciences Australia [43]. These difficulties can arise
from last-return signals not reaching the substrate because of the presence of dense root
structures, particularly within cells dominated by R.stylosa and C.tagal The DSM maximum
height was initially created by selecting the highest return signals and creating a surface
using the binning interpolation technique with a resolution of 10 m [39]. A CHM was
subsequently created by subtracting the Geosciences Australia (5 m) developed DEM from
the DSM, which indicated the maximum tree height within a cell of 100 m2; this product
was subsequently termed CHMmax.

A pit-free CHM was also generated using the method of Khosravipour et al. [44],
which applies an algorithm to remove pits that are generated when the LiDAR laser pene-
trates canopies. This technique has been shown to significantly improve tree detection and
involves the normalization of all LiDAR return points against the height of the substrate,
which is estimated using a triangulated-irregular network (TIN) interpolation applied to
the last return signals. An initial CHM was created by applying a TIN interpolation to the
highest returns of the height normalized data, and converting this to a rasterized surface.
Subsequent CHMs were also created by selecting points >1 m in height to remove any
returns associated with roots, applying a TIN interpolation, and rasterizing the surface.
All rasterized surfaces were stacked and the maximum value within each cell was used to
generate the pit-free CHM, subsequently termed CHMpf.

Relating above-ground biomass from individual trees to a CHM derived from a LiDAR
point cloud has limited the wider application of LiDAR data to assess biomass [6]. Selecting
field-based plot sizes that matched the resolution of the CHM cell size resolved the problem
of scaling above-ground biomass from individual trees. To ensure that the CHM resolution
corresponded to the size of field-based plots, each surface was rasterized to a resolution of
100 m2. Additional care was taken to confirm that mean plot-based estimates of H, DBH,
and density, as well as the total AGB per plot, were similar to values previously reported
for Darwin Harbour [5]. Justification of the decision to use 10 m × 10 m plots is provided
in Section 2.4.

2.3. Classifying Species Distribution

Maps of species distribution at both study sites were developed using high and low-
tide composite images and validated in advance of estimating above-ground biomass.
These composite images were created from Landsat scenes from the archive in DEA that
correspond to the highest 10% and lowest 10% of tides at each location. Using tidal
composite images has been shown to improve capacity to differentiate communities [25],
and this is because tidal inundation regimes have a significant influence on mangrove
zonation. Leveraging the influence of water and sediments within reflectance signatures
therefore improves differentiation of species that are inundated more or less frequently.
Maps of dominant species distribution were generated at the same resolution as Landsat
imagery, that is, approximately 25 m. These maps relied upon using the spectra to assign
to a class based on the dominant species that emerged at the canopy; cells with a mixed
spectral signal generally comprised C. tagal and other species, and were therefore assigned
the class of “Mixed Ceriops”. Dominant species distribution maps were used to limit the
extent of outputs that corresponded to each species.

2.4. Field-Based Measurements of Mangrove Forest Characteristics

Previous studies of mangrove biomass in the region used plot sizes of 5 m × 5 m,
10 m × 10 m, or 20 m × 20 m [26,40]. Preliminary scoping of the study site confirmed that
tree density within plots dominated by S. alba or R. stylosa were representative within plots
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of 10 m × 10 m. Plots of 10 m × 10 m provided the benefit of aligning with the resolution
of generated CHMs, and facilitated developing relationships between field estimates of
above-ground biomass and the CHM. Plots of 20 m × 20 m would significantly increase
fieldwork effort. As an objective of using LiDAR data was to reduce fieldwork effort, a
decision was made prior to undertaking fieldwork that plot sizes would equal or easily
scale to the size of cells within generated CHMs. The density of trees in plots dominated
by C. tagal was remarkably high, and to reduce effort, plots dominated by this species were
reduced to 5 m × 5 m, which is consistent with other field campaigns undertaken in the
region [40]. Density and above-ground biomass estimates were quadrupled to correspond
to the area of plots dominated by R. stylosa and S. alba. Selecting plots sizes that scaled
to the same resolution as rasterized surfaces resolved issues associated with transposing
above-ground biomass of individual trees of varying canopy coverage to cells on a CHM of
a defined area [6]. Additional care was taken to confirm that mean plot-based estimates of
H, DBH, and density, as well as the total AGB per plot, were similar to the values previously
reported for Darwin Harbour [5].

CHMmax was used to guide selection of plots, with the objective to select plots across the
range of mangrove above-ground biomass and height gradients for the principal species at
Darwin Harbour. This was achieved by using species distribution mapping as a mask to select
all points associated with each species, and then randomly extracting 10,000 LiDAR points;
these points were used to generate a frequency distribution histogram and to characterize
tree height variation and range. Morans index was applied to the data to test for spatial
autocorrelation (I = 0.99 for all species combined). Both Morans index and the frequency
distribution histogram were used to identify optimal locations for field-based plots.

Transposing field estimates of above-ground biomass from individual trees to a cell of
an explicit resolution requires advance consideration. Some studies have addressed this by
selecting individual trees from a CHM, whilst others have applied a tree density factor to
ensure above-ground biomass of individual trees can be scaled to the resolution of cells in
a CHM. Previous work undertaken in Brazil applied an average tree density factor to each
cell to transpose biomass from individual trees to a cell [6]. In this study, a decision was
made in the field-work stage to size plots to ensure that total biomass per plot could be
established. Hence, plot size equaled or could be scaled to match CHM resolution, and
plots were co-located both in the field and on the CHM. Plots were established on the basis
of species composition: species with high density per plot plot were characterized in plots
of 25 m2 (i.e., C. tagal), whilst other species were characterized in plots of 100 m2 (i.e., R.
stylosa and S. alba). As mangrove canopies can be dense, the use of a real time kinematic
(RTK)-GPS can be limited. Consequently, a decision was made to use differential GPS
(DGPS) to geo-locate plot centroids and a hand-held GPS was used to register the corners
of plots. DGPS measurements produced a root mean square error (RMSE) of 5 cm.

Within each plot, height (H) and diameter at breast height (DBH) were measured for
each individual, and the number of trees per plot was determined to provide an indication
of tree density. A Nikon Laser Rangefinder Pro was used to quantify tree heights for
trees >5 m, whilst a surveying staff was used to quantify height for trees <5 m. DBH
was quantified using a metric measuring tape. The density of trees within plots was also
determined, and while this variable was not used to model above-ground biomass, it does
provide an indication of the canopy consistency. It was anticipated that this variable would
provide more confidence in our estimates of field-based above-ground biomass per plot.

Above-ground biomass for R. stylosa and C. tagal was determined using allometric
equations developed for mangroves of Darwin Harbour [45], as it was expected that these
allometric equations would be superior. Previous studies have confirmed that allometric
equations derived for the same species, structurally similar vegetation, and within the same
climatic/bio-region provide superior accuracy [46]. As an allometric equation for S. alba
has not been generated for Darwin Harbour [45], an allometric equation generated for the
same species in Indonesia was selected [47]. The equations used to quantify above-ground
biomass (AGB) in plots are:
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Allometric equation: Rhizophora stylosa and Ceriops tagal [47]

AGB = e(β0+(β1.log10(DBH)) (1)

Allometric equation: Sonneratia alba [47]

AGB = β0.DBHβ1 (2)

where:

• DBH = diameter at breast height.
• β0 and β1 = regression coefficients.
• β0 and β1 for Rhizophora stylora = −0.696 and 2.465.
• β0 and β1 for Ceriops tagal = −0.494 and 2.056.
• β0 and β1 for Sonneratia alba = 0.258 and 2.287.

2.5. Modelling and Validating Relationships between Mangrove Forest Characteristics and
LiDAR Data

Parametric regressions were initially generated between field-based measurements of
tree height and CHMmax and CHMpf so as to validate the accuracy of CHMs and calibrate
CHMs to correspond to field-based measurements. Calibrated CHMs are henceforth
termed cal-CHMmax and cal-CHMpf. Cal-CHMmax provided superior accuracy and a
decision was made after validation to undertake all subsequent calculations using cal-
CHMmax. Prior to application of parametric regressions between field-based measurements
of tree heights and CHMmax and CHMpf at a species level, the normality of CHMmax and
CHMpf heights was tested using the Shapiro−Wilk test. Only 80% of plot-based data
were used for subsequent model development, leaving the remaining 20% of data to be
used for model validation. Parametric regressions were subsequently applied to generate
relationships between field-based estimates of H, DBH, and above-ground biomass against
cal-CHMmax. Model performance was assessed on the basis of coefficient of determination
(r2), k-fold cross validation, and root mean square error (RMSE). Models were subsequently
validated using the remaining 20% of field-based data, with RMSE calculated on the basis
of comparisons between observed (field-based estimates) and predicted values of H, above-
ground biomass, and tree density for each model. As there were few plots dominated
by C. tagal, 10-fold cross validation was undertaken to assess model performance. Maps
of above-ground biomass were subsequently generated by choosing the models with the
optimal r2 and RMSE for each species.

On the basis of optimal model performance, cal-CHMmax was used to generate a
surface of total above-ground biomass for each species, with each surface masked on the
basis of its distribution defined in species classification mapping. Combining above-ground
biomass surfaces for each species provided the opportunity to determine above-ground
biomass for each species and for the entire region. Model performance was also determined
on the basis of comparison with field-based estimates of above-ground biomass and prior
estimates of above-ground biomass for Darwin Harbour [26].

2.6. Model Extrapolation and Comparison at West Alligator River

Considerable effort was required in order to collect field-based data, and this can
often be a factor limiting mangrove above-ground biomass assessments. However, like
allometric equations, it may be reasonable to extrapolate relationships derived from field-
based measurements to other locations, providing the vegetation composition, structure,
and climatic/bioregion remains consistent. This was tested by applying relationships
derived from field-based measurements of height and above-ground biomass with cal-
CHMmax from Darwin Harbour to cal-CHMmax developed for the West Alligator River to
generate an above-ground biomass surface for each species at the West Alligator River.

Previous plot-based measurements [40] provided the means to calibrate the generated
CHM. These previous measurements also included plot-based estimates of height for two
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A. marina dominated plots, five R. stylosa dominated plots, and three S. alba dominated
plots. Unfortunately, too few plots were determined for A. marina and a decision was made
to use the allometric equation created for C. tagal at Darwin Harbour as a substitute for
A. marina. This was deemed reasonable, as both C. tagal and A. marina are considered to
exhibit similar heights and spatial positions in Darwin Harbour and the West Alligator
River. The estimated values of height and above-ground biomass derived from CHMmax
at the West Alligator River corresponding to the plot locations were extracted, and an
analysis of variance was undertaken to confirm whether there was a significant difference
between extrapolated model values and previous estimates of mangrove above-ground
biomass [40].

3. Results
3.1. Mangrove Forest Characteristics

A total of 1921 trees were measured for their structural parameters within 40 plots;
10 plots dominated by C. tagal, 18 plots dominated by R. stylosa, and 12 plots dominated
by S. alba (Table 2). R. stylosa had the tallest trees (maximum height = 14.57 m), whilst C.
tagal had the smallest trees (minimum height = 1.78 m; Figure 3a). The largest diameter at
breast height (DBH) was observed in S. alba (maximum DBH = 26.95 cm), while C. tagal
had the smallest DBH (minimum DBH = 5.03 cm; Figure 3b). The density of trees varied
considerably between species, with mean values ranging from four individuals of S. alba
per plot to 48 individuals per 100 m2 (converted from 25 m2) for C. tagal. Despite this
variation in density, the mean above-ground biomass for each of these species was similar
at 1263 kg and 1225 kg, respectively. The highest above-ground biomass per plot reflected
patterns in height and DBH, with plots dominated by R. stylosa having a greater mean
above-ground biomass (Figure 3c). The variation in each of these variables was within
the range of field-based estimates previously reported for Darwin Harbour and provided
further confidence that plots sizes were appropriate for model development.

Table 2. Summary of structural measurements of height, diameter at breast height (DBH), density,
and above-ground biomass (AGB) derived from field measurements. Note: C. tagal density and AGB
were converted from values for plots of 25 m2 to 100 m2 by multiplying by a factor of four.

Parameter Species
Field Measurements (Per 10 m × 10 m)

Minimum x Sx Maximum

Height (m)
C. tagal 1.78 4.88 1.92 7.48

R. stylosa 2.95 8.02 3.71 14.57
S. alba 5.18 6.74 1.29 9.47

DBH (cm)
C. tagal 5.03 6.13 0.97 7.59

R. stylosa 6.34 11.66 5.92 26.95
S. alba 13.91 19.52 4.16 27.72

Density (trees with
DBH >5 cm per plot)

C. tagal 16 76 48 140
R. stylosa 8 28 15 55

S. alba 5 10 4 19

AGB (kg)
C. tagal 110 1439 1263 3257

R. stylosa 374 3747 3222 10,930
S. alba 592 2576 1225 4793
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Figure 3. Distribution of mangrove forest characteristics of (a) height, (b) diameter at breast height
(DBH), (c) density of trees, and (d) above-ground biomass (AGB) for C. tagal, R. stylosa, and S. alba at
Darwin Harbour. Forest characteristics determined within 100 m2 for plots dominated by R. stylosa
and S. alba, and 25 m2 for plots dominated by C. tagal. C. tagal density and AGB were converted from
values for plots of 25 m2 to 100 m2 by multiplying by a factor of four.

Normality tests applied to height (H) were accepted for each species (p < 0.0005,
Appendix A). Relationships established between field-based height and CHMmax were robust
for C. tagal (r2 = 0.94; Figure 4a) and R. stylosa (r2 = 0.92; Figure 4b), but the S. alba model
(r2 = 0.84; Figure 4c) did not perform as well. The optimal models for each species were either
power or cubic models, and as linear models were not optimal, it was determined that calibra-
tion of the CHMmax would be best. As care was taken in selecting plots that characterized the
range of anticipated heights, it was deemed reasonable to validate these optimal models, as
it was unlikely that the model would be applied beyond the upper and lower height limits
used in the model. Validation of relationships between field-based-H and the best performing
model resulted in RMSE values of 0.03 m (0.7%) for C. tagal (Figure 4e), 0.91 m (11.27%) for R.
stylosa (Figure 4f), 0.66 m (10.57%) for S. alba (Figure 4g), and 2.89 m (46.01%) for all species
combined (Figure 4h). This validation provided further confidence that decisions to align
plot sizes with cell resolution of CHMmax were reasonable. Model validation for CHMpf is
provided in Appendix B. As relationships with CHMmax were superior to relationships with
CHMpf, CHMmax was used for all subsequent analyses.
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Figure 4. Relationships between field-based height and CHMmax, and best fit parametric models
(linear, logarithmic, quadratic, cubic, power, and exponential) for (a) C. tagal, (b) R. stylosa, (c) S.
alba, and (d) all mangrove species combined, and validation of the best fit model against field-based
validation data for (e) C. tagal, (f) R. stylosa, (g) S. alba, and (h) all of the mangrove species combined.

On the basis of relationships provided in Figure 4 and assessments of r2, RMSE, and
10-fold cross validation for C. tagal, CHMmax was calibrated against mean plot height
using a cubic function to create cal-CHMmax.

Regression models, and validation of field-based height and CHMmax, are provided
in Figure 4. Similar models for DBH indicated relationships between field-based DBH
and cal-CHMmax for C. tagal (r2 = 0.63; Figure 5a) and S. alba (r2 = 0.67; Figure 5c), but
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there was less confidence in the relationship for R. stylosa (r2 = 0.14; Figure 5b) and all
species combined (r2 = 0.34; Figure 5d). The optimal models for each species were either
power or cubic models. The cubic model for R. stylosa indicated significant changes in
trajectory when the mean cell height was 9 m; however, error bars indicated significant
variation in DBH in cells of this height. Relationships between DBH and cal-CHMmax
were markedly less robust than similar relationships with height (indicated in Figure 4).
Following the rationale established in a similar study [6], the relationship between DBH
was not considered to be strong enough to generate a raster surface of DBH and to apply a
traditional allometric approach using raster surfaces indicating height and DBH. Hence,
further validation was not undertaken, and a decision was made to develop relationships
between AGB per plot and cal-CHMmax instead. Similar comparisons using cal-CHMpf are
provided in Appendix C.

Figure 5. Relationships between field-based DBH and CHMmax, and best fit parametric models
(linear, logarithmic, quadratic, cubic, power, and exponential) for (a) C. tagal, (b) R. stylosa, (c) S. alba,
and (d) all mangrove species combined.

Cubic regression relationships between cal-CHMmax and field-based estimates of
above-ground biomass performed best for R. stylosa (r2 = 0.89; Figure 6b) and a power
regression relationship performed best for S. alba (r2 = 0.90; Figure 6c), while an expo-
nential regression performed best for C. tagal (r2 = 0.72; Figure 6a) and a cubic function
per formed best for all species combined (r2 = 0.51; Figure 6d). It was anticipated that
cubic relationships would not be applied beyond the limits defined by the model. The
implications of the change in trajectory of the cubic relationship for R. stylosa when cell
height in cal-CHMmax was <6 m was likely to have a relatively low effect on the final model
outputs, as the majority of individuals lay within the tree height range where the model
performed best (i.e., mean plot height >6 m). Validation data confirmed that functions
performed reasonably well across all species, with RMSE ranging between 141.4 kg (39.31%)
for C. tagal (Figure 6e), 937.88 kg (39.83%) for R. stylosa (Figure 6f), 585.58 kg (22.94%) for
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S. alba (Figure 6g), and 2204.47 kg (123.75%) for all species combined (Figure 6h). Similar
analyses against cal-CHMpf are provided in Appendix D.

Figure 6. Relationships between field-based above-ground biomass and CHMmax, and best fit paramet-
ric models (linear, logarithmic, quadratic, cubic, power, and exponential) for (a) C. tagal, (b) R. stylosa,
(c) S. alba, and (d) all mangrove species combined, and validation of best fit model against field-based
validation data for (e) C. tagal, (f) R. stylosa, (g) S. alba, and (h) all mangrove species combined.

The distribution of height and above-ground biomass for C. tagal, R. stylosa, and S.
alba is provided in Figure 7. The total above-ground biomass for each species at Darwin
Harbour is indicated in Table 3, and is based on the application of regression functions
from Figure 6 for each species. The mean above-ground biomass was estimated to be
in the order of 7 t ha−1 for C. tagal, 178.51 t ha−1 for R. stylosa, and 252.12 t ha−1 for
S. alba, based on relationships with above-ground biomass derived from species specific
allometric equations. The average above-ground biomass for the region was estimated to be
118.38 t ha−1, and is remarkably close to the average above-ground biomass density
previously reported of 120 t ha−1 [26].
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Figure 7. Modelled average height (H) (m) per cell for (a) C. tagal, (b) R. stylosa and (c) S. alba, and
total AGB per 100 m2 cell (kg) for (d) C. tagal, (e) R. stylosa and (f) S. alba at Darwin Harbour.

Table 3. Summary of mangrove extent and total AGB at Darwin Harbour derived from species-
specific allometric equations and relationships between biomass per plot and LiDAR data.

Species Area (ha) AGB (Mt) AGB (t ha−1)

C. tagal 6161 0.05 7.4
R. stylosa 9656 1.72 179

S. alba 766 0.19 252

All species 16,584 1.94 118
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3.2. Model Extrapolation and Comparison at the West Alligator River

Extrapolation of the best performing relationships between cal-CHMmax, height, and
above-ground biomass to model height and above-ground biomass at the West Alliga-
tor River is provided in Figure 8. The average above-ground biomass density for the
West Alligator River was estimated to be 205.67 t ha−1, which is 15.28% higher than the
previous above-ground biomass estimate of 174.35 t ha−1 [42]. The highest average above-
ground biomass density was associated with R. stylosa (329.11 t ha−1), followed by S. alba
(266.23 t ha−1) and C. tagal (33.7 t ha−1). Comparison of the cal-CHMmax derived height
estimates generated from the extrapolation of relationships at Darwin Harbour to the West
Alligator River with previous field-based estimates of height at the West Alligator River [40]
achieved an RMSE of 2.19 m (20%) and RMSE of 3499.81 kg (76%), respectively. Some of
this discrepancy may have arose from the allometric equations [48] applied previously
to estimate mangrove biomass at the West Alligator River [40], as these allometrics were
developed for tropical mangroves in Queensland, rather than the more recent allometric
equations used in this study, which were developed for mangroves in the same biogeo-
graphic region by Comley and McGuinness [45]. Additionally, it is feasible that an increase
in mangrove biomass may have occurred since prior calculations in 2003 [40] and the time
of LiDAR data collection; this increase is supported by recent evidence of landward expan-
sion of mangroves since 2003 (some of which has been subsequently impacted by a dieback
event) [38]. Further investigation, including an uncertainty analysis, may clarify whether
the discrepancy is due to an increase in biomass, the application of different allometric
equations, or model uncertainty.

Figure 8. Modelled average height (H, m) per cell (100 m2) for (a) A. marina, (b) R. stylosa, and (c) S.
alba, and the total above-ground biomass (AGB, kg) per cell (100 m2) for (d) A. marina, (e) R. stylosa,
and (f) S. alba at the West Alligator River.
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4. Discussion
4.1. Quantifying and Extrapolating Mangrove Biomass Using LiDAR Data

Determining mangrove above-ground biomass is critical for quantifying carbon storage;
however, the resource intensive nature of biomass assessments limits the capacity to undertake
extensive assessments, particularly in remote locations. Using LiDAR data to characterize
mangrove structural variation offers the opportunity to improve the efficiency of mangrove
biomass assessments and the prospect of undertaking assessments in remote locations. In this
study, LiDAR data from Darwin Harbour that was calibrated against field-based estimates of
mangrove biomass were used to quantify that Darwin Harbour has an average mangrove
above-ground biomass of 120 t ha−1. By extrapolating these relationships elsewhere, we
also quantified 206 t ha−1 of mangrove biomass at the nearby, yet remote, West Alligator
River. Prior to this study, there were methodological problems that limited the capacity to
use LiDAR data to assess mangrove biomass. In this paper, we addressed these issues by
adjusting the field-based estimates of biomass of individual trees to calibrate against LiDAR
data of a given resolution, and recognized that the structure of individual species will have
a significant influence on the relationship between above-ground biomass and CHMs. We
also extrapolated relationships established at Darwin Harbour to the West Alligator River,
resolving issues associated with accessing remote locations.

A prior study in Brazil [6] addressed tree density issues by applying a correction
factor to a canopy height model that adjusted the heights on the basis of the average
tree density derived from all field plots. In doing so, this approach presumed that tree
density was relatively consistent across the entire forest and was well represented by the
average value; this assumption ignored the variation that arises on the basis of species,
stand age, and location [4,49]. Similar forest-wide correction factors have been applied to
LiDAR-derived CHMs by others [50]. This study resolved tree density issues by focusing
on describing the structural variation for each species instead of using a single correction
factor for calculating tree density of an entire forest. Accordingly, accounting for variation
in tree density per species will also improve the estimation of above-ground biomass,
which was supported by strong values of r2 and RMSE in this study. This was particularly
evident when compared with other methods for estimating above-ground biomass, which
apply a single tree density factor to a canopy height model [2,3] or preserving only the
tallest trees to guarantee a strong relationship between LiDAR CHM and above-ground
biomass [13]. Even when considering the improvements associated with using highly
confident species-specific mapping, this study found superior values of r2 and RMSE than
other studies, and this was attributed to recognizing the variation in tree density between
species [7,8,15]. An outcome of characterizing tree density for individual species was that
an optimal plot size was established for each species on the basis of tree density, and CHM
cell sizes were adjusted to correspond. In this study, plots of 100 m2 were optimal for
measuring trees with low-density, such as species of R. stylosa and S. alba, and plots of
25 m2 were optimal for plots where tree density was high, in this case, C. tagal at Darwin
Harbour and A. marina at the West Alligator River. Cell sizes for each species were adjusted
to correspond to the field density of trees.

The extrapolation of tree heights and above-ground biomass from Darwin Harbour to
the West Alligator River was considered successful, and results were more accurate than
other extrapolation applications elsewhere [10–12,14]. The high accuracy of CHMs and,
consequently, the above-ground biomass models, were because the CHM was calibrated in
an area with high quality LiDAR data, and a thoughtful approach to fieldwork guaranteed
that the position of plots and the tree heights in the plots were accurate. This approach
helped to calibrate the CHM prior to extrapolation to the West Alligator River. Further
improvements were achieved by applying species-specific allometric equations at both
Darwin Harbour and the West Alligator River.



Remote Sens. 2021, 13, 2763 17 of 20

4.2. Implications for Blue Carbon Assessments

Mapping of above-ground biomass using the methods in this study, including ap-
plying the highest resolution LiDAR data and recognizing variation in biomass between
species, demonstrates the ability to improve mangrove above-ground biomass quantifica-
tion. Maps of above-ground biomass provide critical information that highlights hotspots
of ecosystem service delivery, such as provision of habitat for fish and waterbirds, storm
protection, and carbon cycling [51]. This information can be directly applied to local envi-
ronmental plans to inform the management and protection of mangrove habitats in Darwin
Harbour and the West Alligator River.

There is increasing interest in the carbon storage and cycling of mangrove forests, and
this study demonstrates that this interest is not misplaced, as both Darwin Harbour and
the West Alligator River store high volumes of mangrove carbon within their biomass.
Currently, Australia has obligations under the United Nations Framework Convention
on Climate Change (UNFCCC) to report mangrove carbon storage, and this requires
a validated accurate methodology. Additionally, there is interest in improving carbon
mitigation in Australia by leveraging carbon storage within mangroves [52]. National
efforts under the Emissions Reduction Fund (ERF) are currently in place to develop a
methodology for quantifying mangrove carbon storage [53,54]. This paper presents a
method that meets both the obligations for reporting under the UNFCCC and provides a
validated method that could be used within the ERF framework.

5. Conclusions

This study demonstrates the capacity to estimate mangrove above-ground biomass
in complex mangroves such as those at Darwin Harbour and the utility to extrapolate
above-ground biomass and tree height relationships to nearby locations, as was undertaken
at the West Alligator River. This approach can be useful for improving national estimates of
carbon storage within above-ground biomass of mangroves, and will improve the capacity
to report carbon storage at Darwin Harbour, the West Alligator River, and elsewhere.
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Appendix A

Details of normality tests as applied to height data at Darwin Harbour.
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Appendix B

Relationships between field-based height and CHMpf, and best fit parametric models
(linear, logarithmic, quadratic, cubic, power, and exponential) for (a) C. tagal, (b) R. stylosa,
(c) S. alba, and (d) all mangrove species combined, as well as the validation of the best fit
model against field-based validation data for (e) C.tagal, (f) R. stylosa, (g) S. alba, and (h) all
mangrove species combined.

Appendix C

Relationships between field-based DBH and CHMpf, and best fit parametric models
(linear, logarithmic, quadratic, cubic, power, and exponential) for (a) C. tagal, (b) R. stylosa,
(c) S. alba, and (d) all mangrove species combined.

Appendix D

Relationships between field-based above-ground biomass and CHMpf, and best fit
parametric models (linear, logarithmic, quadratic, cubic, power, and exponential) for (a) C.
tagal, (b) R. stylosa, (c) S. alba, and (d) all mangrove species combined, and validation of the
best fit model against field-based validation data for (e) C. tagal, (f) R. stylosa, (g) S. alba,
and (h) all mangrove species combined.
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