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Abstract: Sustainable development in urban areas is at the core of the implementation of the UN 2030
Agenda and the Sustainable Development Goals (SDG). Analysis of SDG indicator 11.3.1—Land-
use efficiency based on functional urban boundaries—provides a globally harmonized avenue for
tracking changes in urban settlements in different areas. In this study, a methodology was developed
to map built-up areas using time-series of Landsat imagery on the Google Earth Engine cloud
platform. By fusing the mapping results with four available land-cover products—GlobeLand30,
GHS-Built, GAIA and GLC_FCS-2020—a new built-up area product (BTH_BU) was generated for
the Beijing–Tianjin–Hebei (BTH) region, China for the time period 2000–2020. Using the BTH_BU
product, functional urban boundaries were created, and changes in the size of the urban areas
and their form were analyzed for the 13 cities in the BTH region from 2000 to 2020. Finally, the
spatiotemporal dynamics of SDG 11.3.1 indicators were analyzed for these cities. The results showed
that the urban built-up area could be extracted effectively using the BTH_BU method, giving an
overall accuracy and kappa coefficient of 0.93 and 0.85, respectively. The overall ratio of the land
consumption rate to population growth rate (LCRPGR) in the BTH region fluctuated from 1.142
in 2000–2005 to 0.946 in 2005–2010, 2.232 in 2010–2015 and 1.538 in 2015–2020. Diverged changing
trends of LCRPGR values in cities with different population sizes in the study area. Apart from the
megacities of Beijing and Tianjin, after 2010, the LCRPGR values were greater than 2 in all the cities in
the region. The cities classed as either small or very small had the highest LCRPGR values; however,
some of these cities, such as Chengde and Hengshui, experienced population loss in 2005–2010. To
mitigate the negative impacts of low-density sprawl on environment and resources, local decision
makers should optimize the utilization of land resources and improve land-use efficiency in cities,
especially in the small cities in the BTH region.

Keywords: land-use efficiency; urban sprawl; Landsat; SDG 11; Google Earth Engine

1. Introduction

According to the United Nations, at present, more than 4 billion people live in urban
areas worldwide, and this number continues to rise [1]. The global urbanization trend lead
to excessive land use change and expansion of urban land [2]. The physical growth of urban
areas is often disproportionate in relation to population growth which results in inefficient
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land use. This type of growth contradicts the principle of sustainability by leading to
several negative impacts such as fragmentation of agro-forest landscape, increase of energy
consumption and carbon emission [3]. Therefore, the efficient use of land resources is
crucial for urban sustainability from ecological and socioeconomic points of view [4].

Several indicators have been developed to examine the impact of urbanization on land
resources [5]. In 2015, the United Nations set out 17 social, economic and environmental
sustainable development goals and 169 specific targets in the Transforming Our World:
The 2030 Agenda for Sustainable Development, which will guide the global development
effort during the period 2015–2030 [6]. Among them, SDG indicator 11.3.1 measures urban
land-use efficiency (LUE), which is the ratio of the rate of consumption of urban land to
the rate of population growth [7]. The production and dissemination of the SDG 11.3.1
indicator can characterize the evolution of urban settlements. By monitoring the spatio-
temporal changes in urban land use efficiency, city authorities and decision makers can
identify new areas of growth and project demand for public goods and services. They can
also formulate policies that encourage optimal use of urban land and effectively protect
natural and agricultural lands. Therefore, the information of LUE evolution is necessary for
providing adequate infrastructure and services for improving living conditions of urban
residents, as well as preserving environmentally sensitive areas from development [4].

Previous studies of urban expansion and sprawl have mainly been based on ad-
ministrative boundaries [8,9]. However, urban areas experienced an outward expansion
exceeding their formal administrative boundaries in a large proportion of cities due to the
poor urban and regional planning and land speculation [10]. A dynamic and functional
definition of urban boundaries was proposed and applied in the LUE analysis framework
produced by UN-Habitat [7]. The use of functional urban boundaries makes it possible to
track changes across human settlements and provides a globally harmonized avenue for
tracking changes in urban settlements in different areas [11]. Unlike administrative bound-
aries, the functional urban area is defined as actual areas where urban growth happens.
Using spatial analysis approaches from the built environment measures extracted from
satellite imagery, the functional urban area can be identified [7]. Hence, the LUE indicators
can be measured using built-up area and population grid data within the boundary of
functional urban area. The produced results can represent the actual prevailing growth
trends in the city and provide accurate aggregates to better inform decision makers at local
and national levels. The use of functional urban boundaries makes it possible to track
changes across human settlements and provides a globally harmonized avenue for tracking
changes in urban settlements in different areas [11].

By collecting a wide range of information about the planet at large spatial scales,
remote sensing can complement traditional data sources to track progress in achieving
sustainable development goals and targets [12]. In particular, the development of free and
open remote sensing data and high-performance cloud-computing platforms has made it
possible to map urban built-up areas or impervious surfaces using Earth Observation data
at the global scale [13–17]. Urban land-cover products derived from remote sensing data
have been used to monitor and assess SDG 11.3.1 trends at national and global scales. The
free and open Global Human Settlement Layer data were used to estimate SDG 11.3.1 in
approximately 10,000 urban centers globally from 1990 to 2015 [11,18]. Based on the 1990,
2000 and 2010 CLUDS datasets, DMSP/OLS night-light data and census data, the spatial
heterogeneity and dynamic trend of urban expansion and population growth in mainland
China during the period 1990–2010 were analyzed in combination with SDG 11.3.1 [19].
These efforts at LUE monitoring at different spatial scales confirmed the applicability of
Earth Observation data for providing consistent information on urban SDG indicators and
informing the formulation of urban land-use policy.

However, the accuracy of Earth observation products can vary between different
regions, which can lead to uncertainties in evaluation results. Efforts have been made
to measure LUE changes using satellite data at the local city scale. Using Landsat and
SPOT images from 1996, 2001–2002 and 2011, the SDG 11.3.1 indicator was evaluated
for four South African cities, and it was demonstrated that the population growth rate
and rate of spatial expansion of small and second-tier cities in Africa was faster than that
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of large cities [20]. Ghazaryan et al. developed an automated classification approach
and monitored urban sprawl and densification processes in western Germany using SDG
Indicator 11.3.1 [21]. Spatiotemporal changes in urban land-use efficiency were analyzed
and urban land lease policy gaps were emphasized to help ensure sustainable urban growth
in fast-growing cities in Ethiopia [22].

Since the reform and opening up which began in 1978, China’s urbanization rate has
increased from 17.9% in 1978 to 60.6% in 2019 [23]. This urbanization process is constantly
accelerating and greatly promotes the nation’ s social and economic development. One
results of the country’s industrialization and urbanization over the past four decades has
been the gradual formation of large urban agglomerations or megalopolises [24,25]. The
Beijing–Tianjin–Hebei (BTH) region is the largest such urban agglomeration in northern
China. Monitoring and analyzing the dynamic changes in urban space is necessary to
understand the urban development processes in this region. Therefore, the objectives of
this study include: (1) to develop an approach to extract urban built-up areas by using
Earth observation data; (2) to analyze urban expansion processes based on remote sensing
products of built-up areas; and (3) to assess the spatial and temporal changes in urban
land-use efficiency in the cities of the Beijing–Tianjin–Hebei urban agglomeration, China.

2. Study Area and Datasets
2.1. Beijing–Tianjin–Hebei Region

The Beijing-Tianjin-Hebei (BTH) region lies between the latitudes 36◦03′ N and
42◦40′ N and the longitudes 113◦27′ E and 119◦50′ E in northern China (Figure 1). It con-
sists of Beijing and Tianjin municipalities, and 11 prefecture-level cities in Hebei Province
(Zhangjiakou, Chengde, Qinhuangdao, Tangshan, Cangzhou, Hengshui, Langfang, Baod-
ing, Shijiazhuang, Xingtai and Handan). Among them, Beijing and Tianjin are megacities
with a population of more than 10 million. The area of this region comprises 218,000 km2,
accounting for 2.3% of China’s land area. The total population of the study area in 2020 is
113 million, accounting for 7.8% of China’s total population.
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Since 2014, the coordinated development of the BTH region has become a major
national strategic policy of China. As the center of economic development in the north
of the country, the BTH region plays a significant role in China’s political and economic
development [8]. To realize the coordinated development of the region and build a world-
class urban agglomeration, the urbanization of the region should be developed in a planned
and sustainable way, which requires timely monitoring of the processes and status of urban
growth.
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2.2. Datasets

The datasets used in this study included Landsat satellite images, topographic data,
population data and administrative boundaries. Details of these datasets are described in
the following sections.

2.2.1. Landsat Imagery

The Google Earth Engine (GEE), which can process satellite and other Earth observa-
tion data, is a cloud-based computing platform [26]. The platform stores nearly 40 years
of publicly available global remote sensing images, including Landsat, Sentinel, MODIS
and DMSP/OLS satellite imagery [27]. In this study, Landsat 5 tier-1 surface reflectance
data from 2000, 2005 and 2010 and Landsat 8 data from 2015 and 2020 provided by the
Google Earth Engine were used as the main data source for built-up area extraction. These
datasets were atmospherically corrected using the GEE platform; this processing included
cloud, shadow, water and snow masks.

2.2.2. Built-Up Area Products

Four urban built-up land or land-cover products were used in this study, including
GlobeLand30, GAIA, GHS-Built and GLC_FCS-2020. These all have a spatial resolution of
30 m. The characteristics of these datasets are shown in Table 1.

The GAIA product is a global high-spatial-resolution (30 m) annual artificial sur-
face dynamic data product (1985–2018) released in 2019. GAIA is produced using the
Google Earth Engine platform together with long-time series of Landsat images (nearly
1.5 million scenes) as the main data source and auxiliary data such as night-light data and
Sentinel-1 SAR data [28]. The GAIA dataset reveals the different rates of change in artificial
impervious surface cover in major countries and regions of the world.

The Global Human Settlement Layer (GHSL) was developed by the Joint Research
Centre (JRC) and contains spatial information about human settlements at a global scale [29].
The GHSL uses the core method of symbolic machine learning (SML) for data extraction
and uses Landsat images from the past 40 years as the main data source. The GHSL is
an open and free dataset. The GHS-Built product was used in this study. This product
consists of multi-temporal data extracted from Landsat imagery (consisting of the GLS1975,
GLS1990 and GLS2000 datasets and ad-hoc Landsat 8 data for 2013/2014). There are three
types of land use classified in this product: built-up areas, non-built-up areas and water
bodies.

The GLC_FCS30-2020 data is a global 30 m land-cover product with a fine classification
system for the year 2020 [30]. The GLC_FCS30-2020 dataset is produced based on time-
series of Landsat surface reflectance data (from 2019–2020), Sentinel-1 SAR data, DEM data,
and auxiliary datasets. These data reflect the land cover types found globally (except for
Antarctica) at a spatial resolution of 30 m in 2020.

The GlobeLand30 datasets from 2000, 2010 and 2020 were used in this study. These
data include 10 land-cover types such as artificial land and bare land and cover the land
within the range 80◦ S–80◦ N. The GlobeLand30 data were mainly classified using Landsat
TM\ETM+ images and China Environmental Disaster Reduction Satellite (HJ-1) data based
on a comprehensive pixel–object–knowledge classification method [31].

The data set used in this study are built-up area mapping results from these products.
In the GAIA, GHS-Built, GLC_FCS30-2020, and GlobeLand30 products, the built-up areas
are defined as impervious, built-up, impervious surfaces, and artificial surfaces, respec-
tively. Hence, the four products are reclassified into two land cover types: non-built-up
areas and built-up areas. The non-built-up area includes all other land cover types except
built-up area, such as water, cropland, and forest. The specific reclassification schemes for
each land cover product are shown in Table 2. In order to fuse theses datasets with the
mapping results we derived using Google Earth Engine, the four built-up area products
were re-projected to the same geo-reference system consisting of the WGS-84 coordinate
system and UTM projection and resampled to a spatial resolution of 30 m.



Remote Sens. 2021, 13, 2850 5 of 18

Table 1. Characteristics of urban built-up area datasets in the Beijing-Tianjin-Hebei region from 2000 to 2020.

Product Data Source Classification Method Publisher Time Coverage Spatial
Resolution (m) Geographic Projection

GAIA Landsat TM, ETM+, OLI,
VIIRS NTL, Sentinel-1 SAR

Exclusion–inclusion algorithm
and temporal consistency

check

Tsinghua University
http://data.ess.tsinghua.edu.cn

(10 March 2021)
1985–2018 30 WGS 1984

GHS-Built Landsat MSS, TM, ETM+ Symbolic machine learning

Joint Research Centre, European
Commission

https://ghsl.jrc.ec.europa.eu/
(20 November 2020)

1975; 1990; 2000;
2015 30

WGS 1984; WGS 1984
Web Mercator Auxiliary

Sphere

GLC_FCS-2020 Landsat 8 surface
reflectance, Sentinel-1 SAR Random forest classifier

Chinese Academy of Sciences
https://zenodo.org/record/428092
3#.YHamCjim02w (10 October 2020)

2020 30 WGS 1984

GlobeLand30 Landsat TM, ETM+, OLI,
HJ-1

POK (based on pixels, objects,
and knowledge)

National Geomatics Center of China
http://www.globallandcover.com

(10 January 2021)
2000; 2010; 2020 30 WGS 1984; UTM

Table 2. Reclassification schemes of land-cover products in Beijing–Tianjin–Hebei region from 2000 to 2020.

DATA 1: Non-Built-Up 2: Built-Up

GAIA
2000:0 Non-impervious, 1–18 impervious 2000:19–34 impervious
2010:0 Non-impervious, 1–8 impervious 2010:9–34 impervious

2018:0 Non-impervious 2018:1–34 impervious

GHS-Built 1: Water surface, 2: Land not built-up in any epoch, 3: Built-up from 2000 to 2014 4: Built-up from 1990 to 2000, 5: Built-up
from 1975 to 1990, 6: Built-up until 1975

GLC_FCS-2020

10: Rainfed cropland, 11: Herbaceous cover, 12: Tree or shrub cover (orchard), 20: Irrigated cropland, 51: Open evergreen
broadleaved forest, 52: Open evergreen broadleaved forest, 61: Open deciduous broadleaved forest (0.15 < fc < 0.4), 62: Closed

evergreen needle-leaved forest (fc > 0.4), 71: Open evergreen needle-leaved forest (0.15 < fc < 0.4), 72: Closed evergreen
needle-leaved forest (fc > 0.14), 81: Open deciduous needle-leaved forest (0.15 < fc < 0.4), 82: Closed deciduous needle-leaved forest

(fc > 0.4), 91: Open mixed-leaf forest (broadleaved and needle-leaved), 92: Closed mixed-leaf forest (broadleaved and
needle-leaved), 120: Shrubland, 121: Evergreen shrubland, 122: Deciduous shrubland, 130: Grassland, 140: Lichens and mosses, 150:
Sparse vegetation (fc < 0.15), 152: Sparse shrubland (fc < 0.15), 153: Sparse herbaceous (fc < 0.15), 180: Wetlands, 200: Bare areas,
201: Consolidated bare areas, 202: Unconsolidated bare areas, 210: Water body, 220: Permanent ice and snow, 250: Filled value

190: Impervious surfaces

Globeland30 10: Cultivated land, 20: Forest, 30: Grassland, 40: Shrubland, 50: Wetland, 60: Water bodies, 70: Tundra, 90: Bare Land, 100:
Permanent snow and ice 80: Artificial surfaces

http://data.ess.tsinghua.edu.cn
https://ghsl.jrc.ec.europa.eu/
https://zenodo.org/record/4280923#.YHamCjim02w
https://zenodo.org/record/4280923#.YHamCjim02w
http://www.globallandcover.com
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2.2.3. Population Data

The WorldPop project, which is funded by the Bill & Melinda Gates Foundation, aims
to offer spatial population datasets for Central and South America, Africa and Asia to sup-
port development, disaster response and health applications. The WorldPop data constitute
an open-access gridded population data set (https://www.worldpop.org/ (10 April 2021)),
produced by using a combination of machine learning and asymmetric modeling [32]. In
this study, the population datasets for China for 2000, 2005, 2010, 2015 and 2020, which
have a spatial resolution of 100 m and are based on the WGS84 geographic coordinate
system, were used. The WorldPop population totals for different countries have been
adjusted to match the corresponding official United Nations population estimates obtained
from the Population Division of the Department of Economic and Social Affairs of the
United Nations Secretariat.

2.2.4. Ancillary Datasets

The SRTM (Shuttle Radar Topography Mission) DEM is a digital elevation terrain
model published by NASA and the National Bureau of Surveying and Mapping (NIMA). It
has a spatial resolution of 30 m [33] and can be accessed directly in GEE. The administrative
boundaries, including municipal district boundaries, provincial boundaries and municipal
boundaries, can be obtained from National Geomatics Center of China (http://www.ngcc.
cn/ngcc// (6 March 2021)).

3. Methodology
3.1. Built-Up Area Extraction

Three spectral indices—the normalized difference built-up index (NDBI), normalized
difference vegetation index (NDVI) and normalized difference water index (NDWI)—
were calculated from time-series of Landsat images [34–36]. Annual composite images
were created from the optical, near-infrared, NDVI, NDBI and NDWI bands using the
‘reduce’ method by provided by GEE. The reduce method reduces a collection of images to
an image by performing operation such as summation, median, etc. pixel by pixel. Four
reduce functions—min, max, mean and median—were applied to improve the classification
accuracy [37]. Sample points were selected by visual interpretation using the GEE platform.
A stratified random sampling method was implemented with mapped land cover classes
as strata [38]. The numbers of the sample points were determined based on the areal
proportion of each land cover type. 80% of the sample points were randomly taken as
training samples and 20% as validation sample points. Elevation and slope data calculated
from the SRTM DEM were used as supplementary data; image classification was performed
using the random forest algorithm(RFA) [39]. The number of classification trees in the
random forest classifier is 500, and the remaining parameters are default. The confusion
matrix between the validation samples and the classified products was calculated and the
overall accuracy (OA) and kappa coefficients were obtained [40]. For the dichotomy of built-
up area products (built-up area and non-built-up area) in this study, OA is the accuracy
of the overall pixel being correctly classified, which can directly reflect the proportion
of the correct classification. Kappa coefficient is a statistical index that can measure the
balance of the correct classification of different categories. Omission error refers to the
pixels belonging to the built-up area but classified as non-built-up area. Commission error
refers to the pixels that is not built-up but is classified as built-up area. We tested different
strategies for splitting the training and validation samples. If the classification result meets
the requirement of OA > 0.85 and kappa > 0.8 [41,42], it was exported. The RFA was run
iteratively and classification result with the highest OA was taken as the final output. The
resolution of classification result was 30 m, and the spatial reference system was WGS-84
coordinate system and UTM projection.

The voting method is one of the most commonly used multi-classifier combination
methods [43,44] in which the category with the most votes is taken as the final classification
result. When multiple categories have the same number of votes, one of them is randomly

https://www.worldpop.org/
http://www.ngcc.cn/ngcc//
http://www.ngcc.cn/ngcc//
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selected as the final result. Based on the existing products for classifying urban built-up
land and the classification results obtained from the RFA, a multi-temporal urban built-up
area dataset was generated using the majority voting method. After the voting method had
been applied, a temporal filtering method was used to ensure that the amount of built-up
land in the product exhibited a growing trend [45]. A majority filter with a 3 × 3 window
size was used to remove isolated pixels to obtain the final built-up area products with
30 m resolution, BTH_BU 2000, BTH_BU 2005, BTH_BU 2010, BTH_BU 2015 and BTH_BU
2020 [36]. The data-processing workflow is shown in Figure 2.
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3.2. Accuracy Assessment

In order to confirm the feasibility of the BTH_BU product for urban expansion analysis
across time, it is necessary to evaluate its thematic accuracy. In this study, confusion matrix
was used to evaluate and compare the accuracy of the built-up area products [46–48]. The
comparative analysis can also provide useful information for applications of these products
in urban expansion and other fields. The confusion matrix compares the consistency of
the land cover categories in the reference data and the data to be verified at a specific
location, and then creates a two-dimensional table that compares the two (i.e., a confusion
matrix). Based on this matrix, several different indices, including the overall accuracy (OA),
kappa coefficient, omission error (OE) and misclassification error (CE), which can measure
the accuracy of the product, can be calculated [49]. The equations used to calculate these
indices are:

OA =
TP + TN

TP + FP + FN + TN
(1)

pe =
(TP + FN)·(TP + FP) + (FP + TN)·(FN + TN)

TP + FP + FN + TN
(2)
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kappa =
po − pe

1− pe
(3)

CE =
FP

TP + FP
(4)

OE =
FN

TP + FN
(5)

where TP = true positive, TN = true negative, FP = false positive, FN = false negative and
Po = OA. In this study, a true positive result indicated that the built-up area pixels had
been correctly extracted. A true negative indicated that image pixels considered to be
non-built-up areas had been classified as not built-up areas. A false positive meant that
image pixels that did not correspond to built-up areas had mistakenly been extracted, and
a false negative meant that image pixels that did correspond to built-up areas had not been
extracted.

A total of 300 points including 150 classed as built-up land and 150 classed as non-built-
up land were randomly created for each city using ArcGIS 10.5 software (Esri, Redlands,
CA, USA). High-resolution satellite images from Google Earth obtained in the same year as
the Landsat data were used to identify the land-cover types corresponding to these random
points manually. An accuracy evaluation database was then built and used to calculate the
error matrix and accuracy assessment indicators.

3.3. Urban Growth Analysis
3.3.1. Functional City Boundary

Determining the extent of the built-up area is a prerequisite for measuring and com-
paring SDG 11.3.1. Instead of the administratively defined boundaries, the dynamic and
functional urban boundary proposed by UN-Habitat—the actual area within which ur-
ban growth occurs over a defined period of time—was adopted in our study [10]. The
functional urban boundary was obtained using several steps (Figure 3). The BTH_BU
products are reclassified based on the density of built-up area per square kilometer. When
the built-up area density is greater than 50%, it is defined as urban. If the built-up area
density is greater than 0.25 and less than 0.5, it is defined as suburban. If the built-up area
density is less than 0.25, it is considered as rural. The urban and suburban pixels were
then used to determine the fringe open spaces, which are defined as areas within 100 m of
urban and suburban pixels. A polygon was created by merging urban, sub-urban and the
fringe open space pixels. Finally, buffer that extended the area of the polygon by 25% was
created around each feature and the maximum extent of the buffer area was taken to be the
functional urban boundary [7].
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3.3.2. Change in Urban Built-Up Area

After obtaining the functional urban boundaries of the 13 cities in the study area
in 2000, 2005, 2010, 2015 and 2020, the annual expansion area (AEA, km2) was used to
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quantify the amount and rate of urban expansion in our study [17]. The AE is defined as
follows:

AEA =
Aend −Astart

d
(6)

where Aend represents the urban built-up area at the end of a certain period, Astart is the
built-up area at the beginning of a period and d is the number of years between the start
and end of the period. The AEA can directly measure the annual change of built-up area
and reveal the difference of the expansion amount of a city in different stages.

3.3.3. Change in Urban Form

The changes in urban form were analyzed by calculating compactness and aggregation
indices which are spatial metrics. The compactness (C) of a city’s boundaries is an indicator
that can reflect the form of the city’s space. It is defined as:

C = 2
√

πA/P (7)

where C is the compactness of the city—that is, the compactness of the urban functional
boundary. A is the area of the city and P denotes the length of the city perimeter. The
greater the compactness value, the more compact the city is. A circle is the most compact
shape: the compactness of a space in which each part is highly compressed is 1. In contrast,
less compact shapes tend to be narrow or long. Also, the more complex a shape, the smaller
its compactness.

The aggregation index (AI) of a city is defined as:

AI =
(

gii
max → gii

)
∗ 100 (8)

where AI denotes the degree of aggregation and gii denotes the number of adjacent similar
patches of the same landscape type. The AI is calculated based on the length of the
common boundary between pixels corresponding to the same type of patch. When there
is no common boundary between any of these pixels, the degree of aggregation is the
lowest; when the common boundary between all pixels corresponding to the same type of
patch reaches its maximum value, the aggregation index is the highest. In this study, the
compactness and aggregation index for each built-up area, as defined by the functional
urban boundaries, were calculated for each time period.

3.4. Derivation of LCR, PGR and LCRPGR

The SDG 11.3.1 indicators give the ratio of the land consumption rate (LCR) to the
population growth rate (PGR). The PGR refers to the rate of population change in a
city/urban area over a given period (usually a year). The LCR is defined as the rate
of appropriation of land by urban development. The ratio of land consumption rate to
population growth rate(LCRPGR) is calculated as the ratio of LCR to PGR. SDG 11.3.1
indicators are calculated using the following formulae:

LCR =
ln
(

Urb(t+n)/Urbt

)
y

, (9)

PGR =
ln
(

Pop(t+n)/Popt

)
y

(10)

LCRPGR =
LCR
PGR

(11)

where Popt is the total population of the urban area in the past/initial year, Pop(t+n) is the
total population in the current/final year, Urbt is the total extent of the urban area (in km2)
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for the past/initial year, Urb(t+n) is the sum of the urban areas in the current/final year and
y is the number of years between the two measurement periods.

Ideally, the ratio of land consumption to the population growth rate would be equal to
1, implying that the amount of urban land is increasing at the same rate as the population.
Based on LCRPGR values, cities can be categorized into 5 types. These are shown in
Table 3.

Table 3. City classification based on the ratio of land consumption rate to population growth rate
values.

LCRPGR Value Meaning

LCRPGR < −1 the rate of population decline is greater than the rate of built-up area expansion
−1 < LCRPGR < 0 the rate of population decline is less than the rate of built-up area expansion
0 < LCRPGR < 1 the rate of population growth is greater than the rate of built-up area expansion
1 < LCRPGR < 2 the rate of built-up area expansion is 1–2 times the rate of population growth

LCRPGR > 2 the rate of built-up area expansion is greater than 2 times the rate of
population growth

4. Results
4.1. Accuracy Assessment

Accuracy evaluation indices were obtained for each of these built-up area products for
each study period (Table 4). Among the built-up area products, BTH_BU products had the
highest average OA and Kappa coefficients and the lowest average OE and CE (Table 4). It
shows that the proposed method can effectively improve the extraction accuracy of built-up
area.

Table 4. Overall accuracy assessment for the built-up area products in Beijing–Tianjin–Hebei region
from 2000 to 2020.

Product Year OA KAPPA OE CE

GAIA

2000 0.82 0.64 0.07 0.31
2010 0.84 0.67 0.05 0.29
2018 0.86 0.72 0.05 0.24

Average 0.84 0.67 0.06 0.28
GHS-Built 2000 0.87 0.75 0.04 0.22
GLC_FCS 2020 0.88 0.77 0.05 0.29

Globeland30

2000 0.84 0.68 0.05 0.28
2010 0.85 0.7 0.05 0.26
2020 0.86 0.72 0.04 0.25

Average 0.85 0.7 0.05 0.26

BTH_BU

2000 0.91 0.83 0.05 0.13
2005 0.91 0.83 0.04 0.14
2010 0.94 0.87 0.05 0.08
2015 0.93 0.86 0.04 0.10
2020 0.94 0.89 0.04 0.07

Average 0.93 0.85 0.04 0.11

Figure 4 shows the OA, kappa coefficient, OE and CE of the five remote sensing
products for each city. The classification accuracy of BTH_BU products in 11 out of 13 cities
was the highest. BTH_BU and GlobeLand30 have the smallest variability in classification
accuracy, followed by GLC_FCS and GHS-Built. GAIA has the largest variability in
classification accuracy between the different cities.
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Figure 4. Accuracy assessment results for the built-up area products for each city in the Beijing–Tianjin–Hebei region.
(a)overall accuracy, (b) kappa coefficient, (c)omission error, and (d) commission error.

4.2. Urban Growth Analysis
4.2.1. Changes in Urban Built-Up Area

Figure 5 shows the spatial pattern of urban expansion in the cities in the Beijing–
Tianjin–Hebei region. Different types of urban spatial growth, infilling, edge-expansion,
and leapfrogging, can be observed in these cities. The scattered built-up patches in subur-
ban and rural areas was gradually connected with the central urban area, and thus forming
a larger urban core in large cities.
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The annual expansion area (AEA) of urban built-up area showed obvious regional
differences (Figure 6). From 2010 to 2015, the AEA of the Beijing–Tianjin–Hebei built-up
area is much higher than that in other periods. The dramatic changes in these values may
indicate that a fusion between suburban patches and the core urban district or explosive
growth resulting from the sprawl of built-up areas occurred during this period.
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Figure 6. The area (a) and annual expansion area (b,c) in the built-up area for each city in the
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4.2.2. Changes in Urban Form

The changes in the compactness (C) and aggregation index (AI) for each city are shown
in Figure 7. The compactness of all the cities in the Beijing–Tianjin–Hebei region shows a
downward trend, while for the aggregation index (AI) there is an overall upward trend
from 2000 to 2020 (Figure 7). The increasing trend in AI and the decreasing trend in C for all
of the cities indicate that the built-up areas in all of these cities are gradually amalgamating
and the spatial forms of the functional urban areas are becoming increasingly complex [50].
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4.3. Spatiotemporal Dynamics of SDG 11.3.1
4.3.1. Variations in LCR, PGR and LCRPGR

The process of urbanization in the Beijing–Tianjin–Hebei region from 2000 to 2020
was analyzed by calculating the LCR, PGR and LCRPGR values (Table 5). The LCR, PGR
and LCRPGR for the region all followed the same trend from 2000 to 2020: a decrease,
followed by an increase, followed by another decrease. The decrease and increase in the
LCRPGR during the period 2000–2015 agrees with the observed trend for all Chinese
cities [51]. As a result of development in the early decades of the 21st century, there was
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also a consistent outward spread of the urban area in the Beijing–Tianjin–Hebei urban
agglomeration. Before 2010, the rate of urban land growth was less than or similar to
urbanization rate of the population. After Beijing hosted the Olympic Games in 2008,
economic development led to rapid urban expansion in the Beijing–Tianjin–Hebei region.
From 2010 to 2015, due to the acceleration in urban expansion and population growth, the
LCR increased to 0.154, the PGR increased to 0.069 and the LCRPGR increased to 2.232. The
urbanization rate of land was 2.232 times of the urbanization rate of population. In 2014,
the National New Urbanization Plan (2014–2020) was issued by the national government and
put forward a coordinated development strategy for the Beijing–Tianjin–Hebei region. As
a guideline for China’s urbanization, the plan emphasized the importance of achieving a
more environmentally and sustainable form of urbanization. During the period 2015–2020,
the rate of increase in urban land and population urbanization slowed down, the LCR
decreased to 0.048, the PGR decreased to 0.031 and the LCRPGR decreased to 1.538.

Table 5. The temporal variation in the land consumption rate, population growth rate, and the ratio
of land consumption rate to population growth rate in the Beijing–Tianjin–Hebei region from 2000 to
2020.

Time Period LCR PGR LCRPGR

2000–2005 0.045 0.039 1.142
2005–2010 0.027 0.028 0.946
2010–2015 0.154 0.069 2.232
2015–2020 0.048 0.031 1.538

The temporal changes in the LCR, PGR and LCRPGR values of each city in the Beijing–
Tianjin–Hebei region were analyzed. In the economically developed areas such as Beijing
and Tianjin, the population growth and urban expansion were more rapid than in most
cities in Hebei province. From 2000 to 2010 and from 2015 to 2020, although Beijing, as
the capital of China, attracted a great inward flow of people, the rate of expansion of the
built-up area was less than the population growth rate and the LCRPGR values were less
than 1. Tianjin, the second largest city in the BTH region, had a higher LCRPGR value
of between 1.0 and 1.5 (Figure 8). From 2010 to 2015, the built-up areas in all the cities
in the Beijing–Tianjin–Hebei region expanded rapidly and their LCRPGR values were all
greater than 1.5. The LCRPGR values for Langfang, Cangzhou, Baoding, Zhangjiakou and
Tangshan have been increasing since 2000. By 2020, the LCRPGR values of these cities were
all greater than 2, indicating that the cities had entered a phase of extensive development.
In Qinhuangdao, the LCRPGR was greater than 2 during the period 2000–2020. Population
growth in Hengshui has been relatively slow. The population growth here was negative
from 2005 to 2010 and the absolute value of the LCRPGR from 2000 to 2020 was greater
than 3. This indicates that a balance was maintained between the rates of urban expansion
and population growth in Beijing and Tianjin. However, development in the cities in Hebei
was unbalanced, with most of these cities underwent a phase of extensive development.
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4.3.2. Differences in LCRPGR by City Type

We divided the 13 cities in the study into five categories based on population: very
small cities, small cities, medium cities, large cities, and megacities (Table 6). The LCRPGR
values for cities with different population sizes are shown in Figure 9.

Table 6. Classification of different types of cities in the Beijing–Tianjin–Hebei region.

Type Cities Population

Megacities Beijing, Tianjin ≥10,000,000
Large cities Shijiazhuang 5,000,000–10,000,000

Medium cities Tangshan, Qinhuangdao, Handan,
Xingtai, Baoding, Zhangjiakou 1,000,000–5,000,000

Small cities Canzhou, Langfang 500,000–1,000,000
Very small cities Chengde, Hengshui <500,000
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Cities of different sizes undergone diverged urbanization processes during the study
period (Figure 9). The LCRPGR values of megacities and large cities in 2015–2020 were
lower than that before 2015, while the LCRPGR value of medium-sized cities, small cities
and very small cities in 2015–2020 is higher than that before 2015. The slowed down
sprawling development of megacities and large cities since 2015 might be attributed to the
implementation of the new urbanization policy. However, the land use efficiency remains
very low in medium, small and very small cities after 2015.

5. Discussion
5.1. Urban Growth Analysis

In this study, a new built-up area product (BTH_BU) was generated for the Beijing–
Tianjin–Hebei (BTH) region by fusing the mapping results with four available land-cover
products—GlobeLand30, GHS-Built, GAIA and GLC_FCS-2020. The accuracy of different
built-up area or land cover products varies across cities. The accuracy of built-up area
mapping mainly depends on the data sources, sample samples and classification methods
employed. BTH_BU and GAIA rely mostly on the spectral features of Landsat data and
a pixel-based classifier, whereas GHS-Built and GlobeLand30 also employ textural and
contextual information about settlements that is obtained from remote sensing images. The
GAIA and GLC_FCS-2020 uses both optical and Sentinel-1 SAR data. Our results showed
that the integrative use of optical and SAR data improved the identification of buildings
in less-dense urban areas. The sensitivity of SAR backscatter to building structures can
help distinguish bare lands or sparse vegetated lands from built-up areas which are often
confused in multispectral images [52]. By fusing the urban mapping results with four
available products with a majority voting method, the BTH_BU takes advantage of different
data products, and thus improved the accuracy of the final classification results.

Using the BTH_BU product and urban land use efficiency indicator, our results re-
vealed diverged changing trends of LCRPGR values in cities with different population
sizes in the study area. The extensive sprawling growth patterns in medium and small
sized cities of this region suggest that economical and efficient use of land resources was
neglected in urban planning and management strategies in these cities [17]. As the third
largest urban agglomeration in China, the urban sprawl trajectory of cities with different
sizes in Beijing–Tianjin–Hebei region can provide implications for other urban agglomera-
tions [9]. Moreover, the urban mapping method and spatio-temporal urban sprawl analysis
workflow using Earth observation data and geospatial technology can be applied to other
cities and urban agglomerations.

5.2. Uncertainties and Limitations

Although the urban sprawl was characterized with the LCRPGR indicator effectively
in our study, there are some limitations which should be considered. Multi-temporal Land-
sat imagery with 30 m spatial resolution was used as the main data source to extract urban
land in this study, which limits the accuracy of built-up area extraction. The application
of high resolution satellite data such as Sentinel-1/2, SPOT-5/6/7 and WorldView-2/3
may provide more detailed and accurate information on urban built-up areas [53,54]. For
built-up area data fusion, different methods such as entropy weighting and performance
weighting and the Dempster-Shafer theory can be applied in future studies [43]. When the
LCRPGR value less than 0 is obtained, it should be interpreted with cautions. If PGR is less
than 0 and LCR is greater than 0, the LCRPGR represents urban expansion and population
loss. If PGR is greater than 0 and LCR is less than 0, it represents the decrease of built-up
area and the increase of population in cities. Moreover, the indicators of SDG11.3.1 only
use land and population as indicators, which may not fully characterize the urbanization
process. Other environmental and economic indicators in SDGs can be used together
with LCRPGR to perform a more comprehensive assessment of the urban development
trajectories and trends.
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6. Conclusions

In this study, a land-cover classification method was developed using a random forest
classifier and Google Earth Engine cloud platform. The built-up area was extracted using
time-series of Landsat imagery, a DEM and other ancillary data of the Beijing–Tianjin–Hebei
region for the years 2000, 2005, 2010, 2015 and 2020. The data were also fused with four
existing land-classification products—GlobeLand30, GHS-Built, GAIA and GLC_FCS-2020
to generate the built-up products BTH_BU 2000, BTH_BU 2005, BTH_BU 2010, BTH_BU
2015 and BTH_BU 2020. An accuracy assessment produced an overall accuracy of 0.93 and
a kappa coefficient of 0.85 for the BTH_BU products. The built-up areas in all of these cities
are aggregating and the spatial forms of the functional urban areas are becoming more
complex. The spatiotemporal dynamics of the SDG 11.3.1 land-use efficiency indicators
were monitored using BTH_BU and population data. The results showed that, for the BTH
region overall, the LCRPGR values were close to 1 from 2000 to 2010 but rose to 2 or higher
after 2010. Diverged changing trends of LCRPGR values in cities with different population
sizes in the study area. The rates of land and population urbanization were found to be
relatively balanced in the megacities of Beijing and Tianjin. Except for the megacities, the
LCRPGR values were greater than 2 after 2010. The small and very small cities had the
highest LCRPGR values after 2015; however, some of these cities, such as Chengde and
Hengshui, experienced population loss. To mitigate the negative impacts of low-density
sprawl on the environment and land resources, local decision makers should optimize the
utilization of land resources and improve land-use efficiency in cities, especially in the
small cities in the Beijing–Tianjin–Hebei region.
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