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Abstract: Apple (Malus domestica Borkh. cv. “Fuji”), an important cash crop, is widely consumed
around the world. Accurately predicting preharvest apple fruit yields is critical for planting policy
making and agricultural management. This study attempted to explore an effective approach for
predicting apple fruit yields based on time-series remote sensing data. In this study, time-series
vegetation indices (VIs) were derived from Planet images and analyzed to further construct an accu-
mulated VI (∑ VIs)-based random forest (RF∑ VI) model and a Carnegie–Ames–Stanford approach
(CASA) model for predicting apple fruit yields. The results showed that (1) ∑ NDVI was the optimal
predictor to construct an RF model for apple fruit yield, and the R2, RMSE, and RPD values of the
RF∑ NDVI model reached 0.71, 16.40 kg/tree, and 1.83, respectively. (2) The maximum light use effi-
ciency was determined to be 0.499 g C/MJ, and the CASASR model (R2 = 0.57, RMSE = 19.61 kg/tree,
and RPD = 1.53) performed better than the CASANDVI model and the CASAAverage model (R2,
RMSE, and RPD = 0.56, 24.47 kg/tree, 1.22 and 0.57, 20.82 kg/tree, 1.44, respectively). (3) This
study compared the yield prediction accuracies obtained by the models using the same dataset,
and the RF∑ NDVI model (RPD = 1.83) showed a better performance in predicting apple fruit yields
than the CASASR model (RPD = 1.53). The results obtained from this study indicated the potential
of the RF∑ NDVI model based on time-series Planet images to accurately predict apple fruit yields.
The models could provide spatial and quantitative information of apple fruit yield, which would
be valuable for agronomists to predict regional apple production to inform and develop national
planting policies, agricultural management, and export strategies.

Keywords: apple fruit; yield prediction; remote sensing; planet; time series; ∑NDVI; random
forest; CASA

1. Introduction

Apple (Malus domestica Borkh.), an important cash crop, is widely consumed around
the world [1]. As the leading apple-producing area, China has taken a supervisory position
in the world apple industry [2]. By 2018, China controlled 46% of the apple production
and 42% of the apple planting area worldwide, with annual production and planting
areas of approximately 39.24 million tons and 2.07 million ha, respectively [3]. Given the
importance of apple fruit production to the economy of China, predicting apple yields
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before harvest is essential to inform and develop national planting policies, agricultural
management, and export strategies.

At present, apple fruit yield predictions mainly rely on fruit or flower counting by ma-
chine vision technology [4–7]. The image data are obtained from ground platforms, such as
smartphones [8] and robots [9], and are difficult to apply at the regional scale. Furthermore,
the occlusion of flowers or fruits by branches and leaves and variations in illumination
conditions have been identified as sources of error in the current techniques [10]. Satellite
and aerial remote sensing (RS) platforms present a rapid and large-scale alternative to the
regional apple fruit yield predict [11].

Yield predictions performed using remotely sensed data are mainly divided into
statistical and mechanistic models [12–15]. Many studies have developed statistical models
by using vegetation indices to make fruit tree yield predictions, such as for avocado, mango,
peach, and citrus trees [16–20]. However, these studies were mainly carried out at single
phenology stages, and the relationships between vegetation indices (VIs) and fruit yield
vary throughout the growing season, so we cannot obtain comprehensive information
on crop growth using these methods [21]. Recently, an increasing number of studies
have predicted the yield of field crops using time-series RS data collected from a moderate-
resolution imaging spectroradiometer (MODIS) and HuanJing (HJ) [13,15,22–24] because of
the high temporal resolution of these data. Furthermore, some studies have demonstrated
that the correlations between the feature values of VI time series and yields vary strongly,
especially the accumulated VI values (∑ VI) [24–26]. Wang et al. [26] proposed that the
accumulated values of VIs from the jointing stage to the initial filling stage performed
better than the VIs recorded at a single period did. Son et al. [15] used the accumulated
values of the normalized difference vegetation index (∑ NDVI) to construct a rice yield
prediction model. However, the spatial resolutions of MODIS (250 m) and HJ (30 m)
data are relatively low [27]. Fruit trees are different from field crops, and fruit yields are
extremely variable among trees; thus, RS data with a higher spatial resolution are required
to reflect the yield differences among apple trees [18]. Previous research predicted the fruit
yield using multispectral image data with about 2 m spatial resolution, such as ASTER
(2 m) and Worldview (1.2–1.84 m) [16,28]. Planet images with both a relatively high spatial
resolution (3 m) and short repeat period (1 day) have great potential for predicting apple
fruit yield [29]. Regarding the usage of modeling methods, various machine-learning
(ML) methods have been applied in developing remote sensing-based yield prediction
models, such as random forest (RF) models, support-vector machines (SVM), and artificial
neural networks (ANNs) [15,18]. Many studies have reported that machine-learning
approaches (MLs) can provide reasonable predictions faster and with higher flexibility
than conventional modeling approaches [30–32]. Therefore, using accumulated VI values
derived from time-series Planet imagery to construct a machine-learning model could
improve the accuracy of apple fruit yield predictions.

A mechanistic model was developed to simulate crop growth on the basis of underly-
ing processes, such as phenological development, light use, carbon dioxide assimilation,
transpiration, and respiration, and to further predict crop yield [33,34]. Bai et al. used the
Subplex algorithm to assimilate RS data into the improved World Food Studies (WOFOST)
model to improve the prediction accuracy for jujube yield at the field scale [12]. How-
ever, because of numerous complicated parameters in conventional mechanistic models,
these models are difficult to use in practice. As a mechanistic model, the Carnegie–Ames–
Stanford approach (CASA) model was originally developed to estimate global net primary
production (NPP) with the advantages of a simple structure, few complicated parame-
ters, easy access, and strong applicability [35]. In recent years, the CASA model was also
used to predict crop yields on regional scales. Du et al. [36] established the CASA model
using time-series VIs to estimate the biomass of winter wheat in different growth stages.
Wang et al. [13] optimized the maximum light use efficiency and calculated FPAR to predict
wheat yield. However, previous research has focused on wheat yield predictions. For
apple fruit yield predictions, the parameters and calculations of the CASA model need to
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be optimized. Therefore, this study aimed to optimize the CASA model parameters and
calculations to predict apple fruit yield.

To address these issues, this study derives and analyses time-series VIs from Planet
images and further develops an accumulated VI-based model and an improved CASA
model to explore an effective approach for predicting apple fruit yields based on time-
series RS data. The objectives of this study were to (1) identify the optimal VI with
which to construct an apple yield prediction model based on accumulated VI values and
phenological information; (2) optimize the parameters of the CASA model for apple fruit
yield predictions to improve the prediction accuracy; (3) compare the yield prediction
performances of the accumulated VI-based model and the improved CASA model.

2. Materials and Methods
2.1. Study Region Experimental Design

As the main apple production area in China, Shandong Province was selected as
the study region. The study was conducted in six apple orchards in Guanli town, Qixia
city, Shandong Province (120.62◦E–120.76◦E, 37.14◦N–37.27◦N) in the 2019 and 2020 apple
growing seasons. As the main planting variety, “Red Fuji” apple trees (Malus domestica
Borkh. cv. “Fuji”) were used as the experimental material. Four apple orchards (O1–O4) in
2019 and orchards O1 and O2 as well as two additional orchards (O5 and O6) in 2020 were
selected for experiments and the sampling validation (Figure 1).
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Figure 1. Study region and experimental orchards. The images of experimental orchard 1–6 were captured by an unmanned
aerial vehicle in late May and displayed in false color.

The first flowering occurrences of the studied apple trees were observed on April 17
and April 12 in 2019 and 2020, respectively. In Guanli town, harvest commences in early
October depending on the fruit maturity and continues until November. Field practices



Remote Sens. 2021, 13, 3073 4 of 18

included postharvest pruning in winter or early spring, three fertilizer applications (nitro-
gen fertilizer in April, phosphate fertilizer in June, potash fertilizer in August), monthly
irrigation, and weeding (Figure 2).
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Figure 2. Time-series NDVI curves and corresponding features of apple growth and development, the main apple
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autumn shoot-growing stage, the autumn shoot-stop-growing stage, and the harvest stage, respectively.
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2.2. Data Acquisition
2.2.1. Field Measurements

Forty-seven and 57 apple trees in the full fruit period were randomly selected in 2019
and 2020, respectively. Among them, nineteen selected apple trees were the same for both
2019 and 2020. The geographical coordinates of the sampled trees were collected using a
Qianxun positioning SR2 satellite-based RTK receiver mobile device with a centimeter-level
positioning accuracy (Qianxun Spatial Intelligence Inc., Hangzhou, China). All fruits were
counted on each sampled tree to calculate the total number of fruits per tree. In the apple
harvest season, 8 healthy and regularly shaped fruits were collected and weighed from
each sampled tree to calculate the mean fruit weight for each sampled tree. The apple
yield (kg/tree) was calculated using the total number of fruits per tree and the mean fruit
weight (kg).

2.2.2. Planet Imagery Data

For this work, two years (2019 and 2020) of multispectral data from the Planet Labs
constellation (www.planet.com, accessed on 15 November 2020) were used. The Plan-
etScope constellation has approximately 170 small satellites intended to image the Earth’s
land surface daily. The sensor-corrected, radiation-corrected, and orthorectified data prod-
uct (PS Analytic Ortho Scene Level 3B) was used in this study. The PS imagery was
captured as continuous strips for 4 bands: blue (455–515 nm), green (500–590 nm), red
(590–670 nm), and NIR (780–860 nm) bands at a ground spatial resolution of 3 m. For the
2019 apple growing season, 17 PS images were acquired, while an additional 21 PS images
were acquired at corresponding times during the 2020 apple growing seasons. The top-
of-atmosphere reflectance was converted to surface reflectance using a quick atmospheric
correction model in ENVI 5.3.

2.2.3. Meteorological Data

The meteorological data used in this study included daily mean temperature and
downwards surface solar radiation data; these data were downloaded from the “Daily
statistics calculated from ERA5 single levels hourly data” dataset obtained from the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) (www.ecmwf.int, accessed on
15 November 2020). In this study, 172 days of data were collected from the first flowering
stage to the harvest stage (Figure 3).
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2.3. Time Series Vegetation Indices

From the time-series Planet imagery data, 6 VIs specific to fruit tree biomass and
yield parameters were selected to predict apple yields (Table 1). The vegetation indices
were derived from the pixel on the center of the tree crown, and when the center of the
tree crown located at the edge of the pixel, the mean value of adjacent pixels was taken
as the vegetation indices of selected apple trees. Simulated daily ratio vegetation index
(SR), differential vegetation index (DVI), normalized difference vegetation index (NDVI),
soil-adjusted vegetation index (SAVI), renormalized difference vegetation index (RDVI),
and enhanced vegetation index (EVI) values were calculated by the linear interpolation
approach to define the shapes and amplitudes of the VI curves.

Table 1. Equations of vegetation indices.

Vegetation Index Equation Reference

SR RNIR
RRED

[37]

DVI RNIR − RRED [37]

NDVI RNIR−RRED
RNIR+RRED

[38]

SAVI (1 + 0.5) RNIR−RRED
(RNIR+RRED+0.5) [39]

RDVI RNIR−RRED

(RNIR+RRED)
0.5 [40]

EVI 2.5× RNIR−RRED
RNIR+6.0×RRED−7.5×RBLUE+1 [41]

2.4. Yield Prediction Models Based on Phenological Information and Accumulated VIs
2.4.1. Phenological Information Extraction

Previous studies have shown that NDVI is sensitive for detecting plant phenological
signals [13,42]. Therefore, this study selected an NDVI time series to extract the phenologi-
cal stages of apple trees. The NDVI curve was consistent with the ground observations
of the apple growth and management measures, assisting in the definition of the pheno-
logical stages. The start day of flowering stages was identified by site observation. Other
phenological stages were identified by time-series NDVI data and validated by ground
observation. The apple growth and development features, the main apple management
measures, and the corresponding NDVI curves are shown in Figure 2. The flowering stage
(FS), the new-shoot-growing stage (NGS), the new-shoot-stop-growing stage (NSS), the
autumn shoot-growing stage (AGS), the autumn shoot-stop-growing stage (ASS), and the
harvest stage (HS) were extracted. In order to accurately describe phenological changes,
satellite observation was more frequent in FS to AGS stages (growing vigorously) than that
in ASS and HS stages. Because the NDVI curve at the HS was affected by human activities,
such as reflective mulching films and the removal of leaves, this study focused on the first
five phenological stages.

2.4.2. Yield Prediction Model Based on Accumulated VIs

To improve the correlation between the RS data and the apple fruit yield [26], the
cumulative VI (∑ VI) values at different phenology stages were calculated; the accumula-
tion area was defined as the enclosed area of the zone by the phenological stage and the
curve of the VI measured the day after flowering (Equation (1)). Then, an apple fruit yield
prediction model based on the random forest algorithm (RF) was constructed by the ∑ VI
values at different phenology stages (Equation (2)). As an ensemble learning approach,
RF has a faster training speed and a stronger generalization ability than other statistical
approaches [43]. It has been reported to perform more accurately for crop yield predictions
than other statistical methods in recent studies [30–32].

∑ VI =
∫ n

m
VIdt (1)
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Yield = f
(
∑ VI

)
(2)

2.5. Yield Predictions Based on the CASA Model
2.5.1. Improvement of the CASA Model

Due to the relationship between apple fruit yield and the accumulation of dry matter
in fruit, this study used the Carnegie–Ames–Stanford approach (CASA) model to calculate
the accumulation of net primary productivity (NPP). Then, we calculated the apple fruit
yield based on the accumulation of NPP (Equation (3). Due to the differences in the light
absorption and utilization abilities of different crops, this study optimized the parameters
and calculations of the CASA model. The detail contents are as follows.

Yield =
∑ NPP× HI

C(1−ω)
× 10−3. (3)

where Yield is the apple fruit yield (kg/tree), ∑ NPP is the cumulative NPP over the entire
apple tree growing season (g C/tree), HI is the harvest index of 0.7, C is the carbon content
of 47.5%, and ω is the water content of apple fruit, which is 84%. The NPP can be calculated
as follows:

The CASA model estimated the NPP using the absorbed photosynthetically active
radiation (APAR) and light use efficiency (ε) (Equation (4)):

NPP = APAR× ε (4)

where APAR is the absorbed photosynthetically active radiation (MJ/tree), and ε is the
light use efficiency (g C/MJ).

2.5.2. Determination of Absorbed Photosynthetically Active Radiation

The APAR is related to two factors: photosynthetically active radiation (PAR) and
the fraction of absorbed photosynthetically active radiation (FPAR). APAR was calculated
as follows:

APAR = PAR× FPAR (5)

where PAR is the photosynthetically active radiation (MJ/tree), and FPAR is the fraction
of absorbed photosynthetically active radiation. PAR was calculated as follows:

PAR (0.4–0.7 µm) is the fraction of the shortwave solar radiation (0.3−3.0 µm) that is
absorbed by chlorophyll for photosynthesis in plants and is, thus, a fraction (0.48 in the
present study) of the incoming solar radiation. APAR was calculated as follows:

PAR =
k× SSR× 104

P
(6)

where SSR is the surface solar radiation (MJ/m2), k is the ratio of photosynthetically active
radiation to the surface solar radiation, and P is the planting density (tree/ha).

The SR or NDVI values obtained by linear functions are often used to estimate FPAR,
and here, FPAR was calculated in three ways (Equations (7)–(9)). FPAR was calculated
as follows:

FPARSR =
(SR− SRmin)× (FPARmax − FPARmin)

(SRmax − SRmin)
+ FPARmin (7)

FPARNDVI =
(NDVI − NDVImin)× (FPARmax − FPARmin)

(NDVImax − NDVImin)
+ FPARmin (8)

FPARAverage = 0.5(FPARSR + FPARNDVI) (9)

where SRmin and SRmax and NDVImin and NDVImax represent the 5th and 95th percentiles
of SR and NDVI, respectively, for the apple trees analyzed in this study. SRmin and SRmax
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were computed for every single date. The FPARmin and FPARmax values were defined as
0.01 and 0.95, respectively.

2.5.3. Determination of Light Use Efficiency

The light use efficiency was calculated using the maximum light use efficiency (εmax)
and environmental stress factors (Equation (10)):

ε = εmax × T1 × T2 (10)

εmax is the typical light use efficiency when the environmental conditions are optimal.
Through repeated analysis and comparisons, εmax was determined to be 0.499 g C/MJ
in this study. Because of sufficient irrigation in the experimental orchards, the effects of
water stress factors were not considered in this study. The temperature stress factors were
calculated by Equations (11) and (12), as follows:

T1 = 0.8 + 0.02× Topt − 0.0005× T2
opt (11)

T2 = 1.1814/
(

1 + e0.2×(Topt−10−T)
)

/
(

1 + e0.3×(−Topt−10−T)
)

(12)

where εmax is the maximum light use efficiency (MJ/tree), T1 and T2 are scalars representing
temperature stress factors that reduce light use efficiency under unfavorable conditions
(◦C), Topt is the mean air temperature during the month of maximum NDVI development
(◦C), and T is the mean daily air temperature (◦C).

2.6. Accuracy Evaluation

The sample trees were divided into two groups by the equidistant sampling method
in 2019 and 2020 [44]; one group contained 78 samples as the calibration set, and the other
group contained 26 samples as the independent validation set. The coefficient of determina-
tion (R2), root mean square error (RMSE), and residual predictive deviation (RPD) were cal-
culated and used to evaluate the accuracies of the models (Equations (13)–(16)) [45]. Higher
R2 values indicate that a model is more stable, and lower RMSE and higher RPD values
indicated great model accuracy. Among them, models were classified in terms of RPD as
follows: 1.0 < RPD < 1.4 = “poor”, 1.4 < RPD < 1.8 = “general”, 1.8 < RPD < 2.0 = “good”,
2.0 < RPD < 2.5 = “very good” [46].

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (13)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (14)

SD =

√
1
n

n

∑
i=1

(yi − y)2 (15)

RPD =
SD

RMSE
(16)

2.7. Yield Mapping

To obtain the spatial and quantitative information of apple fruit yield, this study
predicts the apple fruit yield at a regional scale. Apple orchards are the main land type in
Guanli town, so this study extracted the apple planting area using visual interpretation
methods. In this study, the model with the best prediction accuracy was used to predict
regional apple fruit yield in MATLAB software (MathWorks, Inc., Natick, MA, USA); the
yield maps for the two years of study were produced using ArcGIS software (ESRI Inc.,
West Redlands, CA, USA).



Remote Sens. 2021, 13, 3073 9 of 18

3. Results
3.1. Statistical Results of Fruit Yield

The statistical indices of apple fruit yield, including the maximum (Max), minimum
(Min), average (Avg), standard deviation (SD), and coefficient of variation (CV), are shown
in Table 2. The highest, lowest, and average apple fruit yields of the sampled trees in
2019 were 125.13, 8.62, and 49.80 kg/tree, respectively, and the corresponding values of
the sampled trees in 2020 were 115.60, 7.29, and 53.01 kg/tree, respectively. The CVs
of the apple fruit yields of sampled trees in 2019 and 2020 were all over 50% (57% and
54%, respectively). These results indicated that apple fruit yields are extremely variable
among trees.

Table 2. Statistical indices of apple fruit yield.

Dataset Samples Max
(kg/tree)

Min
(kg/tree)

Avg
(kg/tree)

SD
(kg/tree)

CV
(%)

Total 104 125.13 7.29 51.56 28.56 55
2019 47 125.13 8.62 49.80 28.36 57
2020 57 115.60 7.29 53.01 28.64 54

Max, Min, Avg, SD, and CV indicate the maximum, minimum, average, standard deviation, and coefficient of
variation of the apple fruit yield, respectively.

3.2. Yield Prediction Based on ∑ VIs
3.2.1. Correlation Analysis between Apple Fruit Yield and ∑ VIs

The trends of six VIs and ∑ VIs for apple trees during the whole growing period are
shown in Figure 4. The VIs generally increased in the FS, NGS, and AGS and remained
stable or slightly decreased in the NSS and ASS; this trend was consistent with the apple
growth and development regulations. These results showed that VIs are sensitive to apple
growth. Because the ∑ VIs mainly depended on the VIs and the lengths of the phenological
stages, the ∑ VIs values were higher in NSS than the corresponding values in other stages.
The correlation coefficients (r) between the apple fruit yield and ∑ VIs were calculated
and are shown in Table 3. ∑ SR and ∑ NDVI produced better correlations for the total
growth stage, with r values of 0.74 and 0.73, respectively. When each phenological stage
was analyzed separately, the highest r value obtained was different. In FS, ∑ NDVI and
∑ SR were identified as the VIs with the highest correlations (r = 0.60). NDVI showed the
highest correlation in AGS and ASS (r = 0.47 and 0.78, respectively), and SR produced the
highest correlation in NGS and NSS (r = 0.67 and 0.66, respectively). Overall, ∑ NDVI and
∑ SR were sensitive to the apple fruit yields.

Table 3. Correlation analysis between yield and ∑ Vis at different phenological stages.

Phenological Stage
Accumulated Vis

NDVI SAVI EVI DVI SR RDVI

Total Stage 0.73 ** 0.69 ** 0.68 ** 0.64 ** 0.74 ** 0.69 **
FS 0.60 ** 0.55 ** 0.54 ** 0.50 ** 0.60 ** 0.56 **

NGS 0.66 ** 0.63 ** 0.60 ** 0.59 ** 0.67 ** 0.63 **
NSS 0.61 ** 0.56 ** 0.56 ** 0.51 ** 0.66 ** 0.57 **
AGS 0.47 ** 0.31 ** 0.33 ** 0.19 0.39 ** 0.33 **
ASS 0.78 ** 0.74 ** 0.72 ** 0.66 ** 0.74 ** 0.75 **

The values are the correlation coefficients ® between the yield and ∑ VIs., ** represents significant at 0.01 level.
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3.2.2. Calibration Results of the Yield Prediction Model Based on Different ∑ VIs

The ∑ VIs at FS, NGS, NSS, AGS, and ASS were combined to predict the apple fruit
yield based on the random forest algorithm (Figure 5). For the calibration results, the R2

values of the six models were all above 0.8. Among them, the RF∑ RDVI model achieved the
best calibration results (R2 = 0.84, RMSE = 11.62 kg/tree, and RPD = 2.42). The R2, RMSE
and RPD of the RF∑ NDVI model reached 0.82, 12.12 kg/tree, and 2.32, respectively. This
result showed that the random forest algorithm has a good fitting ability. The differences
in calibration accuracies among different models were small.

3.2.3. Validation Results of the Yield Prediction Model Based on Different ∑ NDVI Values

The validation set was used to validate the models (Figure 5). The RF∑ NDVI, RFSAVI,
and RF∑ RDVI models reached the highest coefficients of determination (R2 = 0.71). More-
over, the RMSE and RPD values of the RF∑ NDVI, RF∑ SAVI, and RF∑ RDVI models reached
16.40, 16.47, 16.59 kg/tree and 1.83, 1.82, 1.80, respectively; these values were better than
the corresponding values of the RF∑ EVI, RF∑ DVI, and RF∑ SR models (RMSE = 18.34, 17.95,
17.39 kg/tree and RPD = 1.63, 1.67, 1.72, respectively). The RPDs of the RF∑ NDVI, RF∑ SAVI,
and RF∑ RDVI models were all above 1.8, indicating that the models had good performances
and could be used to predict apple fruit yield. Among them, the RF∑ NDVI model reached
the highest validation accuracy (R2 = 0.71, RMSE = 16.40 kg/tree and RPD = 1.83). This
study selected the RF∑ NDVI model for a comparison with the CASA model.
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3.3. Yield Prediction Based on CASA Model
3.3.1. Net Primary Production Estimation

Fruit tree growth and meteorological conditions directly affect the formation of NPP.
Figure 6 shows the mean daily NPP of apple trees in the study area as a function of time
over the entire growing season. The results showed that the daily NPP generally increased
first, then decreased, and remained stable after 90 days. The NPP estimated based on
FPARNDVI was higher than the corresponding values based on FPARSR. These results may
cause the FPARNDVI-based model to overpredict apple fruit yield.
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3.3.2. Calibration Results of the CASA Model

The CASASR, CASANDVI, and CASAAverage models were developed by FPARSR,
FPARNDVI, and FPARAverage, respectively, to predict apple fruit yields (Figure 7). Ac-
cording to the calibration results, the best performance was produced by the CASASR
model (R2 = 0.57, RMSE = 18.95 kg/tree, and RPD = 1.51), followed by the CASAAverage

model (R2 = 0.57, RMSE = 19.95, and RPD = 1.43), and finally, the CASANDVI model
(R2 = 0.55, RMSE = 23.29, and RPD = 1.23). The values predicted by the CASANDVI model
were overvalued compared to the actual values.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 6. Mean apple tree NPP for the entire growing season. 

3.3.2. Calibration Results of the CASA Model 
The CASASR, CASANDVI, and CASAAverage models were developed by FPARSR, 

FPARNDVI, and FPARAverage, respectively, to predict apple fruit yields (Figure 7). According 
to the calibration results, the best performance was produced by the CASASR model (R2 = 
0.57, RMSE = 18.95 kg/tree, and RPD = 1.51), followed by the CASAAverage model (R2 = 0.57, 
RMSE = 19.95, and RPD = 1.43), and finally, the CASANDVI model (R2 = 0.55, RMSE = 23.29, 
and RPD = 1.23). The values predicted by the CASANDVI model were overvalued compared 
to the actual values. 

 
Figure 7. Calibration and validation results of apple yield obtained by the CASA model: (a) CASASR model, (b) CASANDVI 
model, and (c) CASAAverage model. 

3.3.3. Validation Results of the CASA Model 
The validation set was used to validate the models (Figure 7). The CASASR model (R2 

= 0.57, RMSE = 19.61 kg/tree, and RPD = 1.53) predicted apple fruit yield better than the 
CASANDVI model (R2 = 0.56, RMSE = 24.47 kg/tree, and RPD = 1.22) and the CASAAverage 
model (R2 = 0.57, RMSE = 20.82 kg/tree, and RPD = 1.44); these results were consistent with 
the calibration results. Because the CASANDVI and CASAAverage models did not improve the 
accuracy of apple fruit yield predictions, this study selected the CASASR model for a com-
parison with the machine-learning model. 

  

Figure 7. Calibration and validation results of apple yield obtained by the CASA model: (a) CASASR model, (b) CASANDVI

model, and (c) CASAAverage model.

3.3.3. Validation Results of the CASA Model

The validation set was used to validate the models (Figure 7). The CASASR model
(R2 = 0.57, RMSE = 19.61 kg/tree, and RPD = 1.53) predicted apple fruit yield better than the
CASANDVI model (R2 = 0.56, RMSE = 24.47 kg/tree, and RPD = 1.22) and the CASAAverage

model (R2 = 0.57, RMSE = 20.82 kg/tree, and RPD = 1.44); these results were consistent with
the calibration results. Because the CASANDVI and CASAAverage models did not improve
the accuracy of apple fruit yield predictions, this study selected the CASASR model for a
comparison with the machine-learning model.

3.4. Comparison of the RF∑ NDVI Model and CASASR Model

To ensure the consistency of the models, the validation set was used to analyze the
performances of the RF∑ NDVI model and the CASASR model (Figure 8). The R2 and
RMSE values of the RF∑ NDVI model reached 0.71 and 16.40 kg/tree, respectively; these
values were better than the corresponding values of the CASASR model (R2 = 0.56 and
RMSE = 19.90 kg/tree). The RPDs of the RF∑ NDVI model were above 1.8, indicating that
the model displayed good performance in predicting apple fruit yield. The RPD of the
CASASR model only reached 1.50, indicating that the model had a general performance
in predicting apple fruit yield. These results indicated that the accuracy of the RF∑ NDVI
model was higher than that of the CASASR model when predicting apple fruit yield.

3.5. Yield Map

Apple orchards are the main land type in Guanli town, so this study extracted the
apple planting area using visual interpretation methods. Using the RF∑ NDVI model, the
apple fruit yield was predicted at the regional scale. The yield maps of Guanli town in 2019
and 2020 are shown in Figure 9.
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4. Discussion
4.1. The Machine-Learning Model for Apple Yield Prediction

At present, the ability to rapidly predict crop yields over large scales based on RS data
is an area of active research. There are wide applications for field crop yield predictions,
such as those of wheat, barley, potato, maize, and soybean [15,25,47–49]. However, there
are few reports describing fruit tree yield predictions based on time-series RS data. The
results obtained from this study indicate the potential of using time-series multispectral
images to accurately predict apple fruit yields across multiple apple growing seasons
and orchards.

As an effective method for monitoring crop growth, vegetation indices show strong
correlations with fruit yield and greatly influence apple fruit predictions [16–18]. ∑ NDVI
and ∑ SR consistently produced the strongest relationships with apple fruit yield in this
study. Vegetation indices have been identified as being highly sensitive to the canopy
chlorophyll content; chlorophyll is a plant constituent that is essential for fruit growth
and development in apple trees [11,43]. Apple canopies with low vegetation index values
may have low photosynthesis rates and, further, low organic matter accumulations [50,51].
Therefore, it follows that the ∑ VIs measured in the apple growing season can be used to
assess crop yields. The NDVI has been widely used for phenological characterizations
because it is simple to calculate and sensitive to phenological changes [52,53]. In this study,
the phenological stages of apple trees were extracted by NDVI because of the sensitivity
of this VI to the growth stage. Some studies have demonstrated that the correlations
between VIs and yield differ among different phenological stages [14,54]. In this study, the
∑ VIs of the autumn shoot-stop-growing stage had the highest correlations with the apple
fruit yield. Previously published results have indicated that later growing stages could
provide higher prediction accuracies when RS data are used to predict fruit yields [16,18,27];
this is consistent with the results obtained from this study. These results may be caused
by fruit growth competing for nutrition with new shoots [1]. The autumn shoot-stop-
growing stage represents the peak of fruit growth in an apple tree, and dry matter mainly
accumulates in fruit; this dry matter can reflect the yield potential well [55]. Therefore,
using a combination of ∑ VIs measured at different phenological stages is very important
for accurately predicting apple fruit yields. These results showed that the RF∑ NDVI model
reached the highest yield prediction results and could be used to predict apple fruit yields.

4.2. The CASA Model for Apple Yield Prediction

Using RS time series and meteorological data, apple fruit yields were also predicted
by the CASASR model. A previous study demonstrated that the parameters of the CASA
model were often affected by several factors, such as the vegetation type, geographical
location, and environmental conditions [13,35,36,56,57]. Therefore, this study optimized
the parameters of the CASA model to improve its apple fruit yield prediction accuracy. The
original CASA model only established a linear relationship between FPAR and SR [13,35].
The SR values become saturated, and noise contributes proportionally to the errors in the
FPAR calculation and ultimately to the apple fruit yield predictions [13,58]. Although this
study tried to combine NDVI and SR to improve the yield prediction accuracy [58,59], the
results of the yield predictions suggested that FPARNDVI was not helpful for improving
the prediction accuracy when compared to FPARSR. Light use efficiency was the primary
controlling factor in the CASA model for predicting crop yields [56,60,61]. In this study,
the light use efficiency was calculated using the maximum light use efficiency and envi-
ronmental stress factors. The maximum light use efficiency of the original CASA model
was assigned a value of 0.389 g C/MJ [35]. However, many studies have demonstrated
that the maximum light use efficiency displays large differences among vegetation types
and environmental conditions [56,57,60]. Zhu et al. [58] proposed that the maximum light
use efficiency values ranged from 0.159 to 2.553 g C/MJ for woody vegetation in China.
Clearly, the maximum light use efficiency must be adequately estimated when using the
CASA model to predict yields [56]. Through repeated analyses and comparisons, the
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maximum light use efficiency of apple trees was determined to be 0.499 g C/MJ in this
study. The environmental stress factors in the original CASA model are mainly divided
into temperature and water stress factors [13,36]. Among them, water stress factors repre-
sent a physiological reduction in light use efficiency under drought conditions; drought
conditions were calculated in this study using the precipitation time series [36]. Because
of sufficient irrigation in apple orchards, the effects of the water stress factors were not
considered in this study.

4.3. Application Prospect of Apple Fruit Yield Predictions

The results obtained from the accuracy comparison of apple fruit yield predictions
indicated that the RF∑ NDVI model performed better than the CASASR model. These
results may have been caused by the relationships between vegetation indices and the
apple fruit yield tending to be nonlinear [16,17]. As a machine-learning-based model,
the RF∑ NDVI model has a stronger ability to fit nonlinear data than the CASASR model.
Therefore, the RF∑ NDVI model can be applied to predict apple fruit yields on a regional
level. However, in large-scale apple fruit yield predictions, the meteorological impacts
may be more noticeable [62,63], and the relationships between the yield and VIs may be
different. The CASASR model may perform better in large-scale apple fruit yield predictions,
especially in extreme growing seasons. In addition, extreme weather, such as frost injury,
and poor management also affect apple fruit yields. Modifying the model to consider these
effects still requires further research. This study only compared the prediction accuracies
between the RF∑ NDVI model and the CASASR model in the Guanli town of Shandong,
China. Further research will determine the performances of the RF∑ NDVI model and the
CASASR model in large-scale apple fruit yield predictions.

To predict the yield for other species, the model should be modified according to
the agronomic characteristics of the species. The RF∑ NDVI model needs to be modified
according to the difference in phenological stages between species. The parameters of
CASASR model could be adjusted to accommodate different species, including maximum
light use efficiency, harvest index, and water content of apple fruit. The performances of
the two models applied with other species still needs further study.

5. Conclusions

This study developed two kinds of models using time-series VIs, the RF∑ NDVI model
and the CASASR model, to predict apple fruit yields, to explore effective approaches,
and to predict regional apple fruit yield. The results showed that (1) ∑ NDVI was the
optimal predictor to construct RF model for apple fruit yield, and the R2, RMSE, and RPD
values of the RF∑ NDVI model reached 0.71, 16.40 kg/tree, and 1.83, respectively. (2) The
maximum light use efficiency was determined to be 0.499 g C/MJ, and the CASASR model
(R2 = 0.57, RMSE = 19.61 kg/tree, and RPD = 1.53) performed better than the CASANDVI
model and the CASAAverage model (R2, RMSE, and RPD = 0.56, 24.47 kg/tree, 1.22 and 0.57,
20.82 kg/tree, 1.44, respectively). (3) This study compared the yield prediction accuracies
obtained by the models using the same dataset, and the RF∑ NDVI model (RPD = 1.83)
showed a better performance in predicting apple fruit yields than the CASASR model
(RPD = 1.53). The results obtained from this study indicated the potential of the RF∑ NDVI
model based on time-series Planet images to accurately predict apple fruit yields. The
models could provide spatial and quantitative information of apple fruit yield, which
would be valuable for agronomists to predict regional apple production to inform and
develop national planting policies, agricultural management, and export strategies.
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