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Abstract: Forests play an essential role in maintaining the Earth’s overall energy balance. The
variability in forest canopy structure, topography, and underneath vegetation background conditions
create uncertainty in modeling solar radiation at the Earth’s surface, particularly for boreal regions in
high latitude. The purpose of this study is to analyze seasonal variation in visible, near-infrared, and
shortwave infrared reflectance with respect to land cover classes, canopy structures, and topography
in a boreal region of Alaska. We accomplished this investigation by fusing Landsat 8 images and
LiDAR-derived canopy structural data and multivariate statistical analysis. Our study shows that
canopy structure and topography interplay and influence reflectance spectra in a complex way,
particularly during the snow season. We observed that deciduous trees, also tall with greater rugosity,
are more dominant on the southern slope than on the northern slope. Taller trees are typically seen
in higher elevations regardless of vegetation types. Surface reflectance in all studied wavelengths
shows similar relationships with canopy cover, height, and rugosity, mainly due to close connections
between these parameters. Visible and near-infrared reflectance decreases with canopy cover, tree
height, and rugosity, especially for the evergreen forest. Deciduous forest shows more considerable
variability of surface reflectance in all studied wavelengths, particularly in March, mainly due to the
mixing effect of snow and vegetation. The multivariate statistical analysis demonstrates a significant
tree shadow effect on surface reflectance for evergreen forests. However, the topographic shadow
effect is prominent for deciduous forests during the winter season. These results provide great insight
into understanding the role of vegetation structure and topography in surface radiation budget in
the boreal region.

Keywords: boreal forest; LiDAR; Landsat 8; surface reflectance; Alaska

1. Introduction

Forests play a critical role in regulating the world’s climate and maintaining the
Earth’s overall energy balance [1]. The forest canopies often show high structural com-
plexity (known as “rugosity”, [2]). In particular, conifer forests exhibit a complex canopy
structure [3] and tree shadowing effects, altering surface reflectance spectra and the surface
radiation budget against different background conditions, resulting in varying air tempera-
tures. Complex vegetation structure induces considerable uncertainty in estimating and
modeling the Earth’s radiation budget [4] because incoming solar radiation interacts with
vegetation canopies through complex canopy radiative transfer processes [5].

Forest canopy reflectance is a function of various factors, including leaf optical proper-
ties, canopy structures, background conditions, solar illumination geometries, the viewing
angles, and the topography, e.g., elevation [3,6–10]. The presence of snow on the ground
or the leaves and branches adds complexity to forest canopy reflectance due to its high
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reflectivity, especially in the visible and near-infrared wavelengths [11,12]. The forest
canopy structures interact in snow accumulation and disappearance mechanisms because
trees and canopy structures intercept and attenuate solar radiation [13–15]. In [13], it was
demonstrated that a heterogeneous vegetation structure induces wide spatial variation in
snow accumulation and persistence. The highly reflective snow makes a heterogeneous
surface mixed with absorbent forest canopies, particularly in visible wavelengths. Under
these circumstances, the overall reflectivity of the surface reduces considerably compared
with forest-free snow-covered surfaces [16]. Such behavior also contributes to the more
significant spatial heterogeneity in the snow melting processes, as forest canopy density
can control melt rates [10]. Topography presents a further challenge in rugged terrains to
understand the role of complex vegetation structures in surface reflectance and surface
albedo at different spectrums [17,18].

The knowledge of vertical and horizontal forest structures is essential in understand-
ing incoming solar radiation’s surface radiative processes interacting with vegetation and
the forest floor [19]. The large variability in forest structures can modulate the generation
of shades and exert variation in snow accumulation and snowmelt conditions [13]. The
accurate assessment of the relationship between vertical or horizontal forest structure
and surface reflectance is essential for the quantitative measurement and modeling of
the solar radiation budget. Radiative transfer (RT) models were developed to simulate
the physics of radiative transfer processes. Nevertheless, many RT models assume the
homogeneous canopy and leaf area index (LAI) to be the only structure inputs, not consid-
ering other vegetation structures. Other models, such as geometric optical and radiative
transfer theory (GORT), integrate structural information. However, the GORT models
often require detailed vegetation structure inputs. These vegetation structure inputs are
readily available across large spatial scales [20,21], and it is hard to simulate spatial vari-
ability. Therefore, detailed specifics of canopy structural information are necessary for
accurate modeling and quantification [22]. Combining optical data from the moderate
resolution and more extensive geographic coverage Landsat satellites with high-resolution
3D vegetation-structure parameters from LiDAR (light detection and ranging) would not
only address spatio-temporal heterogeneities of surface radiative processes associated with
gaps and edges within a forest stand but also allows us to identify direct relationships
between vegetation structure measurements by LiDAR with the seasonal multispectral
surface reflectance measured by Landsat.

In boreal forests, forest floor conditions can affect canopy reflectance because it consti-
tutes heterogeneous and clumped forest canopies [23,24]. The seasonal snow that overlaps
a significant portion of the boreal forests in the northern hemisphere creates seasonal varia-
tions in snow accumulation and snowmelt conditions [16,23]. The above-described state
constitutes a significant challenge to accurately investigating the impact of complex vegeta-
tion structure on surface reflectance at different spectrums in these areas. The availability
of satellite-derived optical data forms a cost-effective option for obtaining information
on the Earth’s radiation budget and finding relationships between vegetation structure
observation and surface radiation. Additionally, remote sensing data can provide valuable
information on the interaction between vegetation and incoming solar radiation on a con-
tinuous spatial and temporal scale because remote sensing data provide fewer limitations
and uncertainties than modeled parameters.

Therefore, this study investigates the relationship between canopy structures, topogra-
phy, and surface reflectance in visible, near-infrared, and shortwave infrared wavelengths
during different seasons in a boreal forest near Fairbanks, Alaska, by combining Landsat
8 images and LiDAR-derived canopy metrics. We explored the causes of variations in visi-
ble, near-infrared, and shortwave infrared reflectance during different seasons concerning
LiDAR-derived canopy metrics, such as tree heights, rugosity (i.e., structural complexity),
and canopy cover and topography (slope, elevation, and aspect). The accurate under-
standing of the effect of complex forest structure on visible, near-infrared, and shortwave
infrared reflectance in snow-dominated rugged terrain will guide us on how best to fuse
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the global vegetation structure measured by the Global Ecosystem Dynamics Investigation
(GEDI) mission with climate prediction models. The canopy radiative transfer model
embedded in climate models could effectively simulate the impact of vegetation structure
on land surface reflectance at global scales [21].

2. Materials and Methods
2.1. Study Area

The study area falls within the Level-III ecoregion of Alaska. The site is bordered
by Interior Highlands and Interior Bottomlands ecoregions and is in a mountainous area
near the Harding-Birch lakes region in Fairbanks, Alaska (Figure 1). The study area is
approximately 400 m wide and 8000 m long, and the shape is elongated in the NE-SW
direction. The topography is highly variable and is located in the central Tanana valley.
The elevation ranges between 350 and 600 m above mean sea level, with slopes ranging
between 0 and 30 degrees. The vegetation communities include spruces, firs, conifers,
and deciduous trees along waterways [25]. The site is dominated by evergreen (white
spruce: Picea glauca and black spruce: Picea mariana species) and deciduous (e.g., paper
birch: Betula papyrifera species) forests.
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The study area experiences a continental subarctic climate with mild summers and icy
winters. It has four seasons, including short summer (average high temperature of 22.8 ◦C
with a high in July) and dominant winter season (average low temperature of −27.2 ◦C
with a low in January). The average annual snowfall is 1651 mm, which lasts from October
to May and peaks in January.

2.2. Data

Landsat 8 OLI/TIRS (Operational Land Imager/Thermal Infrared Sensor) surface
reflectance (Band 3—Green: 0.53–0.59 µm, Band 5—Near-Infrared: 0.85–0.88 µm, and
Band 6—Shortwave Infrared: 1.57–1.65 µm) of 30 m spatial resolution was used in this
study. The images were downloaded from U.S. Geological Survey (USGS) Earth Explorer
data portal. Detailed product information can be downloaded from the USGS website [26].
Satellite images from three time periods, 26 March, 29 May, and 8 August 2014, were
selected for this study. The date of scenes was determined based on cloud-free conditions
and to observe seasonal patterns.

We downloaded LiDAR data from NASA’s G-LiHT program [27]. LiDAR data were
acquired on 6 August 2014, overlapping one of the Landsat 8 scenes we chose to study. We
used several LiDAR metrics, such as mean tree return heights (tree_mean), quadratic mean
tree return heights (tree_qmean), the standard deviation of tree return heights (tree_stdev),
the standard deviation of gridded canopy height model (tree_rugosity), the fraction of first
returns intercepted by the tree (tree_fcover), and the fraction of all returns classified as
a tree (tree_fract_all). The data is at 13 m spatial resolution. In addition, we used slope,
aspect, and elevation derived from the gridded digital terrain model.

The National Land Cover Database (NLCD) 2011 [28] at 30 m spatial resolution was
used to identify the dominant land cover classes in the study area. The land cover classes
were determined based on the assumption that the trees in each category were taller than
5 m and consisted of more than 20% of the total canopy cover. In addition to that, more than
75% of the tree species in deciduous forests lose foliage in response to seasonal changes. In
contrast, more than 75% of the tree species in the evergreen forest class maintain foliage all
year. We identified two main land cover classes (i.e., deciduous and evergreen forests) in
the study area.

2.3. Methodology

Landsat 8 surface reflectance from visible, near-infrared, and shortwave infrared wave-
length regions from three time periods were co-registered with LiDAR-derived vegetation
metrics and NLCD 2011 land cover datasets. Landsat surface reflectance and NLCD land
cover classes were resampled at the 13 m spatial resolution to correspond with LiDAR
metrics. Pixel-level (n = 4574) information was extracted in ArcGIS Pro 2.8.1 (ESRI Inc.) for
detailed statistical analysis in RStudio 4.0.4 software.

We compared seasonal variation of Landsat 8 surface reflectance in two NLCD
2011 land cover classes (i.e., deciduous and evergreen forests). We then examined the rela-
tionships of LiDAR metrics (e.g., canopy cover, tree heights, and rugosity) and topography
(e.g., elevation, slopes, and aspects) with surface reflectance in three wavelength regions.

The coefficient of variation (CV) was calculated to evaluate the effects of land cover
classes on surface reflectance in different wavelength regions in the study area.

CV =
σ

|µ| × 100% (1)

where σ and µ are the standard deviation and the mean of the surface reflectance corre-
sponding to different wavelengths and land cover classes. A higher CV indicates more
significant variability and thus shows stronger effects.

Ordinary least square (OLS) regression analysis using multiple independent variables
was carried out to quantify the relationship of canopy metrics and topography variables
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with surface reflectance in winter (March) and summer (August) scenes for visible and
near-infrared bands.

y = β0 + β1Xi + β2Xj + . . . + βnXn + ε (2)

where Y is the predicted variable, Xi-n is the explanatory variable, β0 is the intercept, β1-n is
the slope of the relationship between Xi-n (multiple independent variables) and Y, and ε is
the error.

The OLS regression is well known for its simplicity and has good predictive power [29].
The analysis was conducted in R environments using the olsrr package [30]. The best model
was chosen using the ols_step_best_subset function of the olsrr package and based on the
larger adjusted R-squared and the smaller Akaike information criterion (AIC) [31].

The relationship between response (surface reflectance) and predictor (LiDAR-derived
canopy metrics and topography) variables exhibited a complex non-linear pattern, mainly
due to the heterogeneity in environmental conditions. Therefore, a non-linear model was
constructed using the Generalized Additive Models (GAM). The GAM is a widely used
model in ecological studies and can fit complex, non-linear functions between predictor
and response variables [32,33].

Z = β0 +
N

∑
i=1

si(Xi) (3)

where β0 is the intercept, si(Xi) is the smooth function of Xi (the predictor variables), Z is
the predicted (response) variable.

We used mgcv’s gam package in R environments, which offers several different meth-
ods for selecting smoothing parameters and basis functions [34]. The mgcv’s “Restricted
Maximum Likelihood” method was used in this analysis. The technique offers default
smooth and basis functions and provides reliable and stable results. The final GAM model
was selected based on the significance of influential predictors, the lower AIC, and the
higher adjusted R-square. The model was evaluated by analyzing Q-Q plot, histogram of
residuals, and response versus fitted values that followed a pattern clustered around the
1-to-1 line.

3. Results
3.1. Relationship between Canopy Structure, Topography, and Land Cover Types

We observed significantly higher canopy cover in deciduous forests during the leaf-on
season than the evergreen forests (mean canopy cover fraction of 0.54 and 0.21, respectively).
Likewise, trees were taller in deciduous forests than in evergreen forests (mean heights of
7.2 m and 3.2 m, respectively). The height variability (rugosity) was more prominent in
deciduous forests than in evergreen forests (mean rugosity of 4.6 m and 1.9 m, respectively).
Deciduous forests were dominant in the southern aspect; trees tend to be taller with more
height variability and more canopy cover than evergreen forests. On the other hand,
evergreen forests were evenly distributed in both southern (between 90 and 270 degrees)
and northern (>270 degrees and <90 degrees) aspects. However, evergreen forests in the
southern aspect tend to be taller with more height variability.

The relationship between canopy cover and tree heights is non-linear for deciduous
and evergreen forests (Figure 2). The locally weighted scatterplot smoothing (LOWESS)
regression line shows different intercepts for trees in northern and southern aspects in
deciduous forests, suggesting different minimum tree heights (Figure 2a). The LOWESS
regression lines show similar intercepts in evergreen forests; however, with increasing
canopy cover, the increase in tree heights is much more significant in southern aspects
than in northern aspects (Figure 2d). The correlation between canopy cover and rugosity
is non-linear for deciduous and evergreen forests (Figure 2b,e). Likewise, the correlation
between tree heights and rugosity is non-linear (Figure 2c,f). The trend in the LOWESS
regression line is different for deciduous forests in northern and southern aspects. On the
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other hand, the LOWESS regression line follows the same path for trees <5 m and canopy
cover <0.40 in both aspects in evergreen forests.
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We further investigated the relationship between canopy structures and topography
(such as slopes, elevation, and aspect) (Figure 3). Evergreen forests are primarily located
on low slopes (mean slope of 5.7◦), whereas deciduous forests are mainly located on high
slopes (mean slope of 14◦). Tree height, rugosity, and canopy cover increase with the
increase in slopes (Figure 3). However, tree height remains unchanged with an increase in
slopes in northern aspects. On the other hand, taller trees with higher rugosity and more
canopy cover dominate southern aspects.

We observed increasing tree height, rugosity, and canopy cover with an increase in
elevation, but the rate of change is more significant in southern aspects than in northern
aspects (Figure 4). In deciduous forests, trees are clustered in two groups, one in low
elevation and the other in high elevation. Still, these trees show a positive change in heights,
rugosity, and canopy cover with elevation (Figure 4a–c). While for evergreen forests, this
trend only works for trees in the southern aspect (Figure 4d–f). However, canopy structure
metrics do not show any relationship with elevation on the northern slope.
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3.2. Land Cover Types, Canopy Structures, and Surface Reflectance Pattern

Surface reflectance in visible (Band 3, 0.53–0.59 µm), near-infrared (Band 5, 0.85–0.88 µm),
and shortwave infrared (Band 6, 1.57–1.65 µm) spectrums were shown for deciduous and
evergreen land cover classes during March, May, and August 2014 (Figure 5). Surface
reflectance in visible wavelengths was the highest in March, followed by May and August.
Near-infrared reflectance was the highest in March, followed by August and May, whereas
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shortwave infrared reflectance was the highest in May, followed by August and March.
The coefficient of variations (CVs) was the highest in March, whereas CVs were similar
in May and August (Figure 5). However, during March, visible wavelengths (Band 3)
have slightly lower surface reflectance than near-infrared wavelengths (Band 5). During
winter, the variation in surface reflectance could have resulted from large-scale surface
heterogeneity created by snow accumulation, as indicated by higher CVs in visible bands
(54 to 65%) than the near-infrared bands (37 to 41%).
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(B6) bands of Landsat 8 in March, May, and August 2014 for deciduous forest and evergreen forest. The coefficient of
variation (%) is labeled in each bar.

In evergreen forests, the visible and near-infrared reflectance decreases with increasing
canopy cover during different months (Figure 6b,d,f). The magnitude of this decrease is
much greater in March than in other months. These results imply a significant masking
effect of boreal evergreen forest on surface reflectance. However, in March, shortwave
infrared reflectance increases with an increase in canopy cover, which could be due to
higher solar radiation absorption at these wavelengths by snow at lower canopy cover,
while at higher canopy cover, lesser solar radiation absorption could be due to more
significant masking effects. In deciduous forests, the trees are clustered into two groups,
one group with higher canopy cover fractions, the other with lower canopy cover fractions
(Figure 6a,c,e). Deciduous forest shows more considerable variability in surface reflectance
in all three wavelength regions, particularly in March, mainly due to the mixing effect of
snow and vegetation. Large variabilities of surface reflectance in visible and near-infrared
spectrums suggest heterogeneity in masking effect by the branches during leaf-off seasons.
Surface reflectance does not show a particular pattern within each group with changes in
canopy cover fractions (Figure 6a,c,e). For similar canopy cover, the evergreen forest has
lower surface reflectance than deciduous forest, irrespective of wavelengths and seasons.



Remote Sens. 2021, 13, 3108 9 of 22

It is partially because the deciduous forest is a dominant vegetation type in the southern
aspect. It may also be due to the more substantial masking effect caused by tree shadowing
in evergreen forests during the snow season. Considerable variability in surface reflectance
during different months and LC classes with respect to canopy cover suggests multiple
controlling factors such as tree heights and rugosity, which has a non-linear relationship
with canopy cover in our study area.
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Figure 6. Relationships between surface reflectance (visible band in blue, near-infrared band in green, and shortwave
infrared band in orange) and canopy cover in March (upper panel), May (middle panel), and August (lower panel) 2014.
Trees in the northern aspect are represented by an open circle, and in the southern aspect, by a cross symbol. Sub-plot
(a,c,e) are for deciduous forests, while sub-plot (b,d,f) are for evergreen forests.
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Surface reflectance in all studied wavelengths shows similar relationships with canopy
cover, height, and rugosity, mainly due to close connections between these three parameters
(Figure 2). The results show a significant change in visible and near-infrared reflectance for
evergreen forests when tree heights change from 2 to 5 m (Figure 7b). Evergreen forests
show much lower surface reflectance in visible and near-infrared wavelengths than the
deciduous forests when tree heights were more than 5 m, particularly in the March scene.
The above result suggests a more significant masking effect by trees in the evergreen forest
than the deciduous forest on snow surface reflectance (Figure 7a,b). During the leaf-off
season (i.e., winter and early spring), deciduous forests cast more gaps than evergreen
forests, allowing the impact from background snow on surface reflectance in the visible and
near-infrared spectrum. At the same time, taller trees in evergreen forests could produce
more shade and lower the reflectance in the visible and near-infrared wavelengths. In
shortwave infrared bands, a slight increase in surface reflectance with increased tree heights
could be due to a lack of absorption by the snow, especially in March (Figure 7). In contrast,
higher shortwave infrared reflectance in May and August than in March for shorter tree
heights could be due to a lack of soil moisture and leaf water content. With increasing
tree heights, the effect of snow and moisture content diminishes. This condition is more
pronounced during May and August than the March scene.

The relationship between surface reflectance and rugosity is similar to the relation-
ship between surface reflectance and tree height (Figure 8). Generally, taller forests with
maximum canopy heights have higher rugosity [35]. We observed a decreasing trend of
surface reflectance in visible, near-infrared, and shortwave infrared bands with increasing
rugosity during different months of the year for both LC classes (Figure 8). Higher surface
reflectance at low rugosity could be attributed to less scattering of lights at the canopy
level. In addition to that, snow-covered surfaces produce higher surface reflectance than
bare soil surfaces. Therefore, the chances of background effects increase during winter
when trees are less variable in heights. The figure shows two clusters of trees in deciduous
forests, one with low and the other with high rugosity (Figure 8a,c,e). These clusters show
declining trends in surface reflectance of all bands with increasing rugosity, especially in
May and August.

3.3. Surface Reflectance as a Function of Topography

Surface reflectance in all wavelengths decreases with increased slopes and is less
variable at higher slopes, especially in evergreen forests (Figure 9). In evergreen forests, the
mean surface reflectance in all wavelengths was much higher at slopes <10◦. This result is
consistent with a higher share of shorter trees with less height variability in lower slopes
than in higher slopes and negligible tree shadowing effect. On the contrary, more shadows
and absorption of solar radiation were observed in the region with taller trees with more
height variability on high slopes. A similar trend was also observed for trees in deciduous
forests, but trees are typically on higher slopes than evergreen forests. We observed more
variability of surface reflectance, especially in visible and near-infrared wavelengths, in
both land cover classes during March. In May and August, the change in surface reflectance
was small for both LC classes. Such a large change in surface reflectance values during
March could be attributed to the differences in the level of snow accumulation and melting
rates on different slopes [36]. In addition, the variability in surface reflectance in the studied
wavelengths could also increase due to masking effects by trees in evergreen forests and
branches during leaf-off conditions in deciduous forests.
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Figure 7. Relationships between surface reflectance (visible band in blue, near-infrared band in green, and shortwave
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Trees in the northern aspect are represented by an open circle, and in the southern aspect, by a cross symbol. Sub-plot
(a,c,e) are for deciduous forests, while sub-plot (b,d,f) are for evergreen forests.
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Figure 9. Relationships between surface reflectance (visible band in blue, near-infrared band in green, and shortwave
infrared band in orange) and slope in March (upper panel), May (middle panel), and August (lower panel) 2014. Trees in
the northern aspect are represented by an open circle, and in the southern aspect, by a cross symbol. Sub-plot (a,c,e) are for
deciduous forests, while sub-plot (b,d,f) are for evergreen forests.

There is a decreasing trend of surface reflectance in the studied wavelength regions
with an increase in elevation in evergreen forests (Figure 10b,d,f). Likewise, the two
tree clusters in deciduous forests show declining surface reflectance with an increase in
elevation (Figure 10a,c,e). This result is consistent with the findings that tree heights,
rugosity, and canopy cover increase with elevation (Figure 4). However, such relationships
are much more distinct for trees located in the southern aspects. The close relationship
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between elevation and surface reflectance in each studied wavelength is related to what
was observed before, i.e., taller and denser trees distributed in higher elevation produce
more absorption of solar radiation. The less noisy relationship between surface reflectance
and elevation, compared to canopy cover, tree heights, and rugosity (Figures 6–8), indicates
an integrated effect of tree height, rugosity, and canopy cover on surface reflectance.
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Figure 10. Relationships between surface reflectance (visible band in blue, near-infrared band in green, and shortwave
infrared band in orange) and elevation in March (upper panel), May (middle panel), and August (lower panel) 2014. Trees
in the northern aspect are represented by an open circle, and in the southern aspect, by a cross symbol. Sub-plot (a,c,e) are
for deciduous forests, while sub-plot (b,d,f) are for evergreen forests.



Remote Sens. 2021, 13, 3108 15 of 22

As expected, the relationship between surface reflectance (in three wavelength regions)
and aspect shows an interesting pattern (Figure 11). For deciduous forests, higher surface
reflectance in the southern aspect than the northern slope indicates a stronger shadow
effect due to topography on the northern slope; even the trees are shorter and less covered
in the northern slope. For evergreen forests, surface reflectance is primarily independent of
aspects (Figure 10b,d,f), suggesting that the shadow effects from tree crowns on surface
reflectance are more significant, especially during March.
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2014. Sub-plot (a,c,e) are for deciduous forests, while sub-plot (b,d,f) are for evergreen forests.
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3.4. Contribution of Topography and Canopy Structure on Surface Reflectance Pattern

We show topography impacts on vegetation growth and its structure. Surface re-
flectance in three studied wavelengths is sensitive to change in slope, elevation, canopy
cover, tree height, and rugosity. The variability of surface reflectance is much higher in
the deciduous forest when trees are on low slopes with low elevation, which produces
shorter, insignificant height differences and less canopy cover. On the other hand, surface
reflectance in evergreen forests is not highly sensitive to change in topography and canopy
structures. The higher sensitivity at shorter heights and rugosity could be attributed to re-
flectance from the snow-covered ground surfaces in March. In May and August, reflectance
from the ground surface (including understory vegetation) can contribute to the overall
sensitivity. As the height, rugosity, slope, and elevation increase, the decrease in sensitivity
could be attributed to more solar radiation absorption at the canopy level [37].

The multivariate OLS regression revealed that slope and canopy cover alone could
explain 50% and 56%, respectively, of the variance in visible and near-infrared reflectance
for the March scene of evergreen forests. The OLS model derived adjusted R-squared
values were 0.50 and 0.56, respectively. However, we observed a significant improvement
in the model prediction and explained variance when we considered a non-linear function
through the GAM approach (Table 1). The GAM model explained between 74% and
76% of the visible and near-infrared reflectance variance, respectively, by canopy cover,
rugosity, slope, elevation, and aspects. It is important to note that GAM model showed
that elevation and canopy cover alone could explain approximately 40% of the variance
in the data (Table 1). For deciduous forests, topographic variables (slope, elevation, and
aspect) alone explained 42% and 52% of the visible and near-infrared reflectance variance,
respectively, in the March scene based on multivariate OLS regression. The OLS model
derived adjusted R-squared values of 0.42 and 0.52, respectively. On the other hand,
the GAM based on non-linear relationships between predictor and response variables
explained between 60% and 68% of the variance in surface reflectance of visible and near-
infrared bands, respectively, for the same scene. Such a relationship confirms that the
topography plays a dominant role in the variation in surface reflectance from visible and
near-infrared bands in deciduous forests. In contrast, tree shadow dominantly controls
surface reflectance in evergreen forests. Predicted surface reflectance in visible and near-
infrared bands for the March scene based on GAM approach shows a good model fit
with most data points clustered around 1-to-1 line of observed versus predicted values
(Figure 12).

For the August scene (summer season), the OLS regression model explained the
contribution of canopy cover and slope in near-infrared reflectance but with a lesser degree,
adjusted R-squared value of 0.35 for evergreen forests, while the effect of topography
(i.e., slope, aspect, and elevation) remained dominant for deciduous forests with the OLS
regression model, which explained 43% of the variance of near-infrared reflectance. When
the non-linearity term through the GAM approach was introduced into the model, the
adjusted R-squared values improved compared to the OLS regression model (Table 1). The
comparison of the models showed that GAM models effectively explained the data for
both March and August scenes better than OLS models. However, the GAM model was
slightly more effective in explaining visible and near-infrared reflectance during winter for
deciduous and evergreen forests. Such a difference could be attributed to the differences in
surface conditions (such as snow on the ground, leaves, and branches) and the change in
solar zenith angle.
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Table 1. Generalized Additive Models (GAM) of the relationships of visible and near-infrared surface reflectance with
canopy structure (the variables include canopy cover, tree height, and rugosity) and topography (the variables include
elevation, slope, and aspect) in March and August 2014.

Land Cover Type Band
(Wavelength)

Winter Scene (March 2014) Summer Scene (August 2014)

Variables R-sq. (adj) Variables R-sq. (adj)

Evergreen forest

Visible
(0.53–0.59 µm)

Canopy cover 0.479 nd nd

Elevation 0.422 nd nd

Canopy cover
+ Elevation 0.619 nd nd

Canopy cover
+ Rugosity + Slope

+ Aspect + Elevation
0.738 nd nd

Near-infrared
(0.85–0.88 µm)

Rugosity 0.442 Rugosity 0.43

Elevation 0.426 Elevation 0.373

Rugosity + Elevation 0.608 Rugosity + Elevation 0.537

Canopy cover
+ Rugosity + Slope

+ Aspect + Elevation
0.758

Canopy cover
+ Rugosity + Slope

+ Aspect + Elevation
0.66

Deciduous forest

Visible
(0.53–0.59 µm)

Rugosity 0.129 nd nd

Elevation 0.481 nd nd

Elevation + Tree height 0.505 nd nd

Elevation + Slope
+ Tree height 0.602 nd nd

Near-infrared
(0.85–0.88 µm)

Rugosity 0.225 Rugosity 0.125

Elevation 0.586 Elevation 0.469

Elevation + Tree height 0.598 Elevation + Slope 0.579

Elevation + Slope
+ Tree height 0.678 Elevation + Slope

+ Tree height 0.584

Note: The models were chosen based on the highest adjusted R-squared and the lowest Akaike information criterion (AIC) [31] for canopy
structure and topography variables and combined. Independent variables were selected for a model run when concurvity was less than 0.8.
Canopy cover was not used for the deciduous forest in the March scene because of leaf-off conditions. nd = not done.
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Figure 12. Observed versus predicted surface reflectance based on the best GAM model (highest R-squared values) for
visible and near-infrared bands in March scene for deciduous and evergreen forests. The data points clustered around
the 1:1 line suggest a good model prediction (fit). Sub-plot (a,b) are for deciduous forests, while sub-plot (c,d) are for
evergreen forests.

4. Discussion

In all studied wavelengths, the mean surface reflectance (except for the Green band in
March) and coefficient of variation (except for the Green band in August) are slightly higher
in the deciduous forest than in the evergreen forest. During the snow season, deciduous
forests lose foliage in response to seasonal changes. Such conditions allow satellites to
see more background and produce higher surface reflectance than the evergreen forests,
which maintain foliage all year. The more significant variation in surface reflectance in the
visible and near-infrared region of the electromagnetic (EM) spectrum indicates greater
differences in surface heterogeneity in March than in May and August for both forest
types. Such heterogeneity is typically associated with differences in snow accumulation
and melting rates in boreal regions due to the large variability in tree structures, which
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were also observed in our study area [13]. In [12], higher variability in surface reflectance
in the presence of snow layers during winter was observed. In addition, evergreen forests
(conifers) have much more absorptive capacity than deciduous forests [7]. The role of
background reflectance from snow-covered surfaces is confirmed by observing the highest
mean and broader range of surface reflectance in March for both visible and near-infrared
bands compared to those in May and August for both LC classes, while the reflectance
from shortwave infrared bands in March was lower than in May and August due to high
absorption by snow and snowmelt on the ground. Such a variation in surface reflectance
during different months and throughout the ranges of the EM spectrum is consistent with
creating a highly heterogeneous surface due to differential accumulation and melting rates
of highly reflective snow in the study area. The presence of snow and canopy covers
that are highly absorptive surfaces for incoming solar radiation likely produces a broader
range of surface reflectance in March [16]. The results further indicate that the variation
in surface reflectance in our study during different seasons is controlled in part by the
land cover classes [38] together with snow-vegetation interactions and the creation of
heterogeneous surfaces.

The non-linear relationships of canopy cover with tree height and rugosity have a
significant implication when assessing the impact of vegetation structure on surface re-
flectance and albedo. Our analysis indicates that canopy cover alone is insufficient to
explain the variability in surface reflectance due to the saturation issue. Thus, tree height
and rugosity (height variability) are important vegetation structure parameters. In [39],
it was observed that canopy rugosity is positively correlated to the fraction of photosyn-
thetically active radiation and primary production under high light conditions. These
relationships indicate that surface topographic characteristics control vegetation structure
characteristics at the landscape scale in addition to local climatic conditions. Elevation and
aspect (slope orientation) are two critical factors determining vegetation types, height, and
rugosity, which affect surface reflectance at stand scale. Our non-linear modeling effort
confirms the finding that in addition to canopy cover, tree height and rugosity also affect
surface reflectance and albedo [1,40,41]. Generally, higher canopy structural complexity
is associated with more light absorption and thus greater photosynthesis and vegetation
growth [35,37]. The close association between canopy cover, tree height and rugosity,
and correlation with surface reflectance in the studied wavelengths imply an inherent
relationship between structure and surface reflectance. This has been modeled using the
geometric optical and radiative transfer (GORT) theory [8,21].

In [42], it has been indicated that variable topography could have resulted in uneven
tree growth due to a lack of soil moisture and nutrient availability. This might be attributed
to the observed canopy structural complexity (i.e., the variations in tree heights and ru-
gosity) in relation to slopes and elevation in both forest types. In deciduous forests, the
observed higher surface reflectance in visible and near-infrared wavelengths with higher
variability in the southern aspects than in the northern aspects could be due to the shadow-
ing effect by topography. On the other hand, shorter and less variable trees in evergreen
forests suggest vegetation growth is independent of aspects. Our results, namely, that there
is higher reflectance on the southern slope (backward scattering) than on the northern
slope (forward scattering) agree well with the results derived from bidirectional reflectance
distribution function (BRDF) spectral reflectance models [43]. In [43], the progress of BRDF
modeling over rugged terrains was reviewed. They found that the canopy reflectance
increased in the backward direction while decreasing in the forward direction with the
increase in slope. In [44], the effects of slope and aspects on the variability of daily solar
radiation have been indicated. The slope could result in spatial heterogeneity in vegeta-
tion structure and composition [45]. Our final GAM model confirmed the contribution of
canopy structures (such as tree height, rugosity, and canopy cover) and added complexity
due to topography (slope, elevation, and aspect) in controlling visible and near-infrared
reflectance in the study area.
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This research has some limitations. The study area is small and thereby lacks ap-
plicability to a larger area of different land cover classes, a range of canopy metrics, and
different topography. The forests in the studied region are highly diverse. Therefore, ap-
plying the knowledge gained from this study to a larger area is an important step forward
in climate research. The non-linear relationships between surface reflectance (visible and
near-infrared bands) and independent variables used in the GAM’s approach needed a
detailed assessment. Such relationships could be effectively addressed using machine
learning techniques to interpret the effect of snow cover and tree/topographic shadows.
We will implement the knowledge gained from this study to a much larger area and enable
the fusion of high-resolution LiDAR measurements with Landsat surface reflectance and
albedo estimates. We will also conduct a time-series analysis by adding more scenes that
will allow us to understand temporal patterns and seasonality.

5. Conclusions

Our study suggests that canopy structure and topography interplay and influence
surface reflectance in a complex way, particularly during the snow season. First, we found
that topographic aspects and elevation influence vegetation type and structure distribution.
The southern slope of our study region is dominated by deciduous forests with taller
trees and denser canopy cover than evergreen forests. At the same time, evergreen forests
are evenly distributed on both southern and northern slopes, with taller trees and more
considerable height variability on the southern slope than on the northern slope. Taller and
denser trees are located at higher elevations on the southern slope. On the northern slope,
vegetation structures do not show any relationship with elevation.

Surface reflectance in visible, near-infrared, and shortwave infrared wavelengths
shows similar relationships with canopy cover, height, and rugosity, mainly due to the close
connection between these parameters. The decrease in visible and near-infrared reflectance
with increasing canopy cover, tree height, and rugosity, especially for the evergreen forest,
is consistent with the canopy radiative transfer modeling results. Deciduous forest shows
considerable variability in visible and near-infrared reflectance, particularly in March,
mainly due to the mixing effect of snow and vegetation.

The relationship between vegetation structure and surface reflectance is significantly
impacted by topography. The topographic aspect controls vegetation growth and vege-
tation types, such as deciduous forests, which are dominant in the southern aspect, thus
further constituting taller trees with greater rugosity than the northern aspect. Elevation
also controls vegetation metrics; for example, higher elevation is associated with taller trees
from both vegetation types, particularly in the southern aspect. Thus, vegetation structure
and surface topography form a complex relationship and affect surface reflectance on a
hierarchical scale. At a larger scale, surface topography (elevation, slope, and aspect) forms
specific vegetation structure characteristics. While, at a finer scale, vegetation heterogeneity
(canopy cover, height, and rugosity) combined with larger scale shadowing effect due to
topography effect on surface reflectance pattern. Our study suggests that the shadow effect
from topography and tree crowns on surface reflectance plays a different role in deciduous
and evergreen forests. For evergreen forests, surface reflectance is primarily independent
of aspects, suggesting that the tree shadow plays a prominent effect on surface reflectance,
especially during March. In contrast, for deciduous forests, the topographic shadow effect
is significant. Our study suggests that accurate modeling of surface reflectance and surface
radiation budget would require detailed vegetation structure and topography inputs in
the model.
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