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Abstract: A new advanced microwave humidity sounder FY-3D MWHS2 radiance has been assim-
ilated under the clear-sky conditions by implementing its data assimilation interface. The case of
the tropical storm Ampil in 2018 is selected to address the effectiveness of the new-built module in
the initialization and forecast of typhoons. Apart from the experiment assimilating both the Global
Telecommunications System (GTS) data and the FY-3D MWHS2 radiance data, an experiment with
only GTS data is also conducted for comparison. The results show that the bias correction of this
humidity sounder is effective, and the analysis field after assimilating its radiance data matches well
with the observation. The increment of specific humidity below the middle layers is evident after
the assimilation of the radiance data. Besides, the geopotential height increment and the specific
humidity increment at 500 hPa and 850 hPa, respectively, are favorable, resulting in more accurate
rain belt distribution and a higher fraction skill score (FSS). In the deterministic forecast, the track
error of the FY-3D MWHS2 experiment is consistently less than 90 km.

Keywords: MWHS2 radiance; clear sky; data assimilation; typhoon simulation

1. Introduction

Due to the remarkable progress made in state-of-the-art remote sensing image pro-
cessing and analysis, remote sensing products with higher spatial–temporal resolution can
be obtained [1,2]. With the practice of assimilating meteorological remote sensing data
primarily including radar observations and satellite observations, striking improvements
in numerical weather prediction (NWP) have been witnessed [3–12]. For the two kinds
of remote sensing data, satellite observations play an important role in enhancing the
accuracy of modern NWP, since they are able to provide broad monitoring over the earth.
According to the official statistics from the European Centre for Medium-Range Weather
Forecasts (ECMWF), satellite observations account for approximately 98% of all data used
for assimilation in most NWP centers all over the world [13]. In assimilation systems, the
simulated satellite radiance of the first guess (also called the background) can be acquired
to compare with the real satellite radiance by radiative transfer models, thus generating
an optimal analysis on the current atmospheric state. However, actually, only a small part
of uncontaminated satellite radiance data can provide useful information for assimilation
after the calibration and quality control (QC) of the original data due to the complexity of
cloud and rain [14–17]. To solve this, only cloud-free regions in satellite observations are
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reserved in most studies. This method is called clear-sky radiance assimilation and has
been widely used in NWP.

Natural hazards caused by tropical cyclones (TCs) are the most destructive among
all natural hazards in the world [18]. Therefore, improving the forecast skills of TCs is
essential. In the past few decades, although the prediction of TC tracks has been greatly
enhanced [19], the accuracy of TC intensity still needs to be improved further. Apart from
the development of the current NWP model, the improvement of the forecast of TCs is also
related to a better initial conditions with accurately describing the thermodynamic and
dynamical structure of the core area of the TCs [20,21]. TCs generate in the broad ocean
with sparse conventional observations. Therefore, satellite observations are provided as a
supplement of conventional observations. The thermodynamic and dynamical structures
of TCs are well captured with satellite observations, leading to an improvement in the
forecast skills of TCs when introducing the satellite data into NWP systems. In previous
studies, the utilization of advanced data assimilation (DA) techniques and multiple satellite
radiance observations in the initialization of TCs has contributed to great improvements in
the forecast of TCs’ track and intensity [22–24].

After the successful launch of the first FY-3 series polar-orbit satellite named FY-3A
in May 2008, FY-3D has become the latest one in service until now. It is equipped with
four new remote sensing instruments including high spectral infrared atmospheric sound-
ing (HIRAS), a high spectral greenhouse gas spectrometer (GAS), a wide-field auroral
imager (WAI), and an ionospheric photometer (IPM), one improved instrument called
the Medium-Resolution Spectral Imager-II (MERSI-II), and five inherited instruments of
which the Microwave Humidity Sounder 2 (MWHS-2) has been the second generation
microwave humidity sounder since the FY-3C. The application of MWHS-2 and its for-
mer detector MWHS on improving NWP has been verified. It is proved that with the
introduction of the FY-3B MWHS in the ECMWF Integrated Forecasting System, a slight
improvement is found in weather forecasts [25–27]. MWHS-2 has eight new sounding
channels around the 118 GHz oxygen band compared to its previous generation instrument
MWHS. These new channels, thus, provide an interesting source of new information. Thus,
more related information is added in the introduction part. Moreover, a recent evaluation
of assimilating MWHS-2 data by ECMWF showed that MWHS-2 data are of relatively
high quality, although for the 118 GHz channels, the noise equivalent delta temperature
(NEdT) values for MWHS-2 are higher than those for AMSU-A or ATMS. Additionally, they
found the result of short-range forecast of humidity is inspiring with five of the 183 GHz
channels of MWHS-2 [28]. However, the utility of FY-3D MWHS-2 in NWP is not fully
tested, and few numerical experiments have been performed. Therefore, the effects of
clear-sky assimilation of FY-3D MWHS2 on NWP deserve to be further studied. Tropical
storm Ampil (2018) is selected to conduct the following experiments.

In this study, the interface of assimilating the new MWHS2 humidity sounder on
FY-3D is completed in the framework of the Weather Research and Forecasting model data
assimilation (WRFDA) system and the three-dimensional variational (3DVAR) method in
the system to evaluate the effects of assimilating the FY-3D MWHS2 radiance data under
clear-sky conditions on TCs’ forecast. The remaining parts of this study are arranged as
follows. A brief introduction to the FY-3D MWHS2 radiance data and the 3DVAR assimila-
tion method in the WRFDA system are provided in Section 2, followed by the build of the
FY-3D MWHS2 assimilation module. Experimental design along with the introduction to
the tropical storm Ampil is presented in Section 3. The results of the numerical experiments
are shown in Section 4. Eventually, summaries are given in Section 5.

2. Satellite Radiance Data and WRFDA Assimilation System
2.1. MWHS2/FY-3D Data

As the fourth satellite of China’s FY 3 series meteorological satellites, FY-3D is a polar-
orbit satellite, which was launched successful from Taiyuan Base in Shanxi Province on 15
November 2017 [29]. It moves along its orbit 830.5 km above the Earth’s surface and its
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local equatorial crossing time is 13:45 (ascending), thus observing the whole earth twice a
day. FY-3D is loaded with 10 advanced remote sensing instruments, of which the MWHS2
is an inheritance from its last generation FY-3C satellite [30]. The full list of features of the
channels for MWHS2 is given in Table 1. The MWHS2 detector owns 15 channels. Among
them, eight channels (channels 2–9) are mainly sensitive to atmospheric temperature with
a central frequency 118.75 GHz. Five channels (channels 11–15) are mainly sensitive to
the atmospheric moisture with a central frequency 183 GHz, and two window channels
(channel 1 and 10) are used for emissivity retrieval with a central frequency 89 GHz and
150 GHz [31]. In this study, the radiance data of channel 5, 6, 7, 11, 12, 13, 14, and 15 are
chosen for the assimilation.

Table 1. Features of the channels for MWHS2.

Channel
Central

Frequency
(GHz)

Polarizations Bandwidth
(MHz)

Frequency
Stability
(MHz)

Antenna
Main
Beam
Width

Antenna
Main
Beam

Efficiency

Resolution
(km)

NEDT
(K)

1 89 V 1500 50 2.0◦ >92% 29 1.0

2 118.75 ± 0.08 H 20 30 2.0◦ >92% 29 1.0

3 118.75 ± 0.2 H 100 30 2.0◦ >92% 29 1.0

4 118.75 ± 0.3 H 165 30 2.0◦ >92% 29 1.6

5 118.75 ± 0.8 H 200 30 2.0◦ >92% 29 1.6

6 118.75 ± 1.1 H 200 30 2.0◦ >92% 29 1.6

7 118.75 ± 2.5 H 200 30 2.0◦ >92% 29 1.6

8 118.75 ± 3.0 H 1000 30 2.0◦ >92% 29 2.0

9 118.75 ± 5.0 H 2000 30 2.0◦ >92% 29 2.6

10 150 V 1500 50 1.1◦ >95% 29 1.0

11 183.31 ± 1 H 500 30 1.1◦ >95% 16 1.0

12 183.31 ± 1.8 H 700 30 1.1◦ >95% 16 1.0

13 183.31 ± 3 H 1000 30 1.1◦ >95% 16 1.0

14 183.31 ± 4.5 H 2000 30 1.1◦ >95% 16 1.0

15 183.31 ± 7 H 2000 30 1.1◦ >95% 16 1.0

2.2. The 3DVAR Method in the WRFDA Assimilation System

The Weather Research and Forecasting (WRF) model’s data assimilation (WRFDA)
system is jointly designed and developed by the Mesoscale and Microscale Meteorology
(MMM) Laboratory, which is an affiliation of the National Center for Atmospheric Research
(NCAR) [32]. In this study, the module of assimilating a new sensor Microwave Humidity
Sounder 2 (MWHS2) from the FY3D satellite is built in the WRFDA system. The tradi-
tional 3DVAR method is adopted in this study to obtain an optimal analysis of the real
atmospheric state by iterating to minimize the cost function J(x) [33]:

J(x) = (x − xb)
TB−1(x − xb) + (y0 − H(x))TR−1(y0 − H(x)), (1)

where x is the analysis vector (analysis field). xb is the background vector (background
field) that is usually the forecast field. B is the background error covariance matrix that
is generated by the one-month National Meteorological Center (NMC) method. y0 is the
observation vector (observation field), R is the observation error covariance matrix, B−1

and R−1 are the inverse matrix of B and R, respectively. H is the nonlinear observation
operator [34,35].



Remote Sens. 2021, 13, 2873 4 of 17

2.3. The Build of the MWHS2/FY-3D Aassimilation Modle

In the latest officially released WRFDA software (version 4.2), the facility of assimilat-
ing the new detector MWHS2/FY-3D is not equipped. Therefore, it is essential to merge
the interface of the MWHS2/FY-3D module into the WRFDA system before performing the
assimilation. In this study, a component of the Radiative Transfer for Television Infrared
Observation Satellite Operational Vertical Sounder known as RTTOV-SCATT is employed
as the observation operator to assimilate MWHS2/FY-3D radiance, and the function of
clear-sky of RTTOV is included in the WRFDA system.

Before the assimilation, QC is a crucial procedure. To make full use of the radiance
observations, observations over both ocean and land are utilized. The final QC schemes for
the MWHS2/FY-3D are listed below after investigating some commonly used QC methods
for other satellite data:

(1) Abnormal radiance data, such as those less than 50 K and those greater than 550 K,
are preliminarily eliminated after reading data, since low brightness temperature and
high temperature is not physical for brightness temperature [13].

(2) The observation residuals (the absolute value of the difference between the observed
brightness temperature and the simulated one) are excluded when exceeding a specific
threshold (15 K) [13].

(3) The observations with residuals greater than 3σ0 after the bias correction are discarded,
where σ0 is the standard deviation of brightness temperature observation, which is
estimated by offline calculation. (2) and (3) are applied for the quality control, since it
is difficult to obtain the optimal analysis for the data assimilation system when the
difference between the observation and background is too large.

(4) In cloud detection, the definition of SI index is the difference of brightness temperature
between channel 1 and channel 10. Those data with an SI index greater than 5 K are
dismissed. In addition, the cloud liquid water path (CLWP) values diagnosed from
the background over a specific threshold (0.2 g/m2) are rejected. The SI index shows
the extent to which the radiance pixels are affected by the cloud emissivity effect.

(5) The observations with comparatively complex types of surface are excluded, since
there are large estimation errors for the surface emissivity for those complex types
of surface.

Furtherly, the systematic bias of radiance should be properly rectified before being
assimilated [24,36]. Usually, the radiance bias is expressed by a linear combination of some
predictors along with the coefficients by modifying the forward operator H̃:

H̃(x, β) = H(x) + β0 +
Np

∑
i=1

βi pi, (2)

where H(x) represents the radiative transfer model; x represents the model state vector; β0
represents a constant component of total deviation; βi and pi represent the i-th predictor
and bias correction coefficient, respectively. Usually, the bias correction coefficient β is
viewed as channel dependent and can be obtained by offline statistics [37] or updated by a
variational minimization algorithm, which is called variational bias correction (VarBC) [38].
In this study, an offline WRFDA VarBC mode is conducted, in which the background term
and all non-radiance observations are dismissed for roughly one week every 6 h to obtain
the bias correction coefficients.

3. Experimental Design

Tropical storm Ampil was the 10th tropical cyclone in 2018 in the Pacific Ocean.
Figure 1 shows the scanning orbits of MWHS2/FY3D radiance, which cover the track
of tropical storm Ampil from 0600 UTC, July 22 to 0600 UTC, July 24. Tropical storm
Ampil was generated in the northeast of the Philippines at 1200 UTC on July 18, and its
strength was about 998 hPa. After its generation, it moved northeast until 1200 UTC on
July 19. At 0800 UTC on July 20, it upgraded to a severe tropical storm and approached the
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eastern coast of China. At about 0400 UTC on July 22, it made its landfall on Chongming
Island, Shanghai with a maximum surface wind (MSW) up to 28 m/s and a minimum
sea level pressure (MSLP) 982 hPa. Then, it hit some coastal provinces including Jiangsu,
Shandong, Tianjin, Hebei, and Liaoning in sequence. Due to the surface friction, it was
weakened to an extratropical cyclone and gradually disappeared in the Inner Mongolia
Autonomous Region at about 1500 UTC on July 24. According to official statistics, the
tropical storm Ampil caused one casualty and direct economic losses up to 990 million
RMB. Figure 2 shows the low layer and middle layer circulation near the assimilation time
by final operational global analysis (FNL) reanalysis data. It can be found that a vapor-rich
region in the east of Taiwan conveyed sufficient moisture to the typhoon core, and the
subtropical anticyclone was broken by the invasion of the typhoon. Thus, acquiring a more
accurate initial conditions is vital to improve the accuracy typhoon forecast by assimilating
MWHS2/FY3D radiance data.
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g/kg), and wind field (vectors, unit: m/s) and (b,d,f) the 500 hPa circulation including geopotential height (lines, unit:
dagpm) and wind field (vectors, unit: m/s) at (a,b) 0000 UTC, (c,d) 0600 UTC, (e,f) 1200 UTC on 22 July 2018. Red “C”
represents the center of tropical storm Ampil at each corresponding time.
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In this study, the Advanced Research WRF (ARW) version 4.2 is used in the experi-
ments. Figure 1 shows the simulation domain with the center located at 31◦N, 123◦E with a
horizontal resolution of 9 km. The numbers of zonal grids and meridional grids are 559 and
469, respectively. In vertical direction, the number of layers is 57 with a topmost pressure
10 hPa. The 0.5◦ × 0.5◦ horizontal resolution Global Forecast System (GFS) reanalysis data
are used to provide the initial and boundary conditions. Some parameterizations used in
this study include the Thompson microphysics scheme [39], the Yonsei University (YSU)
boundary layer scheme [40], the Goddard short-wave radiation scheme [41], the rapid
radiative transfer model (RRTM) long-wave radiation scheme [42], the Noah land surface
model, and the Grell–Freitas cumulus parameterization scheme [43].

Firstly, a 6-h warm start initiated at 0000 UTC on 22 July 2018 is carried out. Secondly,
the forecast field at 0600 UTC on 22 July 2018 is used as the background to assimilate
MWHS2 radiance. Eventually, a final 48-h forecast is conducted from 0600 UTC on 22
July to 0600 UTC on 24 July. For comparison, two experiments are performed. The
first experiment is named as the control experiment (CTNL), in which only the Global
Telecommunications System (GTS) convention observation data are assimilated. Figure
3 shows the distribution of GTS observation data at 0600 UTC on 22 July 2018. Based on
the first experiment, the assimilation of FY3D MWHS2 radiance data is introduced in the
second experiment named as MWHS2, which is a combined assimilation of both the GFS
reanalysis data and the MWHS2 radiance data. To avoid the potential correlation between
adjoining radiance observations, the raw MWHS2 radiance data are thinned on a 54 km
grid.
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Figure 3. Distribution of GTS observations. Satellite atmospheric motion vector (SATOB), aircraft
data (Airep), radiosondes (SOUND).

4. Results
4.1. Radiance Simulation

Channel 11 is selected to check the validation of the simulation results. Figure 4 shows
the observed brightness temperature minus the background brightness temperature (OMB),
and the observed brightness temperature minus the analyzed brightness temperature
(OMA) after the bias correction at 0600 UTC on 22 July 2018. It should be pointed out that
some scanning points of the typhoon are abandoned to avoid the complexity of clouds,
especially near the typhoon core with the SI index in Figure 4c. It can be found that
the background brightness temperature has great errors with the observation. However,
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after assimilating MWHS2 radiance data, the absolute values of most scanning points are
less than 1 K, indicating that the analyzed brightness temperature matches better with
the observation.
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4.2. Bias Correction

Figure 5 shows the scatters of the simulated and the observed brightness temperature
before and after the bias correction at 0600 UTC on 22 July 2018. The brightness temperature
simulation is conducted by the RTTOV atmospheric radiative transfer model. It can be
found from Figure 5a that for most scatters, the simulated values of the background field
are higher than those of the observation before the bias correction. After the bias correction,
it can be found from Figure 5b that the mean value of OMB is nearly equal to 0 K, indicating
that the systematic bias is largely corrected. Further, after the assimilation of MWHS2, the
root mean square error (RMSE) of the analyzed field is reduced from 2.310 K to 0.945 K
compared with Figure 5b. The result indicates that the data assimilation method is able to
adjust the moisture and temperature information appropriately to fit the observation with
both the background and the observation errors considered.
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Figure 5. The scatter diagrams of channel 11 observed versus simulated brightness temperature (unit: K) of background
(a) before the bias correction, (b) after the bias correction, and (c) observed versus simulated brightness temperature of
the analysis.

4.3. Frequency Distribution Histogram

Figure 6 shows the frequency distribution of OMB for channel 11 at 0600 UTC on 22
July 2018. Before the bias correction, it shows that most scanning points are less than 0 K
with the peak between −2 K and −1 K, demonstrating that the value of most points in



Remote Sens. 2021, 13, 2873 9 of 17

the background are higher than most observed ones. After the bias correction, the general
distribution of OMB approximately conforms to normal distribution, with the peak moving
to 0 K. By comparing the histogram of OMB with and without the bias correction, it is
confirmed that the bias predictors selected are suitable and the coefficients are statistically
calculated. Compared with OMB, the value of OMA is convergent to 0 K with less abnormal
values, while the number of those scanning points whose values are near 0 K increases
after the analysis.
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4.4. Statistics for All the Channels

Figure 7 shows the statistical feature of all the assimilated channels used in the
experiment. Similar to Figures 5 and 6, the results of the bias correction scheme and the
analysis for all the channels selected are illustrated in Figure 7. Figure 7a provides the
numbers of scanning points of used channels. After the QC, the numbers of scanning
points of all these channels are more than 4000, which can provide sufficient observation
for assimilation. Figure 7b is the mean of OMB and OMA. Without the bias correction, the
means of OMB of all channels deviate from 0 K, except channel 13. With the bias correction,
the deviations are reduced and the absolute values of averaged OMB of all channels are
less than 0.5 K. In contrast, the means of OMA of all channels are closer to 0 K after the bias
correction. Figure 7c is the averaged standard deviations of OMB and OMA. The standard
deviations of OMA are obviously smaller than OMB, especially for channels 11 to 15. The
smaller means and standard deviations suggest that the analysis field is more accurate than
the background field.
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4.5. Humidity Increment RMSE

Figure 8 is the vertical increment RMSE profile of specific humidity enlarged by
10 times. The value of RMSE reflects whether these model layers are sensitive to the
assimilation. It can be found that with the assimilation of the GTS data, two evident peaks
appear, indicating that the assimilation of GTS data can make a difference to the lower
and middle layers of the background field. In comparison, with the assimilation of the
MWHS2/FY3D data, the increment RMSE of specific humidity is striking, especially below
the 30th layer. The lack of water vapor information of the typhoon can be compensated
for more than 0.2 g/kg for most medium and bottom levels. The large impact of humidity
increment can be attributed to the abundant moisture information from the MWHS2
channels with the application of the observation operator RTTOV.
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4.6. Geopotential Height Increment

Figure 9 displays the 500 hPa geopotential height increment of GTS and MWHS2. In
all experiments, a negative increment near the center of the typhoon can strengthen the
intensity of the typhoon. However, in their differential field, the sphere and magnitude of
geopotential height increment in MWHS2 assimilation experiment are larger than those in
the GTS assimilation experiment and the area of positive geopotential height increment in
the north part of the typhoon is reduced, which is favorable for the intensity maintenance
and the track forecast.
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4.7. Relative Humidity Increment

Figure 10 is the increment of 850 hPa relative humidity of GTS and MWHS2. It can
be found that after the assimilation of GTS data, there is a large area of positive relative
humidity increment near the outer typhoon core (31.8◦ N, 121.7◦ E), and the magnitude of
some regions in the spiral rain band is more than 10%. However, the value in the typhoon
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core is negative, which is unfavorable for the maintenance of the typhoon. By contrast,
a positive relative humidity increment exists in the storm core after the assimilation of
MWHS2 data, which matches well with the specific humidity increment profile shown
in Figure 8. A clearer relative humidity increment near the core can be found in the
differential field.
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4.8. 24-Hour Accumulated Precipitation
4.8.1. Rain Belt Distribution

Figure 11 provides the 24-h precipitation distribution from 0000 UTC, 23 July to 0000
UTC, 24 July. In the observation, the tropical storm Ampil brought heavy rainfall to North
China, with two rainfall centers in Tianjin and Shandong. In the experiment with GTS
assimilation, the rainfall center in Tianjin is underestimated, while the rainfall center in
Shandong is overestimated. Besides, the two centers mismatch with the observation with
a west bias. In the experiment with MWHS2 assimilation, the location of the two rainfall
centers corresponds well with the observation. The forecast of the center in Tianjin is
improved to some degree, and the center in Shandong is slightly overestimated.
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4.8.2. Fraction Skill Score (FSS) Evaluation

To make an objective estimate on the forecast skill of the two experiments, the fraction
skill score (FSS) is employed. The FSS is defined as [44]:

FSS = 1 −

1
N

N
∑

i=1

(
Pf i − Poi

)2

1
N [

N
∑

i=1
P2

f i +
N
∑

i=1
P2

oi]

where Pf i and Poi represent the probabilities of forecasted and observed rainfall region,
respectively, that exceeds a specific threshold value at the i-th grid point, and N represents
the number of grid points in the verification region. The value of FSS is between 0 and 1,
which represent no overlap and complete overlap between the forecasted and observed
precipitation region, respectively.

The FSS scores of 24-h accumulated precipitation of the two experiments are shown
in Figure 12. The FSS scores of the MWHS2 assimilation experiment at each threshold
are higher than those of the GTS assimilation experiment. For small threshold values, the
advantage of the MWHS2 experiment is not obvious, since the difference between the
two experiments is small, especially below 25 mm. For thresholds larger than 50 mm, the
advantage of the MWHS2 experiment is consistent and obvious.
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4.9. Track Forecast

Figure 13 is the result of the 48-h deterministic forecast of the two experiments. It
should be mentioned that the best track is traced by the China Meteorological Adminis-
tration (CMA) [45]. Since the deterministic forecast is driven by a 6-h warm-start run, a
30 km error exists at the initial time. It can be found from the figure that in the first 12 h, the
difference between the two experiments is not striking. After the integration of the model,
the forecast track with the assimilation of MWHS2 is closer to the best track gradually.
The track error of the MWHS2 experiment is below 40 km in the first 36 h but has a sharp
increase in the last 12 h. In addition, the track error of the MWHS2 experiment is smaller
than that of the GTS experiment most of the time, with a maximal error of about 90 km.
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5. Conclusions and Discussion

In this study, the interface of the FY-3D MWHS2 is built in the WRFDA system. The
effects of assimilating FY-3D MWHS2 radiance data under clear-sky conditions on the
simulation of the tropical storm Ampil are discussed. Two numerical experiments are
designed including the assimilation of the sole GTS data and the assimilation of both
the GTS data and the MWHS2/FY3D radiance data. The following is concluded by
these experiments:

(1) After assimilating FY-3D MWHS2 radiance data under clear-sky conditions, the
notable error in the background field is strikingly reduced, and the simulated radiance
of FY-3D MWHS2 matches better with the observation. By comparing the scatter
diagram, the frequency distribution histogram, and the statistical line chart, it is found
that the assimilation of FY-3D MWHS2 radiance data is effective.

(2) Compared with the assimilation of the GTS data, it is found that the increment
of specific humidity below the 30th layer is obvious with the assimilation of the
FY-3D MWHS2 radiance data. Besides, the 500 hPa geopotential height increment
and the 850 hPa relative humidity increment are preferable for the maintenance of
the typhoon.

(3) In the simulated 24-h precipitation, the position of rainfall center in the experiment
with FY-3D MWHS2 assimilation shows better correspondence with the observation,
whereas the rain belt in Shandong is overestimated, and the one in Tianjin is underes-
timated. By the quantitative FSS, the score of the FY-3D MWHS2 experiment is above
0.85 in all thresholds. In the final 48-h forecast, compared with the GTS experiment,
the track error of the FY-3D MWHS2 experiment is smaller with a maximal error of
roughly 90 km.

In this study, a positive influence of typhoon initialization and simulation is found
for the case study of the tropical storm Ampil. It should be pointed out that this study
is a preliminary attempt, since the MWHS2/FY-3D radiance data are assimilated under
clear-sky conditions by the 3DVAR method with a single case. In the following work,
more typhoons should be chosen to verify the effectiveness of MWHS2/FY-3D assimilation.
Besides, more assimilation times (cycling assimilation) should be considered to make
continuous improvements on the initial field. Last but not least, other advanced DA
techniques such as the 4DVAR and the cycling methods can be applied to enhance the
initialization and the forecast of typhoons with MWHS2/FY-3D radiance data.
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