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Abstract: A super-resolution (SR) reconstruction of remote sensing images is becoming a highly
active area of research. With increasing upscaling factors, richer and more abundant details can
progressively be obtained. However, in comparison with natural images, the complex spatial
distribution of remote sensing data increases the difficulty in its reconstruction. Furthermore, most
SR reconstruction methods suffer from low feature information utilization and equal processing of
all spatial regions of an image. To improve the performance of SR reconstruction of remote sensing
images, this paper proposes a deep convolutional neural network (DCNN)-based approach, named
the deep residual dual-attention network (DRDAN), which achieves the fusion of global and local
information. Specifically, we have developed a residual dual-attention block (RDAB) as a building
block in DRDAN. In the RDAB, we firstly use the local multi-level fusion module to fully extract and
deeply fuse the features of the different convolution layers. This module can facilitate the flow of
information in the network. After this, a dual-attention mechanism (DAM), which includes both a
channel attention mechanism and a spatial attention mechanism, enables the network to adaptively
allocate more attention to regions carrying high-frequency information. Extensive experiments
indicate that the DRDAN outperforms other comparable DCNN-based approaches in both objective
evaluation indexes and subjective visual quality.

Keywords: attention mechanism; residual learning; remote sensing; super-resolution

1. Introduction

With the rapid progress and development of modern aerospace technology, remote
sensing images have been widely used in military and civil fields, including agriculture
and forestry inspection, military reconnaissance, and urban planning. However, due to
hardware limitations and the large detection distance, there is still room for improvement
in the resolution and clarity of remote sensing images. Considering the high research cost
and long hardware iteration development cycle required to physically improve imaging
sensors, it is increasingly important to improve the algorithms used for super-resolution
(SR) reconstruction [1] of remote sensing images.

Single-image super-resolution (SISR) technology aims to reconstruct a high-resolution
(HR) image from a corresponding low-resolution (LR) image. For aerial remote sensing
images, SISR technology can provide richer spatial details by increasing the resolution
of LR images. In the past few decades, numerous SISR approaches based on machine
learning have been proposed, and these techniques include methods based on neighbor
embedding [2], sparse representation [3,4], and local linear regression [5,6]. However, most
of these methods use the low-level features of images for SR reconstruction, and the level of
ability to represent these features greatly limits the reconstruction effect that is achievable.

With the rapid progress and development of big data and graphics processing unit
(GPU) computing capacity, deep convolutional neural networks (DCNNs) have become the
dominant approach for achieving success in image processing [7-9]. Methods based on DC-
NN have shown powerful abilities in the automatic extraction of high-level features from
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data, providing a highly feasible way to increase the effectiveness of resolution restoration.
The basic principle of DCNN-based SR reconstruction methods is to train a model using a
dataset that includes both HR images and their corresponding LR counterparts. The model
then takes LR images as the input and outputs SR images.

Dong et al. [10] proposed an SR convolutional neural network (SRCNN) that con-
structs three convolution layers to learn the nonlinear mapping from an LR image to its
corresponding HR image. Soon after this, Faster-SRCNN was proposed to accelerate the
speed of SRCNN [11]. Shi et al. [12] proposed an efficient sub-pixel convolutional network,
which extracts feature information directly from LR images and efficiently reconstructs
HR images. Ledig et al. [13] introduced a generative adversarial network (GAN) into
the field of SR image reconstruction and produced a super-resolution GAN (SRGAN). In
the SRGAN, the input of the generator is an LR image and the output is an HR image,
and the discriminator seeks to predict whether the input image is a real HR image or a
generated image.

Recently, with the residual network [7] proposed by He et al., many visual recog-
nition tasks have tended to adopt a residual learning strategy for better performance.
Kim et al. [14] proposed a very deep SR convolutional neural network (VDSR), which
uses residual learning to speed up the convergence of the network while preventing the
gradient from disappearing. Soon after this, Kim et al. [15] constructed a deeply recur-
sive convolutional network (DRCN) using recursive modules, which achieves a better
reconstruction effect with fewer model parameters. On the basis of DRCN, Tai et al. [16]
developed a deep recursive residual network, which combines the residual structure with
the recursive module, and this effectively reduces the training difficulty of the deep net-
work. Lim et al. [17] built an enhanced deep SR network (EDSR), and their results showed
that increasing the depth of the representation can enhance the high-frequency details
of LR images. Zhang et al. [18] proposed a deep residual dense network (RDN), which
combines residual learning with dense network connections for SR image reconstruction
tasks. Zhang et al. [19] produced a deep residual channel attention network (RCAN), in
which a channel attention [20] module is designed to enhance the representation ability of
the high-frequency information channel.

With regard to the SR reconstruction of remote sensing images, Lei et al. [21] proposed
a new algorithm named local-global combined networks (LGCNet) to learn multilevel
representations of remote sensing images, and Dong et al. [22] developed a dense-sampling
network to explore the large-scale SR reconstruction of remote sensing images. Inspired by
the channel attention mechanism, Gu et al. [23] proposed a residual squeeze and excitation
block as a building block for SR reconstruction networks. Furthermore, Wang et al. [24]
developed an adaptive multi-scale feature fusion network, in which the squeeze-and-
excitation and feature gating unit mechanisms are adopted to enhance the extraction of
feature information. These approaches have achieved promising improvements in SR
reconstruction of remote sensing images; nonetheless, they still have some deficiencies.

Firstly, as the depth of a CNN increases, the feature information obtained in the
different convolutional layers will be hierarchical with different receptive fields. However,
most methods only use the features output from the last convolutional layer to realize
feature mapping, which neglects the hierarchical features and wastes part of the available
information. Secondly, most existing CNN-based methods treat different spatial areas
equally, which leads to areas with low-frequency information (smooth areas) being easy to
recover while areas with high-frequency details (edges and contours) are more difficult to
recover. Moreover, equalization causes the network to use a large amount of computing
resources on unimportant features. Thirdly, due to the complex content and richly detailed
information contained within remote sensing images, local and global feature information
should be considered in the design of the model, and this can lead to learning of multi-level
features and improve the reconstruction effect.

Aiming to tackle these issues, this paper proposes a novel aerial remote sensing SR
image reconstruction network called a deep residual dual-attention network (DRDAN).
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This consists of two parts: a global residual learning (GRL) branch and a main residual
network (MRN) branch. The GRL branch adopts an upsampling operation to generate the
HR counterpart of an LR image directly, which allows the network to avoid learning the
complex transformation from one complete image to another. The core of the MRN branch
is formed from a stack of basic components called residual dual-attention blocks (RDABs).
This network shows superior reconstruction ability and high feature utilization.

The main contributions of this work are as follows:

(1) We propose a novel approach to SR reconstruction of remote sensing images, DRDAN.
This achieves a convenient and effective end-to-end training strategy.

(2) DRDAN achieves the fusion of global and local residual information, which facilitates
the propagation and utilization of image features, providing more feature information
for the final reconstruction.

(3) We propose a modified residual block named RDAB, which contains a local multi-
level fusion (LMLF) module and dual-attention mechanism (DAM) module. The
LMLEF module fuses different level features with the input in the current RDAB. In
the DAM module, the channel attention mechanism (CAM) submodule exploits the
interdependencies among feature channels and adaptively obtains the weighting
information of different channels; the spatial attention mechanism (SAM) submodule
pays attention to the areas carrying high-frequency information and encodes which
regions to emphasize or suppress; a local residual learning (LRL) strategy is used to
alleviate the model-degradation problem due to the deepening of the work, and this
improves the learning ability.

(4) Through comparative experiments with remote sensing datasets, it is clear that,
compared with other SISR algorithms, DRDAN shows better performance, both
numerically and qualitatively.

The remainder of this paper is organized as follows: Section 2 presents a detailed
description of DRDAN, Section 3 verifies its effectiveness by experimental comparisons,
and Section 4 draws some conclusions.

2. Methodology

In this section, we will describe the overall architecture and specific details of our
proposed DRDAN, including the internal network structure and its mathematical expres-
sions. In particular, each component of RDAB will be illustrated in detail. Then, we give
the optimization direction function during the training process of the network. Specifically,
we use 1 g and Igg to represent an LR image and an HR image, respectively. Meanwhile,
we define Igr as the output of our DRDAN.

2.1. Network Architecture

As shown in Figure 1, the DRDAN includes two branches: the GRL branch and the
MRN branch. In the GRL branch, we apply bicubic interpolation [25] to make our network
learn global residuals inspired by information distillation networks [26]. This process can
be formulated as:

Ipicubic = Hbicubic<ILR>/ (1)
where Hp;icupic(+) denotes the upsampling operator using bicubic interpolation and Iy;cypic
denotes the image output from the interpolation upsampling operation.

The MRN branch consists of four main parts: shallow feature extraction, deep feature

extraction, upsampling, and reconstruction. As with the operation of the EDSR, we extract
the shallow features Fy from the LR input by adopting only one convolutional layer:

Fo = Hsp(ILR), &)
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where Hgg(+) denotes a convolutional layer with kernel size of 3 x 3. The resulting F is
then used as the input of the deep feature-extraction part with our RDABs. Supposing
there are N RDABSs, the output feature maps of the n-th RDAB F, , can be calculated by:

Fyn = HroaBy (Fpn-1) 3)

where Hrpag,:(-) denotes the operation of the n-th RDAB, and F; ,_; and F, ,, are the input
and output for the n-th RDAB, respectively. The Hrpap,, (-) operation enables the network
to pay more attention to the useful features and suppress useless features, and thus the
network can be deepened effectively. The output F,, is then used for the input of the

nex part.
Main Residual Network
2 3 Z sl |2
S - = ~ 2 PlE-[Z E
z z g Sl 15 [°

Global Residual Learning

Figure 1. Overview of the DRDAN network structure.

After obtaining the deep features of the LR images, we apply an upsampling operation
to enlarge the LR feature maps to HR feature maps. Previous methods such as EDSR and
RCAN have shown that a pixel shuffle [12] operation has lower computational complexity
and higher reconstruction performance than bicubic interpolation calculations. Considering
this, we utilized a pixel shuffle operation as our upsampling part, and this operator can be
expressed as:

Fup = Hpixel shuffie[HA (Fy,N)], 4)

where Hy (+) denotes a convolutional layer with convolution kernel size of 3 X 3, Hpixel Shuffle|]
denotes the upsampling operation by pixel shuffle, F, y is the output of the last RDAB, and
Fup is the upscaled feature maps.

To guarantee that the outputs of the MRN branch and the interpolation upsampling
branch have the same number of channels, the upscaled features are then reconstructed via:

Ires = Hrec (Pup); (5)

where Hiec () denotes a convolution operation with three output channels and a convolu-
tion kernel size of 3 x 3, and ;s denotes the output of the MRN branch.

Finally, the output of DRDAN IgR is estimated by combining the residual image
Ires with the interpolated image Ipicybic using an element-wise summation, which can be
formulated as:

ISR = Ires =+ Ibicubic (6)

2.2. Residual Dual-Attention Block

In this section, we will describe the overall structure by using an RDAB. Residual
learning strategies can be roughly divided into two types, namely global and local residual
learning. Global residual learning only learns the residuals between the input and the
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output; it thus avoids learning the complex transformation from a complete image to
another image, and this effectively reduces the difficulty of model training. As noted in
Section 1, VDSR is a classical SISR network based on GRL. Local residual learning means
that residual learning is used in stacked convolution layers, and this helps to retain a large
amount of image detail information. As shown in Figure 2, we compared our RDAB with
some existing residual blocks. Figure 2a—c shows the structures of the residual blocks (RB)
in EDSR, the residual channel attention block (RCAB) in RCAN, and the RDAB in DRDAN,
respectively. Our RDAB is developed using the LMLF module and the DAM module.

8 8l
Z

Fy -
bn-1 |E| I_l \J Fb,n

(b)
LMLF DAM
- —-"—"—-—"—-—"—-—" - - - === | r——""—"- - T - == 1
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] B L l
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| EE B O
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Figure 2. Comparison of the residual blocks of various methods. (a) RB structure of EDSR; (b) RCAB
structure of RCAN; (c¢) RDAB structure of DRDAN.

2.2.1. Local Multi-Level Fusion

The feature-extraction module plays an important role in image SR. Extracting and
fusing local features with different perceptual scales can obtain more contextual informa-
tion. By drawing on this idea, we propose an LMLF module to learn more diverse feature
information and detailed textures in the RDABs so that the network can learn richer details
and enhance feature utilization. The details of this module are shown in Figure 2c. We
denote the input of the i-th RDAB as Fj,,,_;. The LMLF module can be formulated as:

B = fi3(Fyu-1), )
F, = fo3[ReLU(Fy)], ®)
Fmir = f31 [ feoncat(Fon—1, Fi, F2)], )

where: f,, ][] represents the convolution operator, in which m denotes the m-th convo-
lutional layer and n denotes the size of the filters; feoncat(-) represents a concatenation
operator; ReLU(-) denotes a rectified linear unit activation function; F; and F, denote the
feature maps generated by the first and second convolutional layers in the i-th RDAB,
respectively; and Fpr is the final output of an LMLF module, and this will be used as the
input of the DAM module.
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HxWxC

2.2.2. Dual-Attention Mechanism Module

Early CNN-based SR methods mainly focus on increasing the depth and width of the
network, and the features extracted by the network are treated equally in all channels and
spatial areas. Such methods lack the necessary flexibility for different feature-mapping
networks, thus greatly wasting computing resources in practical engineering tasks. The
attention mechanism enables the network to pay more attention to information features
that are more useful to the target task and suppress useless features. In this way, computing
resources can be more scientifically allocated in the feature-extraction process, and the
network can be effectively deepened.

The application of attention mechanisms to SISR tasks has been explored using some
network architectures such as RCAN and second-order attention network [27], and this
has greatly improved the SISR effect. In this paper, we further strengthen the SISR effect by
fusing a SAM and a CAM to construct a DAM, which is shown in Figure 2c.

Reference [20] shows that in neural networks, the feature maps extracted by the
convolution kernels of different channels will have different abilities in recovering high-
frequency detail information. Considering this, we adopt the CAM, in which the repre-
sentation ability can be improved by explicitly modeling the interconnection of feature
channels, adaptively correcting the feature responses of channels, and discriminating
between information of different levels of importance. As shown in Figure 3a, we let
FMLE = (FEMLF, e, F]]fMLF,- -, FEMLF) denote the input feature maps with C channels.
The channel feature descriptor DY ‘e R of the k-th feature map Flyyp 5 is determined
by global average pooling:

1 H W

k k .o

Dchannel = H x WZZFLMLF(II ])/ (10)
i=1j=1

where Ffy 1 (i, j) denotes the value at position (i, j) of Fy; p, and W and H denote the
width and height of the feature map, respectively. By computing the global average pooling,

: _ 1 k C
we can get C channel feature descriptors Dcpannel = (D channel” """ » Dehannel *** » Dehann el)

corresponding to Fimrp = (FﬁMLF, cee, F{‘MLF, cee, FLCMLF>, respectively. The parameter
Dchannel describes the importance of different channel features.

IxIxC IxIx — IxIxC IxIxC HxWxC

Sigmoid

Fea

Figure 3. Overview of the CAM and the SAM. (a) CAM; (b) SAM.
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After the aggregate operation by global average pooling, we introduce a two-layer
perceptron network to fully explore the channel-wise correlation dependencies. The
calculation process of the perceptron network is:

Achannel = U[ReLU<W0 D charmel)]r (11)

where: Wy denotes the weight matrix of a convolution layer, which downscales the channel
with ratio »; W; denotes the weight matrix of a convolution layer, which upscales the
channel with ratio r; ¢[-] and ReLU(-) denote the sigmoid function and ReLU function,

respectively; and the output Achannel = (Al Ak s, AcChann el)’ in which

channel” " * 7 “*channel”
AIC‘h annel d€notes a real value that represents the weight of the k-th channel of Fy . The
final output of the CAM Fcp = (FéA, S, FéA, S, FgA) and FéA is calculated as:

k k k
PCA = Achannel ® FLMLF/ (12)

where ® denotes element-wise multiplication and Fca denotes feature maps with chan-
nel attention.

The LR images contain lots of low-frequency information and a small amount of
high-frequency information. The low-frequency information is generally located in smooth
areas, which are easy to recover. The high-frequency information, such as edges and
contours, is hard to recover. As discussed in [20], it can be found that there is different
texture detail information in different spatial locations. However, existing CNN-based
methods usually assign the same weight to all spatial locations, which tends to weaken
the importance of high-frequency information. Therefore, this work builds a SAM, which
emphasizes the attention to high-frequency information areas, thus obtaining a better SR
reconstruction effect. As shown in Figure 3b, along the channel axis of Fca, we generate
two 2D spatial feature descriptors Dgpatial, avg and Dspatial, max- These are calculated as:

.1 E .
Dspatial, avg(lr j) = C ZFéA(Z/ Ik (13)
k=1
Dspatial, max(i/ ]) = k:{lmalz( C}FéA(i’ ])/ (14)

where: Dgpatial, avg (i, /) and Depatial, max (i, j) denote the average and maximum pooling

spatial descriptors at position (i, j), respectively; F, (i, j) denotes the value at position

(i, j) of the k-th feature Fé A in Fca; and Cis the number of base channels in the feature map.
The concatenated spatial feature descriptors Dgpatia are then calculated as:

D spatial — f concat (D spatial, avg’ D spatial, max) ’ (15)

where fconcat(+) denotes the concatenation operator. The concatenated feature maps Dspatial
are convolved by a standard convolution layer, producing the spatial attention map Aspatial,
which can be formulated as:

Aspatial =0 [WZ (Dspatial) ]r (16)

where 0[] denotes the sigmoid function, and W, denotes the weight matrix of a convolution
layer, which compresses the number of channels of spatial features into one. The output
Aspatial € RE*Whas H x W positions, and Aspaﬁal(i, j) represents the weight of the feature

value at position (i, j) of Fca. The final output of the SAM Fsp = (FslA,- -, Fé‘A, e, FSCA),
and Fé‘A is calculated as:
FgA = Aspatial X F(ij/ (17)
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where ® denotes element-wise multiplication and Fga denotes feature maps with spatial attention.

Local residual learning alleviates the model degradation problem of deep networks
and improves the learning ability. Furthermore, it also makes the main part of the network
pay more attention to the high-frequency information of the LR features. Additionally,
short-skip connection can propagate features more naturally from the early layers to the
latter layers, which enables better prediction of the pixel density values. To promote the
effective delivery of feature information and enhance feature utilization, the final RDAB
module output is formulated as:

Fyn = Fy -1+ Fattention = Fyu—1 + Fca + Fsa (18)

For a more intuitive understanding of RDAB, Table 1 shows the network parameter
settings of RDAB, in which: H and W denote the height and width of the feature maps,
respectively; Conv3x3 and Convl x1 denote convolution layers with kernel sizes of 3 x 3
and 1 x 1, respectively; ReLU denotes the rectified linear unit; Sigmoid denotes the sigmoid
activation function; AvgPool denotes the global average pooling layer; Mean and Max
denote the mean and maximum operations of each point on the feature maps in the channel
dimension, respectively; and Multiple and Sum denote the pixel-by-pixel multiplication
and addition operations of the feature map, respectively. It should be noted that C is
defined as 64 in line with EDSR, and the reduction ratio r is set as 16 in line with RCAN;
thus, the convolution layer in channel-downscaling has four filters.

Table 1. RDAB network parameter settings.

Structure Component Layer Input Output
Conv3x3 Hx W x 64 Hx W x 64
ReLU Hx W x 64 Hx W x 64
LMLF module Conv3x3 Hx W x 64 Hx W x 64
Concat HxWx64 Hx Wx64,Hx Wx64 HxWx192
Convlx1 Hx W x 192 Hx W x 64
AvgPool Hx W x 64 1x1x64
Convlx1 1x1x64 1x1x4
ReLU 1x1x4 1x1x4
CAM module Convlx1 1x1x4 1x1 x 64
Sigmoid Hx W x 64 Hx W x 64
Multiple HxWx64,1x1x64 Hx W x 64
Mean Hx W x 64 HxWx1
Max Hx W x 64 HxWx1
Concat HxWx1,HxWx1 HxWx2
SAM module Convlx1 HxWx?2 HxWx1
Sigmoid HxWx1 HxWx1
Multiple HxWx64, HxWx1 Hx W x 64
LRL module Sum HxWx64 Hx W x64 Hx W x 64 Hx W x 64

2.3. Loss Fuction

The most widely used loss functions in the field of SR image reconstruction are the L1
and L2 loss functions. The L1 loss function can prevent image distortion and obtain higher
test metrics. To perform the same operation as in EDSR, we employ an L1 loss function

. . . . N

in our network. We suppose that the given training dataset is { I, Iz‘HR}i:y where N
denotes the number of training samples. The minimum loss function of neural network
optimization is then expressed as:

1

~ 2
Ni:l

L(®) = | HbrRDAN (IiLR> — IR (19)
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where Hprpan(-) denotes the SR results from the DRDAN network, and ® = W, b;
denotes the DRDAN parameter set.

3. Experiments and Results

In this section, we report experiments using remote sensing datasets to evaluate the
performance of DRDAN.

3.1. Settings
3.1.1. Dataset Settings

To verify the effectiveness and robustness of our proposed DRDAN, we used 10,000 im-
ages from the Aerial Image Dataset (AID) [28] to construct an experimental training dataset.
To fully utilize the dataset, the training dataset was augmented via three image-processing
methods: (1) horizontal flipping; (2) vertical flipping; and (3) 90° rotation. The trained
models were tested on 650 images from the NWPU VHR-10 [29] dataset and 3000 images
from the Cars Overhead With Context (COWC) [30] dataset. To obtain LR images, we
downsampled the HR images through bicubic interpolation with x2, X3, and x4 scale
factors. Some examples of images from each of these datasets are shown in Figure 4.

Figure 4. Examples of images from three datasets: (a) AID; (b) NWPU VHR-10; (c) COWC.

3.1.2. Evaluation Metrics for SR

We adopted the peak signal-to-noise ratio (PSNR) [31] and structural similarity
(SSIM) [31] as the objective evaluation indexes to measure the quality of the SR image
reconstruction. The PSNR is one of the most widely used standards for evaluating image
quality, and it is generally defined by the mean square error (MSE):

H W
Miisg = LY X067~ ¥(i) 20)
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The PSNR is expressed as:

Imax
PPSNR 20 10810 ( \/WSE )/ (21)
where X denotes an SR image of size W x H, Y denotes an original HR image of size W x
H, and Imax denotes the maximum pixel value in the image. The unit of PSNR is dB, and
larger Ppsnr values indicate lower distortion and a better SR image reconstruction effect.
The SSIM is another widely used measurement index in SR image reconstruction. It is
based on the luminance (), contrast (c), and structure (s) of samples x and y:

2xfly ey
(xy) = —271 22
(xy) ue+ud+ o 22
N R (23)

! 02 + U§ +c

Oxy+cs
) = T 24
s(xy) Ox0y +C3 @)
SSIM = [l(x, ) clx, y)P - s(x, y)”’], (25)

where i denotes the average value of x, i1y denotes the average value of y, 0y denotes the
variance of x, 0y denotes the variance of y, and 0y, represents the covariance of x and y. In
general, the values &« = § = v = 1 are set. The range of SSIM is [0, 1]; the closer its value to 1,
the greater the similarity between the reconstructed image and the original image, and the
higher the quality of the reconstructed image.

3.1.3. Experimental Details

In line with EDSR, we set the number of RDABs as 20. The input LR images were
randomly cropped in a patch size of 48 x 48, and the corresponding input HR images
with sizes of 96 x 96, 144 x 144, and 192 x 192 were cropped according to the upscaling
factors x2, x3, and x4, respectively. To avoid size mismatch during the training process, a
zero-padding method was used to ensure that the image size remained consistent during
feature delivery. The parameter settings during the training process are shown in Table 2.
All experiments used the deep-learning framework PyTorch on the Ubuntu 18.04 operating
system. Four Nvidia GTX-2080Ti GPUs were used to accelerate the training. The software
used included the Python programming language, CUDA 10.1, and cuDNN 7.6.1.

Table 2. Parameter settings during the training process.

Parameter Setting
Batch size 16
Training epoch number 1500
Adam [32], B1= 0.9, Bo=0.999,

L h
Optimization method c—10-8

Initial LR = 104,

Learning rate (LK) .ecreased by a factor of 10 every 500 epochs

3.2. Results and Analysis
3.2.1. Effect of RDAB

The RDAB is the core of our proposed DRDAN. To further verify the effectiveness
of the internal RDAB modules, ablation experiments were implemented on the NWPU
VHR-10 and COWC datasets. Table 3 and show the effects of this on the LMLF module,
CAM module, and SAM module for SR reconstruction with scale factor x2. Figure 2a
shows the structure of the baseline residual block in the ablation experiments. It can be
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concluded from the tables that the best performance is seen in the model containing the
LMLF module, the CAM module, and the SAM module.

The LMLF module aggregates diverse features to enhance the feature utilization of
our deep network. To demonstrate the effect of this module, we added the LMLF module
to the baseline residual block. The second and the third rows of Tables 3 and 4 indicate
that this LMLF component can achieve gains of 0.12581 dB and 0.23789 dB for the NWPU
VHR-10 and COWC datasets, respectively. This is mainly because the LMLF contributes to
the power of the network representation ability.

The DAM consists of both a CAM and a SAM. The CAM explicitly models the in-
terconnections of feature channels, adaptively corrects the feature response of channels,
and discriminates between information of different levels of importance. The second and
fourth rows of Tables 3 and 4 indicate that the CAM can achieve gains of 0.07128 dB and
0.17797 dB for the NWPU VHR-10 and COWC datasets, respectively. The SAM enhances
the attention paid to high-frequency information areas. The second and the fifth rows
of Tables 3 and 4 indicate that the SAM can achieve gains of 0.07769 dB and 0.15993 dB
for the NWPU VHR-10 and COWC datasets, respectively. The third and the last rows of
Tables 3 and 4 indicate that the greatest improvement is achieved when the CAM and SAM
are applied together. These comparisons firmly demonstrate the effectiveness of the DAM.

Furthermore, the third, fourth, and sixth rows of Tables 3 and 4 indicate that ‘LMLF + CAM’
achieves better results than only using LMLF or CAM, respectively. The third, fifth, and
seventh rows of Tables 3 and 4 indicate that ‘LMLF + SAM’ achieves better results than
only using LMLF or SAM, respectively. In summary, the experiments show that our RDAB
is structured in a rational and efficient way.

3.2.2. Effect of number of RDABs

The RDABs are stacked in the deep feature-extraction part to obtain better feature uti-
lization. We configured the DRDAN with different depths and compared their performance.
Specifically, numbers of RDABs ranging from 5 to 25 were used. Tables 5 and 6 show the
performance with different numbers of RDABs on the NWPU VHR-10 and COWC datasets,
respectively. It can be clearly observed that the performance of our DRDAN improves as
the number of RDABs increases. This demonstrates that RDAB can be used as a block to
train a deep SR reconstruction network.

3.2.3. Effect of GRL

Global residual learning makes the network avoid learning the complex transfor-
mation from a complete image to another image; only the residual information needs to
be learnt to recover the lost high-frequency details. We now examine the effect of the
GRL branch of DRDAN. For rapid testing, we randomly selected ten images from the
NWPU VHR-10 dataset to construct a new dataset named FastTest10. Figure 5 shows the
performance curve for networks with and without GRL using the FastTest10 dataset in
the epoch range 0 to 100. As can be seen from Figure 5, The DRDAN with GRL has a
higher PSNR curve and a faster rising speed, which indicates that GRL makes the network
converge much faster.

Table 3. Ablation experiment results of RDAB on NWPU VHR-10 dataset for SR reconstruction with
scale factor x2. Bold indicates the best performance.

LMLF CAM SAM PSNR SSIM
x X X 3456139 0.9210
v X X 34.68720 0.9221
X v X 34.63267 0.9220
x X v 34.63908 0.9221
v v x 34.69185 0.9227
v X v 34.68917 0.9225
v v v 34.69760 0.9229
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Table 4. Ablation experiment results of RDAB on COWC dataset for SR reconstruction with scale
factor x2. Bold indicates the best performance.

LMLF CAM SAM PSNR SSIM
x x x 35.97138 0.9414
v x x 36.20927 0.9433
x v x 36.14935 0.9427
x x v 36.13131 0.9427
v v x 36.23430 0.9434
v X v 36.22175 0.9433
v v v 36.23623 0.9434

Table 5. Performance for different RDAB numbers on NWPU VHR-10 dataset; upper rows show
PSNR, and lower rows show SSIM. Bold indicates the best performance.

RDAB Number

Scale
5 10 15 20 25
2 34.52445 34.61701 34.66301 34.69760 34.71847
0.9203 0.9218 0.9224 0.9229 0.9232
31.58175 31.67719 31.72150 31.75685 31.78067
*3 0.8538 0.8562 0.8573 0.8582 0.8589
4 29.78881 29.89007 29.92961 29.95408 29.97202
0.7971 0.8004 0.8017 0.8027 0.8034

Table 6. Performance table for different RDAB numbers on COWC dataset; upper rows show PSNR,
and lower rows show SSIM. Bold indicates the best performance.

RDAB Number

Scale
5 10 15 20 25
” 35.98105 36.12040 36.19822 36.23623 36.26441
. 0.9412 0.9425 0.9431 0.9434 0.9437
3 32.08636 32.26276 32.35570 32.41502 32.46637
. 0.8817 0.8845 0.8860 0.8870 0.8877
4 29.86532 30.03117 30.10245 30.15300 30.18706
X 0.8273 0.8311 0.8327 0.8339 0.8346
365
36.0 -
355 |
%}/ 35.0
[
Z 345
W
=9
34.0
335 F
33.0 with GRL
[ without GRL|
325 1 1 1 1 1 1
0 20 40 60 80 100
Epoch
(a)

Figure 5. Cont.
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Figure 5. Performance curve for DRDAN with and without GRL using FastTest10 dataset with
(a) scale factor x2, (b) scale factor x3, and (c) scale factor x4.

3.2.4. Comparison with Other Approaches

To further verify the advancement and effectiveness of the proposed method, we
compared DRDAN with bicubic interpolation, SRCNN, VDSR, local-global combined
networks (LGCNet), Laplacian pyramid SR network (LapSRN) [33], EDSR, and wide
activation SR (WDSR) [34]. Bicubic interpolation is a representative interpolation algorithm;
SRCNN applies a CNN to the image SR task; VDSR adopts residual learning to build a
deep network; LGCNet combines global and local features to fully extract multi-level
representations of remote sensing images; LapSRN builds a deep CNN within a Laplacian
pyramid framework for accurate SR; and EDSR and WDSR are representative versions of
deep network architectures with residual blocks. The convolution filters in all the methods
were set to 64, and the number of residual blocks in EDSR, WDSR, and DRDAN were all
set to 20 to make a fair comparison.

Table 7 shows the average PSNR and SSIM results of our DRDAN and the compared
methods. It can be clearly observed that the proposed DRDAN always yields the best
performance. On the NWPU VHR-10 dataset, the DRDAN outperformed the second-best
model, WDSR, under factors of x2, x3, and x4 with PSNR gains of 0.12776, 0.10049,
and 0.07795 dB, respectively. With the COWC dataset, the average PSNR values that the
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DRDAN obtained under factors of x2, x3, and x4 were 0.22263, 0.23744, and 0.14659 dB
higher than the WDSR. As for SSIM, the super-resolved results from the DRDAN obtained
the highest scores. On the NWPU VHR-10 dataset, the SSIM gains of the DRDAN outper-
formed the second-best model, WDSR, under factors of x2, x3, and x4 by 0.0019, 0.0024,
and 0.0024, respectively. On the COWC dataset, the average SSIM values that the DRDAN
obtained under factors of x2, x3, and x4 were 0.0018, 0.0038, and 0.0034 higher than the
WDSR values, respectively.

Table 7. Average PSNR and SSIM results of various SISR methods. Upper rows show PSNR, and lower rows show SSIM.
Bold indicates the best performance.

Dataset Scale Bicubic SRCNN VDSR LGCNet LapSRN EDSR WDSR Ours
, 3276031 3403260 3446067 3421641 3424569 3450910 3456984  34.69760

x 0.8991 0.9136 0.9196 0.9162 0.9169 0.9202 0.9210 0.9229
2090444 3097869 3146934  31.17537 3126756 3157245  31.65636  31.75685

NWPUVHR-10 X3 5167 0.8400 0.8517 0.8446 0.8468 0.8539 0.8558 0.8582
, 2828280 2920195 2962497 2934889  29.67743 2978061  29.87613  29.95408

x 0.7524 0.7793 0.7931 0.7841 0.7942 0.7972 0.8003 0.8027
, 287844 3505635 3581885 3543312 3548608 3592949 3601360 3623623

x 0.9180 0.9341 0.9401 0.9371 0.9375 0.9408 0.9416 0.9434
cowe , 295350 3114172 3189712 3146921 3162203 3204507 3217758 3241502
x 0.8384 0.8661 0.8788 0.8716 0.8741 0.8811 0.8832 0.8870
, Y7272 2899814 2962051 2923683 2970046  29.85323  30.00641 3015300

x 0.7725 0.8058 0.8220 0.8123 0.8236 0.8270 0.8305 0.8339

3.2.5. Visual Results

In addition to using objective indicators to evaluate the DRDAN, we also examined
the reconstruction results qualitatively. Figure 6 shows the reconstructed visual results
obtained using DRDAN and the other approaches on COWC test images with three scales,
x2, x3, and x4. For a clearer comparison, a small patch marked by a red rectangle is
enlarged and shown for each SISR method. As can be observed from the locally enlarged
image of Figure 6a, the edges of the red lines obtained using DRDAN are clearer and closer
to those in the real image than all of the compared approaches. Figure 6b demonstrates
that the DRDAN obtains better perceptual performance with more details and structural
textures. Figure 6¢c shows that the reconstructed vehicle results obtained using DRDAN
recover more high-frequency details and obtain sharper edges. It can also be seen from
Figure 6 that DRDAN achieves the highest PSNR and SSIM when compared with the other
SISR methods. Overall, the DRDAN outperforms other comparative approaches in both
objective evaluation indexes and subjective visual quality.

3.2.6. Model Size Analyses

Model size is a critical issue in practical applications, especially in devices with low
computing power. For the scaling factor x2, Figure 7 shows the relationship between
the number of parameters of different network structures and the mean PSNR using the
COWC test set, where M represents the number of parameters in millions. As we can see
from Figure 7, the number of model parameters of DRDAN is less than half of that of EDSR,
but the DRDAN performs the best in terms of the PSNR. This finding indicates that our
model is structured in a rational and efficient way to achieve a better balance between
performance and model size.



Remote Sens. 2021, 13, 2784 15 0f 18

HR Bicubic SRCNN VDSR
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r -~ r a ‘r ' .
ORIGINAL HR Bicubic SRCNN VDSR
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- v
(35.49857/0.9442) (35.91454/0.9459) (36.29918/ 0.9488) (36.55988/0.9505) (37.88700/0.9521)
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HR Bicubic SRCNN VDSR
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- -
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(32.62592/0.7668) (32.74696/0.7694) (32.8081/0.7708) (32.87739/0.7711) (32.91461/0.7716)
(c)

Figure 6. Super-resolution comparison results among the approaches with (a) scale factor x2, (b) scale factor x3, and
(c) scale factor x4.
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Figure 7. Relationship between number of parameters of different network structures and mean
PSNR with COWC test set with scale factor x2.

4. Conclusions

Existing SR image reconstruction methods suffer from low feature information utiliza-
tion and equal processing of all spatial regions of an image. Inspired by the idea of residual
learning, and combining this with attention mechanism, this paper proposes a deep resid-
ual dual-attention network for SR reconstruction of aerial remote sensing images. The
main contribution of this paper is the residual dual-attention block, which is constructed
as the building block of the deep feature-extraction part of the DRDAN. In the RDAB, we
firstly use the local multi-level fusion module to fully extract and deeply fuse the features
of the different convolution layers. This module can facilitate the flow of information in
the network. After that, the DAM, which includes both a CAM and a SAM, enables the
network to adaptively allocate more attention to regions carrying high-frequency infor-
mation. Extensive experiments indicate that: (1) RDAB is structured in a rational and
efficient way, and it can be used as a building block for deep SR reconstruction networks;
(2) the global residual learning branch effectively reduces the difficulty of model training
and makes the network converge much faster; (3) DRDAN outperforms other comparable
DCNN-based approaches, and it can achieve better results with fewer parameters in both
objective evaluation indexes and subjective visual quality.
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