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Abstract: Unmanned Aerial Vehicle (UAV) Remote sensing (RS) has unique advantages over tradi-
tional satellite RS, including convenience, high resolution, affordability and fast acquisition speed,
making it widely used in many fields. To provide an overview of the development of UAV RS
applications during the past decade, we screened related publications from the Web of Science core
database from 2010 to 2021, built co-author networks, a discipline interaction network, a keywords
timeline view, a co-citation cluster, and detected burst citations using bibliometrics and social network
analysis. Our results show that: (1) The number of UAV RS publications had an increasing trend,
with explosive growth in the past five years. The number of papers published by China and the
United States (US) is far ahead in this field; (2) The US has currently the greatest influence in this field
through the largest number of international cooperations. Cooperation is mainly concentrated in
countries and institutions with a large number of publications but is not widely distributed. (3) The
application of UAV RS involves multiple interdisciplinary subjects, among which “Environmental
Science and Ecology” ranks first; (4) Future research trends of UAV RS are expected to be related to
artificial intelligence (e.g., artificial neural networks-based research). This paper provides a scientific
basis and guidance for future developments of UAV RS applications, which can help the research
community to better grasp the developments of this field.

Keywords: Unmanned Aerial Vehicle (UAV); Remote Sensing (RS); Bibliometric; Scientometric;
visualization

1. Introduction

Rapidly-developing Unmanned Aerial Vehicles (UAVs), which stand out with high
spatial resolution, short revisit periods as well as lower operating costs, are more suitable
for real-time monitoring applications [1]. Given these advantages, applications based on
Unmanned Aerial Vehicle (UAV) Remote sensing (RS) have been increasing under the
strong investments and support of various governments. The past decade witnessed an
expansion of UAV RS applications, from military to civilian uses [2,3]. For example, this
technology was used to assess the spatial variability of water conditions in vineyards [4];
to accurately distinguish urban vegetated areas [5]; to map water stress of ground samples
and peach orchards [6]; and to determine the coal-burning range of coal mines [7].

To better use UAV RS technology, it is necessary to appreciate the key advances of this
technology and how they have evolved. Traditional review papers focus on the content of
publications, while the bibliometric method provides a novel solution which pays attention
to the characteristics of the countries, institutions, disciplines, and how the papers in
this emerging field have evolved. Bibliometrics originated from the early 20th century
and has developed into a visual analysis method based on co-citation networks [8]. The
CiteSpace software is an information visualization tool developed by Chen [9,10] based
on scientific methods (e.g., Social Network Analysis (SNA), clustering analysis, etc.) and
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map drawing functions. Data visualization not only identifies and analyzes information
through relational data, but also sees the structural relationship among data in a more
intuitive way, leading to more in-depth analyses of information [11].

With the technological development of UAVs and the continuous expansion of their
applications in various fields, understanding their development has become indispensable.
In this study, we used bibliometric analysis and SNA to mine the literature to reveal the hid-
den structure of this research domain [12], and used visualization methods to quantitatively
reflect co-authorship and subject distribution in the UAV RS research field. We identified
cutting-edge dynamics and development trends through algorithmic operations [9,13].
This paper explored the UAV RS development history, the annual number of publications,
the co-authoring status of countries and institutions, the disciplines involved in this field,
and current research hotspots. Through this systematic review of the UAV RS, we aim to
offer a better understanding of the overall development of this field and provide a scientific
basis for further UAV RS development.

2. Materials and Methods

The literature data of our review was derived from the Web of Science (WoS) core
database. The search formula was “(TS = (“unmanned aerial vehicle” OR UAV OR “Low-
altitude aircraft” OR “Drone”)) AND (TS = (“remote sensing” OR RS)) AND Languages:
(English) AND Types: (Article OR Review)”, which generated 1968 records between 1
January 2010 to 16 April 2021. Since our article only focuses on the application and
development of UAV RS, we manually conducted data cleaning to filter unmatched papers.
Finally, 1812 articles or reviews were retained. The publication data contained information
such as publication date, authors, journal name, country, research institution, keywords, etc.
When we analyzed the annual trend of the publications, data for the year 2021 (233 papers)
were excluded because their records were incomplete.

CiteSpace can be used quickly and intuitively to reveal the distribution and rules
of data. First, we used CiteSpace (5.7.R2) to de-duplicate the retrieved literature data
to obtain 1812 articles or reviews, and then built the database. Then, we extracted the
corresponding field information through a series of algorithmic operations and drew the
scientific collaboration networks of countries and institutions and the discipline interactions
networks. In addition, we conducted hotspots analysis by extracting the keywords from
the papers and constructing the co-citation cluster map. With the help of CiteSpace, we
visualized and analyzed the data rules to show the development of UAV RS applications
in a systematic way. The specific research methods were as follows.

2.1. Publication Outputs

Firstly, we extracted each country’s data from CiteSpace to map the global geographic
distribution of the publications and better understand the global development status.
Taiwan, Hong Kong, and Macau were merged into China. England, Wales, Northern
Ireland, and Scotland were merged into the United Kingdom. The total publications by
country were rendered in ArcMap (version 10.5).

Secondly, setting one year as an interval, we drew a line chart of the total publications
and a yearly publications bar chart of the top six countries from 2010 to 2020, with the
purpose to identify the trend in the number of publications in each country.

Thirdly, we counted publications of institutions over the world with CiteSpace to
obtain the publications by institutions within each country.

For publications with one author, the institution and country to which the author
belongs increased by one count. For papers that had contributions from multiple au-
thors belonging to different institutions or countries, the number of publications by the
corresponding institutions and countries increased respectively.
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2.2. Correlation Characteristics

We drew the cooperation network and discipline network by establishing a social
network analysis (SNA) [14]. SNA not only is a quantitative method that considers the
individuals interdependence, but also is a type of structural analysis that can visually
display the overall network structure, the position of an individual in the network, and
the relationship with other individuals [12,14,15]. Density can be used to measure the
integrity and complexity in the network representing the number of connections between
points [16]. It is defined as the actual connections number divided by the theoretical
maximum connections number, which can be described as follows [16]:

Density =
2m

n(n− 1)
(1)

where m represents the total of connections, and n represents the nodes in the network.
Each node in the network represents one sample (e.g., for a country network, each

node represents one country). A node size and its color correspond to co-citation frequency
and the first occurrence time, respectively, and the change in color from blue to yellow
indicates the time in chronological order. The connection between nodes indicates the co-
citation relationship and its thickness indicates the co-citation strength. One node centrality
indicates the connection strength with other nodes, and the node with a thicker purple
ring represents a higher centrality value and more connections with other nodes. The
mathematical definition of centrality is as follows [17]:

Centrality (nodei) = ∑
i 6=j 6=k

ρjk(i)
ρjk

(2)

where ρjk represents the number of shortest paths between node j and node k, and ρjk(i) is
the number of those paths that pass through node i.

2.3. Research Front

Keywords are words and phrases that summarize the research theme of a paper. In
our study, keywords were also used to infer the research trends and hotspot changes in the
UAV RS field [18]. Using a time slicing technique to build multiple time network models
over time, we synthesized these individual networks to form a timeline map [13]. Co-
citation analysis showed the clusters that are mainly concentrated in the research field and
indicated the current research status. Detecting explosive references can quickly highlight
the latest research directions in the UAV RS field.

To summarize the research hotspots and development trends of the UAV RS appli-
cations, we selected the top 50 cited papers in each year during the period from 2010 to
2021, constructed a keyword timeline view, counted the top three keywords (except UAV,
RS) of new appearances each year, built a co-citation cluster map, and detected the top
25 publications with burst citations.

3. Results
3.1. Analysis of Publication Outputs

The top ten publishing countries, according to our data in Figure 1, were China, the
United States (US), the United Kingdom (UK), Spain, Italy, Germany, Australia, Canada,
France and Brazil. The top three countries accounted for 56.13% of the total publications.
Only China and the US published more than 300 papers, with 373 and 514 publications,
respectively. The US published 243 papers more than the UK. In addition, China and the
US accounted for 28.37% and 20.58% of the total publications, respectively, far exceeding
the total of the other eight countries.
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Figure 1. The number of global geographic distribution publications from 2010 to 2021.

Publications on UAV RS have shown rapid growth trends between 2010 and 2020 in
Figure 2. From 2010 to 2014, a total of 91 papers were published (5.76% of all publications).
Publications increased slowly during this period with an average of 18 papers per year.
From 2015 onwards, we found 1488 publications (94.24% of all publications), suggesting
that the field grew rapidly after this year, with an average annual number of publications
of 248. The use of UAV RS has increased widely with the popularization of UAV RS
technology and methods, receiving increasing attention from the community [19]. The top
ten publishing institutions (Table 1) published 19.32% of the papers. Among them, Chinese
institutions occupied an important position (73.14% of the total publication of the top ten
institutions). The top three publications were all from China (CAS, WHU, and UCAS).
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Table 1. Top ten institutions publishing papers on UAV RS.

Rank Institution Count

1 Chinese Academy of Sciences (CAS) 94
2 Wuhan University (WHU) 50
3 University of Chinese Academy of Sciences (UCAS) 44
4 Consejo Superior de Investigaciones Cientificas (CSIC) 33
5 Beijing Normal University 27

6 United States Department of Agriculture (USDA)
Agricultural Research Service (ARS) 25

7 South China Agricultural University 23
8 Zhejiang University 18
9 University of Twente 18

10 University of Florida 18

3.2. Analysis of Correlation Characteristic
3.2.1. Cooperation Network Analysis

The coauthor network reveals the social connections in the scientific community of
the research field. The density of the country network was 0.1288, with 703 cooperative
relationship pairs among 105 countries, and that of the institution network was 7.5 × 10−3,
with 547 cooperative relationship pairs among 382 institutions. This indicated that the
relationship among the countries was closer than the relationship among the institutions.
However, in general, the relationship strength of the above two networks were weak.

In the country network (Figure 3), China ranked first in publications with a centrality
of 0.09, and the US ranked second in publications with a centrality of 0.31. However, the
US’s centrality was three times greater than China’s. This indicated the US not only was
the most active country in the UAV RS field but also had more communications around
the world and showed a wide range of influence. South Korea ranked 12th in the total
publications with a centrality value of zero, which means that most of its research was
done independently and there was little communication with the outside world. From the
network of institutions (Figure 4), we can see that CAS, with 94 papers and a centrality
value of 0.23, was the top one in the number of institution publications and had the
highest centrality status. WHU ranked second with 50 papers, which was twice that of
the USDA ARS publications, but the centrality of USDA ARS was 0.12, which was more
than twice that of WHU’s centrality. Only the centralities of CAS and USDA were greater
than 0.1. Overall, we can infer that cooperation in the UAV RS field was concentrated in
countries and institutions with a large number of publications, showing that cooperation
was concentrated rather than widely distributed.
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3.2.2. Discipline Interaction Analysis

To clarify the disciplines involved in the UAV RS field, we drew the discipline interac-
tion networks in Figure 5. The density of the map was 0.0611, indicating that there was a
weak cooperation among disciplines. The network was mainly based on “Environmental
Sciences and Ecology” as the main related disciplines, with 893 relevant papers and a
centrality value of 0.64. Secondly, UAV RS was widely used in “Photographic Technology”,
“Geosciences”, “Agriculture”, “Engineering and Electrical”, “Computer Science”, “Physical
Geography”, “Water Resources”, among other subjects. In the case of UAV RS used for low-
altitude crop photography, crop growth monitoring, and water environmental monitoring
were widely used; the entire research process involves the intersection of multiple disci-
plines, from agronomy to water resources, environmental science, engineering, and ecology.
At the same time, when UAV RS is used in land resource surveys, three-dimensional reality
simulations, urban planning and other fields, computer platforms are also involved. The
processing of images taken by UAVs promotes the development of computer science and
electronics. The UAV RS field can be applied to a wide range of topics, and research
related to UAV RS is also continuously increasing so that breakthroughs can be found from
existing research.
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3.3. Analysis of Research Front
3.3.1. Keyword Analysis

The timeline graph focuses on the relationships among clusters and the historical
span of papers within a certain cluster. The nodes of a given cluster are arranged on the
same horizontal line in chronological order. The papers in each cluster are like strings on a
timeline, showing the clusters’ historical results [9]. For example, in Figure 6 the evolution
process of the keyword node content in the cluster “#0 vegetation index” from 2010 to
2021 included “ndvi”, “vegetation index”, “hyperspectral”, “crop”, “biomass”, “precision
agriculture”, “chlorophyll content”, “leaf area index”, “winter wheat”, “maize”, and “plant
height”. Among them, the “vegetation index” in 2010 was the largest node. UAV RS
images were used to calculate vegetation index in the early days. With the development
of UAV RS, it was equipped with higher resolution hyperspectral sensors to monitor
farmland soil characteristics and, crop growth. Meanwhile, the vegetation index was used
to estimate biophysical parameters to produce water stress detection images of leaf area
index, chlorophyll content, photochemical reflectance index, and canopy temperature to
guide production and supervision [20,21]. Therefore, “vegetation index” was the basics
keyword in this cluster, and other keywords were extended and developed on this node.
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in descending order of their size on the right. The colored curve represents keywords appearing in
the same paper in the corresponding color year.

From 2010 to 2013, the hotspots in Table 2 were mainly “vegetation index” “pho-
togrammetry”, “system”, “accuracy”, “lidar”, “imagery”, “classification”, “reflectance”,
etc. The clusters were mainly concentrated in “#0 vegetation indices”, “#1 lidar”, and
“#6 vegetation mapping”, involving RS of geology, agricultural science and ecology, and
technologies such as image classification and 3D modeling. These hotspots and clusters
reflect the more recent period of research hotspots, in which researchers are taking ad-
vantage of UAV RS features such as its high resolution, low cost, and high timeliness.
Therefore, simple UAVs equipped with sensors are gradually used to monitor farmland soil
properties, crop growth and other information in real-time [22]. The high-resolution images
provided by UAV RS have improved the accuracy of land vegetation classifications [20].
However, the image classification accuracy is affected by complex surface information, data
preprocessing and selection methods. The RS images classification algorithms range from
supervised and unsupervised classification to a variety of advanced algorithms, such as
support vector machines, neural networks, expert systems, etc. [23]. Multiple classification
methods combinations can improve accuracy. Future research directions can start from the
perspective of how to integrate multiple classifiers for specific problems [5]. Lidar measures
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the distance, surface characteristics and orientation of the target by actively emitting laser
light. It can obtain high-precision three-dimensional point cloud data, which is helpful
for the rapid establishment of three-dimensional models [24]. With the help of the UAV
platform, lidar can be applied to engineering surveying and deformation monitoring [25],
disaster assessment [26], forestry surveying [27], forest resource survey [28], etc.

Table 2. Top three keywords that newly appeared every year in the period 2010–2013.

Year Keyword Count

2010
Vegetation index 263
Photogrammetry 183

System 163

2011
Imagery 160

Precision agriculture 104
Accuracy 69

2012
Classification 205

Lidar 114
Reflectance 100

2013
Bioma 92
Modal 113
Crop 67

In the period 2014–2017, research hotspots included “structure from motion”, “forest”,
“variability”, “leaf area index”, “chlorophyll content”, “resolution”, “canopy”, etc (Table 3).
It can be seen in the timeline view that the clusters were “#0 vegetation indices”, and “#1
lidar”. With the development of 3D modeling, the effects that can be achieved can no longer
meet the needs of researchers, so there is an urgent need to develop key technologies to
improve modeling capabilities. Among them, motion recovery structure is a key technology
in computer vision 3D reconstruction. The ability to extract 3D point clouds can be
improved with the help of UAV systems, and the occurrence of deviations and occlusions
can be reduced [29]. In addition, UAV RS involves ecological diversity and ecological
restoration and is used to assess forest restoration and habitat quality [30], using aerial
images of canopy gaps to assess the understory vegetation plant diversity, which expands
forest dynamics and research forest restoration scope [31]. UAV RS system can effectively
use a vegetation index to estimate biophysical parameters [21] to produce water stress
detection images of leaf area index, chlorophyll content, photochemical reflectance index
and canopy temperature to guide production and supervision [32]. Multi-rotor UAV
platforms are equipped with multispectral sensors and high-definition digital cameras to
form a UAV agricultural monitoring system, which can effectively invert soybean leaf area
index and provide new approaches for precision agriculture [33].

Table 3. Top three keywords newly appeared every year during the period 2014–2017.

Year Keyword Count

2014
Structure from motion 76

Forest 69
Variability 47

2015
Random forest 46

Chlorophyll content 37
Low cost 35

2016
Leaf area index 89

Topography 28
Nitrogen 18

2017
Winter wheat 33

Resolution 31
Canopy 24
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The research hotspots during the period 2018–2021 (Table 4) were “machine learning”,
“deep learning”, “maize”, “plant height”, “neural network”, and the clusters were “#4
deep learning”, and “#5 computer vision”. The stage center has evolved from simple crop
estimation in the region to deeper research. For example, UAV RS technology provides
a simple, fast, and effective method for small-scale maize lodging investigations. Maize
canopy height can accurately identify corn lodging when combined with color features
information [28]. Oblique photogrammetry can improve work efficiency by effectively
reducing the distortion in the model caused by the lack of ground control points [34].
The multi-spectral camera carried by eight-rotor UAVs can be used to monitor a test
area, and the leaf area of cereal crops can be monitored with UAV RS to provide yield
estimation models that can quickly and effectively evaluate growth and yield [35]. Bamboo
forests image data are accessed by UAV, and then the spectral characteristic information
and texture characteristic information of the image are analyzed by using object-oriented
multi-scale segmentation. The K-Nearest Neighbor algorithm is used to classify images
based on the characteristic band combinations and used to identify different bamboo
stands heights [36]. UAVs are expected to be further developed in terms of intelligence,
automation, miniaturization and integration. RS image classification and recognition were
first used to distinguish the features through manual visual interpretation. This method not
only requires specialized staff but also takes a long time. With the development of computer
vision technology, image features were gradually applied to RS image classification and
recognition, but this method requires a large number of training samples and expert
knowledge, which is often difficult to satisfy in practice. As the amount of RS data
increases, relying on traditional methods for interpretation and analysis can no longer meet
researchers’ and operational needs. In recent years, the rapid development of deep learning
methods in the computer vision field provides new approaches for RS image classification,
target recognition, image segmentation and other fields [37]. For example, research on
UAV RS image processing and the application of convolutional neural networks in UAV RS
image classification and recognition, and classification and recognition of different types of
vehicles [38].

Table 4. Top three keywords newly appeared every year in 2018–2021.

Year Keyword Count

2018
Machine learning 63

Maize 21
Multispectral imagery 8

2019
Impact 33

Plant height 12
Productivity 8

2020
Deep learning 40

Neural network 16
Damage detection 16

2021
Feature extraction 8
Change detection 5

Rainfall 4

3.3.2. Co-Citation Analysis
Cluster Analysis

Different colored areas indicate when the citation links in these areas first appeared.
The purple region had the earliest appearance, followed by the green area and later, in order,
by the blue and the yellow areas. Each cluster can be labeled with title terms, keywords,
and abstract terms that refer to papers in the cluster. For example, in Figure 7 the green area
in the lower corner was labeled “#6 using deep learning”, indicating that papers about deep
learning refers to cluster #6. There were 11 clearly identifiable clusters in the co-citation
network. The largest node in the cluster graph was a publication written by Colomina I,
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which reviewed the development of UAV RS. The other nodes with red rings were papers
with burst references.
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Most of the research in the top ten cited publications (Table 5) were related to forestry
and agronomy, which was consistent with vegetation index ranking first in the keyword
analysis between 2010 and 2021. Related clusters in the co-citation network included “#0
above-ground biomass”, “#2 coffee crop”, “#3 from-motion photogrammetry” “#4 ultra-
high resolution”, “#8 narrow-band spectral indices”, and “#12 uav-based identification”.
Large nodes or nodes with red tree rings were of particular interest, especially the top ten
cited publications. Bendig J used vegetation index and plant height information obtained
from UAV images to monitor the biomass in barley [39]. Matese A compared the precision
viticulture on multiple RS platforms [40]. Aasen H and Wallace L studied the application
of UAV in vegetation monitoring and forest structure assessment, respectively [41,42].



Remote Sens. 2021, 13, 2912 11 of 16

Table 5. The top ten cited publications in the UAV RS field.

Title Author Journal Year Frequency

Unmanned aerial systems for photogrammetry
and remote sensing: A review [29] Colomina I

ISPRS Journal of
Photogrammetry and

Remote Sensing
2014 155

Combining UAV-based plant height from crop
surface models, visible, and near infrared

vegetation indices for biomass
monitoring in barley [39]

Bendig J

International Journal of
Applied Earth

Observation and
Geoinformation

2015 82

Intercomparison of UAV, Aircraft and Satellite
Remote Sensing Platforms for Precision

Viticulture [40]
Matese A Remote Sensing 2015 78

Generating 3D hyperspectral information with
lightweight UAV snapshot cameras for

vegetation monitoring: From camera calibration
to quality assurance [41]

Aasen H
ISPRS Journal of

Photogrammetry and
Remote Sensing

2015 68

Assessment of Forest Structure Using Two UAV
Techniques: A Comparison of Airborne Laser

Scanning and Structure from Motion (SfM)
Point Clouds [42]

Wallace L Forests 2016 66

UAV for 3D mapping applications: a review [43] Nex F Applied Geomatics 2014 59
Fluorescence, temperature and narrow-band

indices acquired from a UAV platform for water
stress detection using a micro-hyperspectral

imager and a thermal camera [44]

Zarco-Tejada PJ Remote Sensing of
Environment 2012 59

Evaluating Multispectral Images and Vegetation
Indices for Precision Farming Applications from

UAV Images [45]
Candiago S Remote Sensing 2015 57

Lightweight unmanned aerial vehicles will
revolutionize spatial ecology [46] Anderson K Frontiers in Ecology

and the Evironment 2013 56

Estimating Biomass of Barley Using Crop Surface
Models (CSMs) Derived from
UAV-Based RGB Imaging [47]

Bendig J Remote Sensing 2014 55

Zarco—Tejada PJ used an UAV platform equipped with a micro-hyperspectral imager
and a thermal camera for water stress detection [44]. Candiago S confirmed that high-
resolution UAV data have great potential for precision agriculture assessments [45]. UAV
RS technology research hotspots are in agricultural sciences and ecology, filling some short-
comings in this field. For example, UAV-based RS offers great possibilities to acquire field
data in a fast and easy way for precision agriculture applications [45]. Both multispectral
and digital sensors mounted on UAVs are reliable platforms for rice growth and grain
yield estimation. Using UAV RS can predict the best period and best vegetation index for
assessing rice grain yield [48]. One of the advantages of UAV RS is high-resolution images.
Some researchers use UAV micro-hyperspectral instrument configurations to perform
fluorescence studies on trees, measuring their photochemical reflectance index and canopy
temperature; stomatal conductance obtained from the instrument can be linked to field
measurements of water potential [44].

Trend Analysis

Analyses of keywords and highly cited papers can help identify the key topics in a
research field but may not be adequate for analyzing a field’s most recent development
trends. Both analyses ignore the changes that occur over time, and therefore do not retrieve
the latest emerging literature. Burst detection is used to detect trends that appear rapidly
across papers to predict the trends in their topics [17]. We have counted the top 25 references
with the strongest citation bursts for at least three years in Figure 8. Each publication in the
figure corresponds to a blue line. A darker shade of blue reflects the publication date of the
paper and red reflects the period in which the paper was cited.
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We divided the research period from 2010 to 2021 into three periods similar to those
of keywords for the literature outbreak citation analysis to infer the future research trend
of UAV RS. Combining the research content of the cited outbreak period and the relevant
literature, it can be found that the initial UAV RS mainly used crop growth real-time
monitoring and provided high-resolution images. Later, it gradually shifted its focus to
improving the UAV visual effects. The leaf area index and photochemical reflectance
images were further studied to provide more effective solutions for precision agriculture.
In recent years, UAV RS has gradually transitioned to favor machine deep learning, neural
networks, and RS image classification with new techniques in target recognition, image
segmentation and other fields [37]. Therefore, we speculate that future UAV RS trends
will be as follows. First, UAVs will develop more intelligently and will be applied to
various systems. Second, UAV sensors will provide the advantages of strong versatility,
reasonable cost, light weight, and small size. Sensor technology will be extensively studied
and developed rapidly [49]. Third, because the number of images captured by UAV RS is
huge and their processing is cumbersome, there will be research to develop quicker UAV
image stitching approaches to cut down the subsequent processing time [50].
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4. Discussion
4.1. Current Development of UAV RS Field

The number of papers published by China and the US was far ahead in the UAV RS
field. It was worth noting that although Chinese institutions had a greater advantage in the
number of publications, the centrality index of evaluating the influence of the paper was
relatively low. This indicated that although Chinese scholars had considerable research
team and ability in this field, the international comprehensive influence of the publications
from China could be improved. China should strengthen the innovative research of
publications in this field and enhance international influence in the future. The cooperation
strength of the countries and institutions were relatively weak, indicating a scope for future
improvement. The research community should pay more attention to the quality of papers
and improve the research height of this field through cooperation between institutions.
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The UAV RS field involved multi-disciplinary investigations. Trying to combine disciplines
with a large span in the future will contribute to finding new research directions.

The UAV RS field can be applied to a wide range of topics. At first, people used
simple images to monitor crop growth and rescue disaster. As the UAV visual effects and
image manipulation techniques gradually improved, many new applications emerged.
However, the data volume of UAV RS was enormous, so more attention should be paid to
data processing. These developing areas of applications can greatly benefit from improved
UAV RS data processing techniques. Moreover, upgrading the observed object from static
to dynamic, and efforts finding the appropriate algorithm to accurately interpret the target
were also considerable. Meanwhile, big data and artificial intelligence have developed
rapidly, thus promoting the improvement of UAV RS relevant techniques and applications,
such as neural networks for image segmentation. With machine learning technology
advancements, UAV RS research has tended to become more intelligent. In addition, to
equipping UAV with the functions of decisions making and responding to unexpected
events in real time without direct human intervention, more technology and algorithms
need to be developed.

4.2. Future Prospects of UAV RS Field

UAV RS is highly versatile, with applications in agriculture and forestry, ecology,
and geology, among others. UAV RS applications are also growing in fields such as land
resource survey, three-dimensional modeling, geographic national conditions monitoring,
and neural network building [51,52]. We summarize future applications as follows.

First, UAV can be equipped with multiple sensors to achieve directional business
services. For example, combining lidar and image modeling to obtain visible light images,
not only provides texture characteristics for the model surface, but also encrypts and repairs
the point cloud, which helps improve its reconstruction [53]. Second, stable and small UAV
will be developed, UAV anti-jamming and long-distance transmission capabilities will
reach higher standards [54]. UAV RS images can be transmitted in real-time, which is vital
for military operations, emergency disaster response and emergency rescues [55]. Third,
rapid stitching and image recognition tools will be developed. UAV RS can automatically
check the quality of the flying photos and handle image feature points [56]. Fourth, 5G
technology will be combined to realize the networking function control system, so that
UAV can safely and efficiently enter the mid-to-high altitude airspace and expand the UAV
networking scope [57]. Fifth, RS loads and professional operations will be more intelligently
integrated, especially in the field of precision agriculture. For example, analyzing images
of diseases and insect pests can help determine the exact location of infestations and
implement precise spraying operations [58]. Finally, big data cloud processing platforms
for UAV RS will be built. UAV RS data acquisition can be customized on-demand to meet
the needs of phase, resolution, type, real-time for users [53,55].

4.3. Limitation of the Study

Some limitations in the analysis tools and the data screening process may still be
affecting the accuracy and thoroughness of the results in this paper. First, the retrieved data
may have missed some publications. We retrieved the data using “TS” as the search index,
some publications that do not contain the searched keywords in their title, abstract, author
keywords, and keyword plus may have been excluded from the records. Manual selection
could also lead to the erroneous elimination of some publications. Additionally, some
nodes in the original network could not be displayed in the figures. We also made some
adjustment (e.g., we canceled or moved some nodes) to enhance the esthetics and clarity
of the network. Finally, we thank the CiteSpace tool for providing the data visualization
functions used in this paper and hope it will be improved in corresponding functions in
the future.
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5. Conclusions

In this study, we use the bibliometric analysis to conduct research of Unmanned
Aerial Vehicle (UAV) Remote sensing (RS) related papers. The results indicated that
the publication of UAV RS has shown an overall growing trend, particularly from 2015
to 2020. The publications from the United States (US) and China far exceeded those
of other countries. China ranked first in the number of publications and was the only
country with more than 500 publications. The US was the most active country in terms
of international cooperation in the UAV RS field, exerting a wide and unrivaled range of
influence. The publications of China were far more numerous than those of the US but with
much less cooperation with other countries. South Korea ranked 12th in the number of
publications, but its centrality value was zero, indicating that most of its research was done
independently and with little cooperation with the outside world. The Chinese Academy of
Sciences (CAS) was the top institution in the number of institution publications, indicating
that the cooperation in the UAV RS field was concentrated rather than widely distributed.
In addition, this domain involved multiple subjects from “Environmental Sciences and
Ecology” to “Photographic Technology”, “Agriculture”, “Engineering and Electrical”,
“Computer Science” and “Physical Geography”. Among them, “Environmental Sciences
and Ecology” was the main related discipline. However, the lack of cooperation among
countries and institutions will limit the development of UAV RS availability. Promoting
cooperation among institutions and countries can push the continuous advancement of
this field. UAV RS evolved from the direct observation of UAV RS images to the gradual
improvement of image processing technology, and then to the development of machine
learning technology, such as neural networks for image segmentation. Future research
trends of UAV RS are expected to be related to artificial intelligence. Based on this, we
briefly summarized the developments of the UAV RS applications over the past decades
and raised some ideas about future applications in the discussion section. These conclusions
are helpful to provide a scientific basis and guidance for the research community to better
grasp the developments of the UAV RS field.
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42. Wallace, L.; Lucieer, A.; Malenovský, Z.; Turner, D.; Vopěnka, P. Assessment of Forest Structure Using Two UAV Techniques: A
Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests 2016, 7, 62. [CrossRef]

43. Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [CrossRef]
44. Zarco-Tejada, P.J.; Gonzalez-Dugo, V.; Jimenez-Berni, J.A. Fluorescence, temperature and narrow-band indices acquired from a

UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012,
117, 322–337. [CrossRef]

45. Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for
Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [CrossRef]

46. Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11,
138–146. [CrossRef]

47. Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models
(CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [CrossRef]

48. Zhou, X.; Zheng, H.; Xu, X.; He, J.; Ge, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Predicting grain yield in rice using
multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017,
130, 246–255. [CrossRef]

49. Pajares, G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Pho-
togramm. Eng. Remote Sens. 2015, 81, 281–330. [CrossRef]

50. Yu, H.; Wang, J.; Bai, Y.; Yang, W.; Xia, G.-S. Analysis of large-scale UAV images using a multi-scale hierarchical representation.
Geo Spat. Inf. Sci. 2018, 21, 33–44. [CrossRef]

51. Yang, Q.; Shi, L.; Han, J.; Zha, Y.; Zhu, P. Deep convolutional neural networks for rice grain yield estimation at the ripening stage
using UAV-based remotely sensed images. Field Crop. Res. 2019, 235, 142–153. [CrossRef]

52. Xu, C.; Liao, X.; Tan, J.; Ye, H.; Lu, H. Recent Research Progress of Unmanned Aerial Vehicle Regulation Policies and Technologies
in Urban Low Altitude. IEEE Access 2020, 8, 74175–74194. [CrossRef]

53. Cawood, A.J.; Bond, C.; Howell, J.A.; Butler, R.; Totake, Y. LiDAR, UAV or compass-clinometer? Accuracy, coverage and the
effects on structural models. J. Struct. Geol. 2017, 98, 67–82. [CrossRef]

54. Awange, J.; Kiema, J. Unmanned Aircraft Vehicles. Environ. Geoinform. Environ. Sci. Eng. 2019, 265–289. [CrossRef]
55. Zhang, W.; Wu, J. To Explore the UAV Application in Disaster Prevention and Reduction. Appl. Mech. Mater. 2014, 590,

609–612. [CrossRef]
56. Du, W.; Chen, F.; Tang, K.; Cheng, L.; Jiao, H. Research on rapid mapping technology in the field of unmanned aerial vehicle

(UAV) aerial survey. E3S Web Conf. 2019, 131, 01065. [CrossRef]
57. Wu, Q.; Xu, J.; Zeng, Y.; Ng, D.W.K.; Al-Dhahir, N.; Schober, R.; Swindlehurst, A.L. A Comprehensive Overview on 5G-and-

Beyond Networks with UAVs: From Communications to Sensing and Intelligence. IEEE J. Sel. Areas Commun. 2021, 1. [CrossRef]
58. Faiçal, B.S.; Freitas, H.; Gomes, P.H.; Mano, L.; Pessin, G.; de Carvalho, A.; Krishnamachari, B.; Ueyama, J. An adaptive approach

for UAV-based pesticide spraying in dynamic environments. Comput. Electron. Agric. 2017, 138, 210–223. [CrossRef]

http://doi.org/10.3390/rs12030508
http://doi.org/10.11873/j.issn.1004-0323.2020.6.1436
http://doi.org/10.1109/TCYB.2020.2989241
http://doi.org/10.3390/rs9040312
http://doi.org/10.1016/j.jag.2015.02.012
http://doi.org/10.3390/rs70302971
http://doi.org/10.1016/j.isprsjprs.2015.08.002
http://doi.org/10.3390/f7030062
http://doi.org/10.1007/s12518-013-0120-x
http://doi.org/10.1016/j.rse.2011.10.007
http://doi.org/10.3390/rs70404026
http://doi.org/10.1890/120150
http://doi.org/10.3390/rs61110395
http://doi.org/10.1016/j.isprsjprs.2017.05.003
http://doi.org/10.14358/PERS.81.4.281
http://doi.org/10.1080/10095020.2017.1418263
http://doi.org/10.1016/j.fcr.2019.02.022
http://doi.org/10.1109/ACCESS.2020.2987622
http://doi.org/10.1016/j.jsg.2017.04.004
http://doi.org/10.1007/978-3-030-03017-9_20
http://doi.org/10.4028/www.scientific.net/AMM.590.609
http://doi.org/10.1051/e3sconf/201913101065
http://doi.org/10.1109/JSAC.2021.3088681
http://doi.org/10.1016/j.compag.2017.04.011

	Introduction 
	Materials and Methods 
	Publication Outputs 
	Correlation Characteristics 
	Research Front 

	Results 
	Analysis of Publication Outputs 
	Analysis of Correlation Characteristic 
	Cooperation Network Analysis 
	Discipline Interaction Analysis 

	Analysis of Research Front 
	Keyword Analysis 
	Co-Citation Analysis 


	Discussion 
	Current Development of UAV RS Field 
	Future Prospects of UAV RS Field 
	Limitation of the Study 

	Conclusions 
	References

