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Abstract: Point cloud classification is a key technology for point cloud applications and point cloud
feature extraction is a key step towards achieving point cloud classification. Although there are many
point cloud feature extraction and classification methods, and the acquisition of colored point cloud
data has become easier in recent years, most point cloud processing algorithms do not consider the
color information associated with the point cloud or do not make full use of the color information.
Therefore, we propose a voxel-based local feature descriptor according to the voxel-based local
binary pattern (VLBP) and fuses point cloud RGB information and geometric structure features
using a random forest classifier to build a color point cloud classification algorithm. The proposed
algorithm voxelizes the point cloud; divides the neighborhood of the center point into cubes (i.e.,
multiple adjacent sub-voxels); compares the gray information of the voxel center and adjacent
sub-voxels; performs voxel global thresholding to convert it into a binary code; and uses a local
difference sign–magnitude transform (LDSMT) to decompose the local difference of an entire voxel
into two complementary components of sign and magnitude. Then, the VLBP feature of each point is
extracted. To obtain more structural information about the point cloud, the proposed method extracts
the normal vector of each point and the corresponding fast point feature histogram (FPFH) based on
the normal vector. Finally, the geometric mechanism features (normal vector and FPFH) and color
features (RGB and VLBP features) of the point cloud are fused, and a random forest classifier is used
to classify the color laser point cloud. The experimental results show that the proposed algorithm can
achieve effective point cloud classification for point cloud data from different indoor and outdoor
scenes, and the proposed VLBP features can improve the accuracy of point cloud classification.

Keywords: point cloud; voxelization; local binary pattern; classification

1. Introduction

In recent years, with the rapid development of three-dimensional (3D) sensors, point
cloud data have been widely used in fields such as unmanned driving, measurement,
remote sensing, smart agriculture, “new infrastructure”, and virtual reality. In recent years,
acquisition systems that can acquire point cloud data with color information, such as depth
cameras and backpack/handheld mobile surveying and mapping systems, have attracted
increasing attention and been widely used. The feature extraction and classification of
point clouds are the key steps in point cloud data application.

In the process of constructing 3D semantic maps and performing feature extraction
based on point clouds, the classification accuracy of point clouds directly affects the
application effects of a method. In point cloud segmentation, classification, registration, and
surface reconstruction algorithms’ processing effects mostly rely on the feature extraction
ability of the method applied. The accuracy of point cloud classification is closely related
to the effectiveness of features. Therefore, research on point cloud feature extraction and
classification is of great significance.
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For the feature extraction of point clouds, researchers proposed a large number of
feature descriptors including, for example, normal vector, elevation feature [1], spin im-
age [2], covariance eigenvalue feature [3,4], global feature viewpoint feature histogram
(view feature histogram, VFH) [5], clustered view feature histogram (CVFH) [6], and fast
point feature histogram [7] (fast point feature histograms, FPFH). However, the above-
mentioned features are all extracted from the geometric structure information of the point
cloud and lack the use of the color information of the color point cloud.

Considering the point cloud data acquired in recent years usually have color informa-
tion and the geometric structure characteristics of the point cloud cannot fully describe the
object, it is necessary to combine the color information and the geometric structure of the
point cloud for analysis. For example, for a flat point cloud area, the geometric features
of the surface may be consistent. If there are important pattern marks on the plane, the
geometric structure features cannot find the distinction. In contrast, the color information
and texture features can capture the variation on this plane.

In addition, the color point cloud is obtained by fusing the data collected by the camera
and the LiDAR sensor. Considering the fusion level is low, the original data collected by
the sensor are retained to the greatest extent [8]. Achanta et al. [9] used the SLIC algorithm
to combine the color similarity with the spatial neighbors of the image plane to use the
color information of the reasonable color point cloud. This method uses the lab color space
to represent the color features of the point cloud, combined with the pixel position, to form
a five-dimensional feature vector. The feature vector uses Euclidean distance to measure
the similarity between three-dimensional points. The effect of this method is unstable and
sensitive to noise.

For the classification of point clouds, the traditional method is to determine the
category of each point by defining relevant judgment rules. For example, by assuming
the height of the ground point in the neighboring area is the smallest as the judgment
rule, all ground points are marked. However, in many cases, it is difficult to design a
robust decision rule and the effect is not ideal. To solve this problem, methods based on
machine learning are widely used for point cloud classification. The basic idea of this kind
of method is to perform feature extraction on the point cloud, use the point cloud features
of the training set to train a classifier, and then use the classifier to classify the point cloud to
be classified. Currently, commonly used classifiers are random forest (RF) [10], multilayer
perceptron (MLP) [11], support vector machine (SVM) [12], and AdaBoost [13].

Guan [14] and others applied the random forest classifier to the feature selection
of point cloud data and achieved good classification results. This also shows that the
use of random forest classifiers can improve the performance of data classification [15].
Mei et al. [16] used the RGB value of each point, the normal vector of each point extracted
from the neighboring points in the radius neighborhood, the spin image and the eleva-
tion feature, the boundary and label constraints for feature learning, and finally a linear
classifier to classify each point. Although this type of algorithm directly integrates the
three-channel value of the color into the feature of the point, it does not make full use of
the color information.

To leverage point clouds’ color information, this paper draws on references to the
local binary pattern feature description operator (local binary pattern, LBP) [17,18] in a two-
dimensional image. The grayscale does not change with any single transformation. The
degree scale has good robustness and no parameters (non-parametric). There is no need
to pre-assume its distribution in the application process and then extend it to the feature
description of point clouds. For a two-dimensional image, a fixed-position neighborhood
can be used to construct LBP features. However, the point cloud data are irregular and
disordered, and the fixed neighborhood position of each point cannot be directly obtained.

Therefore, we propose a voxel-based local binary pattern feature, that is, the VLBP
feature. In addition, to achieve the effective classification of point cloud data with color
information, we propose a point cloud classification algorithm based on the fusion of
voxel local binary pattern features and geometric structure features in which the random
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forest classifier with an excellent classification performance is selected. The process of the
proposed classification algorithm is shown in Figure 1.

Figure 1. The flowchart of the proposed algorithm.

As shown in Figure 1, the proposed algorithm first voxelizes the input point cloud
data so that the neighborhood of each point is regularized. Then, the gray-level mean and
gray-level variance features of each cube for each voxel constructed by a single point are
extracted, and the gray information between the center of the voxel and the neighboring
sub-voxels is compared to obtain the local difference. Then, local difference sign–magnitude
transform (LDSMT) is performed on the local difference.

In this way, the two complementary components of the sign and magnitude of the
local domain are obtained and converted into binary codes through the global thresholding
of voxels. Then, the gray level at the center of the voxel is compared with the gray average
of the entire voxel to obtain the global contrast. Next, the extracted VLBP features are
normalized, fused with the original color RGB of the point cloud to form the color feature
of the point cloud, and then fused with the geometric structure feature (normal vector
and FPFH feature) of the point cloud. Finally, based on the fusion features, a random
forest classifier is used to classify the point cloud. We conducted classification experiments
on point clouds of different indoor and outdoor scenes to verify the effectiveness of the
proposed algorithm.

The main contributions of this article are as follows:

(1) A point cloud color feature descriptor is proposed, that is, a local binary pattern fea-
ture based on voxels (VLBP). This feature describes the local color texture information
of the point cloud and has the characteristic that the grayscale does not change with
any single transformation. The expression of this grayscale texture information can
effectively improve the classification effect of the point cloud.

(2) A point cloud classification algorithm based on the fusion of point cloud color and
geometric structure is proposed. The proposed algorithm uses the RGB information of
the color and the VLBP feature proposed in this paper as the color feature of the point
cloud, merges it into the geometric structure feature of the point cloud to construct a
more discriminative and robust point cloud fusion feature, and then uses a random
forest classifier to effectively classify the point clouds.
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2. Related Work

In this paper, the local feature VLBP of point cloud scene data based on voxel extraction
is an extended texture descriptor based on the complete modeling of local binary patterns
(CLBP) [19–21]. CLBP is a related complete binary mode scheme for texture classification
that can well describe the local spatial structure of image textures. The local region is
represented by its central pixel and local differential sign–amplitude transformation. The
center pixels represent the gray level of the image. Through global thresholding, they
are converted into binary codes, namely, CLBP_Center (CLBP_C). The local difference
sign–amplitude transformation decomposes the local difference of the image into two
complementary components: sign and amplitude. As shown in Figure 2, given that
central pixel gc and its radius Rs are circular and have evenly spaced P neighbors of
g0, g1, g2, . . . , and gp−1, we can simply calculate the dp difference between gc and gp. As
shown in Equation (1), dp can be further broken down into two parts:

dp = sp ×mp and
{

sp = sign
(
dp
)

mp =
∣∣dp
∣∣ (1)

where sp =

{
1, dp ≥ 0
−1, dp < 0

is the sign and mp is the amplitude of dp. dp is the difference

between the neighboring pixel and the center pixel. It cannot be used as a feature descriptor
directly because the difference is sensitive to illumination, rotation, and noise. However,
these effects can be overcome by dividing the difference into a sign component and an
amplitude component. The two are multiplied and recorded as positive and negative binary
mode CLBP_Sign (CLBP_S), and amplitude binary mode CLBP_Magnitude (CLBP_M) by
Equations (2) and (3).

CLBP_SP,Rs =
p−1

∑
p=0

t
(
sp, 0

)
2p (2)

CLBP_MP,Rs =
p−1

∑
p=0

t
(
mp, cm

)
2p (3)

where cm is the mean value of mp in the entire image.

Figure 2. P-nearest neighbors evenly spaced from the center pixel and circle of radius Rs.
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Equation (4) represents the global contrast CLBP_C.

CLBP_CP,Rs = t(gc, ci) (4)

where t(x, c) =

{
1, x ≥ c
0, x < c

, ci is the average gray level of the entire image and binary

encoding is performed by comparing the size of the center pixel and the pixel value of the
entire image.

For a two-dimensional plane image, CLBP features can be constructed by setting the
neighborhood of a fixed position. Then, for 3D irregular and disordered point cloud data,
we can regularize the point cloud field by voxel and then extract the local binary pattern
feature VLBP of the point cloud.

3. Voxel-Based Shading Point Cloud Feature Descriptor (VLBP)

The extraction of VLBP feature descriptors is divided into three steps: voxelization,
VLBP feature descriptor construction, and voxel histogram FVLBP feature vector, as follows.

3.1. Voxelization

Given a point p(x, y, z, R, G, B) in the point cloud, we take point p as the center, use
kdtree [22] to search for the radius neighbors, and find all points within radius r. All points
obtained by the nearest-neighbor search are N and these N points form a cube V(r), that is,
voxel V.

Then, voxel V(r) is divided into n× n× n cubes, that is, sub-voxels. These n× n× n
sub-voxels are on the sides of the x, y, and z coordinate axes. The lengths are all equal. The
side lengths of voxel V(r) in the x, y, and z directions are dx, dy, and dz, respectively. As
shown in Equation (5), the side lengths of each sub-voxel in the x, y, and z directions are
Lx, Ly, and Lz, respectively: 

Lx = dx/n
Ly = dy/n
Lz = dz/n

(5)

Traverse all points in voxel V(r) to determine to which sub-voxel they belong. Taking a
point q(x′, y′, z′, R′, G′, B′) in V(r) as an example, find which sub-voxel this point belongs to.
First, number n× n× n as sub-voxels. Each sub-voxel is represented by coordinates (a, b,
c), where a, b, c ε[1, n]. The coordinates of the sub-voxel where point q is located (a0, b0, c0)
are shown in Equation (6): 

a0 = ceil( f abs(x′ − x0)/rx)
b0 = ceil( f abs(y′ − y0)/ry)
c0 = ceil( f abs(z′ − z0)/rz)

(6)

where x0, y0, and z0 are the minimum values of the N points in voxel V in the x, y, and
z-axes direction.

The number of points contained in the i voxel is Ki and the points in the i-th voxel are
expressed as Pi = {p1, p2..., pKi }. If the number of points in the i voxel is Ki > 0, then the
Ri, Gi, and Bi values of the i-th small block are calculated by Equation (7).

Ri =
(

∑Ki
j=1 rj

)
/Ki

Gi =
(

∑Ki
j=1 gj

)
/Ki

Bi =
(

∑Ki
j=1 bj

)
/Ki

(7)

where rj, gj, and bj are the R, G, and B values of the j-th point, respectively. If the number
of points of the i-th small block is Ki = 0, then Ri = Gi = Bi = 0.
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The gray value Vgc of the voxel center is calculated by Equation (8).

Vgc
= R× 0.299 + G× 0.587 + B× 0.114 (8)

The average gray value Vgi of the i-th sub-voxel in voxel V is calculated by Equation (9).

Vgc =
∑Ki

j=1

(
Rj × 0.299 + Gj × 0.587 + Bj × 0.114

)
Ki

(9)

The gray value of the center point p of the current voxel is Vgc, the gray values of
adjacent sub-voxels in voxel n× n× n− 1 are Vgi, and i represents the i-th small block.

The abovementioned voxelization on all points in the point cloud are performed and
the gray values of the current voxel center point p and its adjacent voxels can be calculated.
Then, the VLBP feature descriptor of voxels is constructed.

3.2. VLBP Descriptor Construction

The gray value of the current point (the sub-voxel where the current point is located)
p is gc and the gray values of the (n× n× n− 1) neighborhood blocks of this point in the
voxel are gi, representing the i-th small block, i = 0,1...(n× n× n− 1)− 1. The grayscale
difference between the i-th small block and the small block where the current point is lo-
cated is di = gi − gc. Using Equation (1) in VLBP, di is further divided into two components
according to Equation (10): sign component, si, and amplitude component, mi.

di = si ×mi (10)

Among them are
{

si = sign(di)
mi = |di|

and si =

{
1, di ≥ 0
−1, di < 0

In VLBP, a local area is represented by its central pixel and local differential sign–
amplitude transformation (LDSMT). The gray level of the central voxel is simply encoded
with a binary code after global thresholding. LDSMT decomposes the local structure within
the voxel into two complementary components: difference sign and difference amplitude.
The three-dimensional features of VLBP are VLBP_S, VLBP_M, VLBP_C, and I = (n × n ×
n − 1). These three-dimensional features are defined as Equation (11).

VLBP_SI = ∑I−1
i=0 t(si, 0)2i

VLBP_MI = ∑I−1
i=0 t(mi, cm)2i

VLBP_CI = t(gc, cn)

(11)

where t(x, c) =
{

1, x ≥ c
0, x < c

is the comparison function; cm is the mean value of n × n × n

− 1 mi of the entire voxel, that is, cm =
(

∑I−1
i=0 mi

)
/I; and cn is the average gray value of

n × n × n sub-voxels in the entire voxel, that is, cn = (∑I−1
i=0 mi + gc)/(n× n× n).

3.2.1. Scale Invariance

To make VLBP descriptors scale-invariant, two different scales are selected for vox-
elization and then the VLBP descriptor is constructed. By changing the size of r, voxels of
different scales are obtained. The features of different scales obtained are directly output in
order, which can make the features more robust [20].

3.2.2. Rotation Invariance

When constructing voxels, this article numbered n × n × n sub-voxels. They were
numbered based on XYZ, XZY, YXZ, YZX, ZXY, and ZYX as 6 different coordinate directions
and then these numbers were placed in ascending order. Arrange and extract the values
of VLBP_S and VLBP_M in the voxel, in turn, and then encode it, that is, construct a
binary code structure similar to 1001111000 . . . 00. Then, convert the binary arrangement
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to the decimal number to find the smallest one. The 0–1 binary obtained after the rotation
sorting is performed according to the finally obtained 01 binary in the definition formulas
of CLBP_SI and CLBP_MI .

3.3. FVLBP Feature Vector of Voxel Histogram

The construction steps of the LBP feature vector of the voxel histogram are as follows:

1. Given search radius r2, take point p as the search center point and use kdtree as
the search radius to perform a second radius near-neighbor search to find all points
within its radius, r2.

2. Find the VLBP_S and VLBP_M values corresponding to all points obtained by this
radius neighbor search, divide 0–2I into the TZN detection interval, and then calculate
the VLBP_S and VLBP_M values corresponding to each point. Here, TZN is a threshold
to divide the feature value interval for the histogram statistics. The following also
pertain to the test interval:

3. After traversing all points, record the number of times in the TZN interval and create
two new TZN-dimensional features: VLBP_S(r) and VLBP_M(r). Replace VLBP_S and
VLBP_M with these two new features.

4. The final VLBP characteristics of each voxel are:

FVLBP =
[
V(r)RGBg, Var(r)RGBg, VLBPS(r), VLBPM(r), and VLBPC(r)

]
. (12)

Among them, VRGBg is the average value of the gray value of the R, G, and B structure
of the N points in voxel V. VarRGBg is the variance of the gray value constructed by
R, G, and B of N points in voxel V.

5. Traverse all points in the point cloud and generate a VLBP feature for each point;
change radius r of the first-radius nearest-neighbor search; and generate a set of VLBP
features again and continue writing. Repeat this step until the radius set by the scale
invariance is reached.

4. Point Cloud Classification Based on Multifeature Fusion and Random Forest

Point cloud classification based on multifeature fusion and random forest is divided
into two steps (multifeature fusion and the use of random forest to classify point clouds)
as follows:

4.1. Multifeature Fusion

To improve the characterization ability and robustness of point cloud features, this
paper fuses the point cloud color RGB, normal vector feature, and FPFH feature with the
VLBP feature constructed in this paper. The feature corresponding to each point in the point
cloud after fusion is F = [FVLBP, FRGB, FNormal , FFPFH ]. Among them, the 10-dimensional
VLBP feature FVLBP constructed in this paper and the 3-dimensional original point cloud
color RGB constitute the color feature of the point cloud. The 3-dimensional normal
feature FNormal and the 33-dimensional fast feature histogram feature FFPFH constitute the
geometric structure feature of the point cloud.

Among them, the normal vector feature FNormal estimates the neighborhood plane of
each point in the original point cloud and the feature vector corresponding to the smallest
feature value obtained by PCA is regarded as the normal feature of the point. FFPFH
is used to describe the relationship between the adjacent points of the point cloud, has
the advantages of low computational complexity and strong robustness, and has better
results when used for point cloud classification. After multifeature fusion, feature F of each
point in the original point cloud has 49 dimensions (the 10-dimensional features are VLBP
features obtained at two different scales).
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4.2. Point Cloud Classification

The proposed method adopts a classification strategy based on a single point of the
point cloud; that is, after the fusion feature construction of each point of the point cloud
is completed, each point in the point cloud is classified by a machine learning classi-
fier. The random forest classifier is suitable for multi-classification problems, can handle
high-dimensional input features, has good classification performance in the point cloud
classification of indoor and outdoor scenes, and can achieve high classification accuracy.
Therefore, we choose random forest classifiers to perform point cloud classification. Among
them, the random forest constructed in this paper has 250 trees and the maximum tree
depth is 20.

5. Analysis of Experimental Results

To evaluate the effectiveness of the proposed algorithm, we conduct experiments on
three mobile laser scanning (MLS) urban point cloud scenes and two indoor point cloud
scenes, and perform qualitative and quantitative analyses.

5.1. Experimental Data

In this paper, five different point cloud scenarios are selected to verify the proposed
algorithm and the point cloud data all contain x, y, z, R, G, and B information, i.e., point
coordinates and color information. Collection equipment of a point cloud scene is shown
in Figure 3. Scene 1, Scene 2, and Scene 3 are outdoor scene colored point cloud data
collected by advanced backpack mobile surveying and mapping robots provided in CSPC-
Dataset [23]. The robot collects the data of these scenes by laser sensors and panoramic
cameras, and the average point cloud density is about 50~60/m2. After the refined mod-
eling and coloring of point clouds, the complete colored point cloud of the scene can be
produced. The dataset contains both larger objects (e.g., buildings, ground, and trees) and
smaller objects (e.g., cars). Scene 4 and Scene 5 are indoor scene point clouds, which are
chosen from the S3DIS dataset [24]. The S3DIS dataset is an indoor point cloud dataset
produced and developed by Stanford University et al. with a Matterport camera (combined
with three structured light sensors with different spacings). The dense point cloud obtained
in this dataset has high precision and uniform color distribution. The Scene 4 and Scene 5
produced in this paper include four types of objects, i.e., chair, table, ground, and potted
plants. The training set and test set of the five scenarios are shown in Figures 4–8. Table 1
shows the distribution of the exact number of points for training and the test sets for
each scene.

Figure 3. Collection equipment of the point cloud scene. (a) Backpack mobile surveying and mapping
robots and (b) Matterport camera.
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Figure 4. Scene 1 point cloud data. (a) Original point cloud of the training set; (b) ground truth for
the training set; (c) original point cloud of the test set; and (d) ground truth for the test set. Red,
yellow, and blue points represent trees, cars, and floors, respectively.

Figure 5. Scene 2 point cloud data. (a) Original point cloud of the training set; (b) ground truth of
the training set; (c) original point cloud of the test set; and (d) ground truth of the test set. Red, green,
yellow, and blue points represent trees, cars, buildings, and floors, respectively.

Figure 6. Scene 3 point cloud data. (a) Original point cloud of the training set; (b) ground truth of
the training set; (c) original point cloud of the test set; and (d) ground truth of the test set. Red, green,
yellow, and blue points represent trees, cars, buildings, and floors, respectively.
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Figure 7. Scene 4 point cloud data. (a) Original point cloud of the training set; (b) ground truth of
the training set; (c) original point cloud of the test set; and (d) ground truth of the test set. Red, green,
and blue points represent the table, floor, and chair, respectively.

Figure 8. Scene 5 point cloud data. (a) Original point cloud of the training set; (b) ground truth of
the training set; (c) original point cloud of the test set; and (d) ground truth of the test set. Red, green,
yellow, and blue points represent plants, tables, floors, and chairs, respectively.

Table 1. Statistics of experimental datasets.

Train Test

Floor Building Car Tree Floor Building Car Tree
Scene 1 54.327 29.523 46.068 25.038 63.174 93.852
Scene 2 71.587 123.521 10.545 28.754 29.080 46.854 5918 7248
Scene 3 119.255 180.919 15.394 13.504 155.931 201.930 17.492 87.601

Chair Table Floor Flower Chair Table Floor Flower
Scene 4 24.025 17.671 77.880 24.713 29.467 74.692
Scene 5 30.801 16.148 62.596 18.394 28.748 14.611 47.662 19.278

The proposed algorithm is implemented on PCL1.8.1 (C++), python3.7.6, and Cloud-
Compare2.11.3. All experiments in this article are run on a computer with an AMD Ryzen
5 3600 6-core processor at 3.59 GHz with 16 GB of RAM. The average training time of five
scenes is about 6.48 min, and the average testing time of five scenes is 3.96 min. To evaluate
the performance of the different algorithms more comprehensively and effectively, we
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uses Precision/Recall/F1-scores to evaluate the classification effect of each category, and
uses Overall Accuracy (OA) and Kappa to evaluate the overall classification result of each
scene. These evaluation indicators reflect the classification effects of different attributes.
The higher the values of these classification indicators, the better the classification effect,
as shown in Table 2 from which Tp, Fn, Fp, and Tn represent the number of true positives,
false negatives, false positives, and true negatives.

Table 2. Definition relationships between predicted and true values.

Ground Truth
Predicted

Positive Negative

Positive True Positive (Tp) False Negative (Fn)

Negative False Positive (Fp) True Negative (Tn)

Precision measures the ability of a classifier to not mistakenly divide real negative
samples into positive ones. The calculation method is Equation (13).

precision =
Tp

Tp + Fp
(13)

Equation (14) is the calculation method of Recall, Recall measures the ability of a
classifier to find all positive samples.

recall =
Tp

Tp + Fn
(14)

In order to comprehensively evaluate the classification ability of a classifier for each
category, the F1 score is usually used to measure the whole classifier. The calculation
method is Equation (15).

F1 − score =
2× precision× recall

precision + recall
(15)

The experiment point cloud dataset has multiple category labels. Therefore, to compre-
hensively evaluate the classification effect of the algorithms on all categories of the whole
point cloud, we use OA and Kappa to evaluate the overall classification performance of
different algorithms. Each evaluation metric is calculated according to Equations (16)–(18).

OA =
∑L

i=1 Cii

∑L
j=1 ∑L

k=1 Cjk
(16)

Kappa =
OA− Pe

1− Pe
(17)

pe =

(
∑L

j=1 ∑L
i=1
(
Cij × Cji

))
Q×Q

(18)

where C is a L× L classification confusion matrix; L is the number of an object category; Cij
is the true label of the i-th class classified to the j-th class; and Q is the number of all points.

5.2. Point Cloud Classification Effect

To evaluate the effect of the proposed algorithm and verify the influence of different
classifiers and point cloud features on point cloud classification, this paper compares the
proposed algorithm with other classification algorithms composed of point cloud features
and classifiers. The features, classifiers, and classification accuracy of the experimental
comparison methods are listed in Table 2. The classifiers include the random forest classifier
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(RF main parameters: 250 forest trees; the maximum tree depth is 20), multilayer percep-
tron classifier (MLP main parameters: a hidden layer with 100 neurons; the activation
function is relu; regular term parameter alpha = 20; etc.), and support vector machine
classifier (SVM main parameters: error term penalty coefficient C = 1; kernel = ‘rbf’;
etc.). We also compared with PointNet [25], which is a deep learning method based on a
multilayer perceptron.

The features include the following: based on point cloud color extraction feature FVLBP
and point cloud geometric structure feature FN_F (normal vector and fast feature histogram
feature), the FN_F_RGB feature refers to the RGB color information integrated on the basis
of feature FN_F. Feature FAll is a fusion of the color features of the point cloud (RGB and
VLBP features) and point cloud geometric structure feature FN_F.

From the results listed in Table 3, we can make the following observations:

1. From the data in the table, we can see that the classification accuracy (Kappa/OA)
of the proposed algorithm is different in different scenarios, but the point cloud
classification accuracy is basically the highest in all feature fusion situations and the
results of the five scenarios are in different features. The results’ trends of the classifier
is consistent.

2. By comparing the results of five scenes of point cloud classifications using different
types of classifiers for the same feature, it can be seen that the features used in the
proposed method can achieve the best classification results by using random forest
classifiers; that is, the classification algorithm designed in this article is better than
that based on other classifications.

3. A comparison of the effects of classifying different types of features by the same
classifier shows that, based only on the VLBP features proposed in this paper, they
cannot achieve better classification results because the feature descriptors proposed
in this paper only represent the point cloud color information and lack the structural
information of the point cloud. The fusion of RGB color information on the basis of
geometric features will significantly improve the classification effect of point clouds.
On this basis, continuing to integrate the VLBP features extracted in this paper based
on color will improve the classification accuracy of point clouds.

Table 3. Comparison of the Kappa/OA value (%) of each point cloud scene under different classifiers
and feature conditions. For each scene, bold font indicates the best result of each classifier.

Classifiers Features Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

RF

FVLBP 51.9/73.8 32.0/53.6 33.8/55.7 43.3/71.0 45.7/65.8
FN_F 84.0/90.7 79.1/87.6 73.0/82.9 81.9/90.9 82.5/88.0

FN_F_RGB 85.7/91.4 79.1/87.7 73.6/83.3 91.4/95.9 84.4/88.1
FAll 86.8/92.1 79.4/87.9 73.2/83.1 94.4/97.0 84.6/89.5

MLP

FVLBP 56.7/75.7 32.1/52.5 36.7/55.5 42.4/69.5 36.8/51.2
FN_F 79.0/86.4 60.8/73.5 57.4/73.3 72.9/82.8 78.2/84.5

FN_F_RGB 84.9/90.5 51.4/69.5 60.8/71.8 74.0/84.9 78.0/85.1
FAll 85.8/91.4 63.5/78.4 57.7/73.7 88.1/94.0 81.1/86.0

SVM

FVLBP 57.0/75.6 34.1/52.4 32.8/43.8 35.6/70.2 36.8/52.8
FN_F 80.0/88.0 53.9/73.3 52.0/70.0 74.5/85.7 79.2/85.7

FN_F_RGB 84.5/91.1 54.2/73.4 53.1/70.5 77.1/84.9 79.5/87.3
FAll 85.0/90.7 55.6/74.2 56.5/73.5 90.8/95.3 83.5/88.6

PointNet Deep
feature 62.1/76.3 54.2/61.4 57.7/74.9 58.7/82.9 50.8/61.2

Regardless of which classifier is used, the classification effect of the four types of
feature fusion is better than the classification effect based on a single feature. This shows
that the fusion of color information based on the geometric structure characteristics of the
point cloud can improve the classification accuracy of the point cloud.



Remote Sens. 2021, 13, 3156 13 of 20

4. By comparing the improvement of the classification accuracy of each scene, we can
see that the RGB and VLBP color features are combined on the basis of the geometric
structure characteristics of the point cloud, and the classification accuracy of indoor
Scene 4 and 5 is more obvious than that of outdoor Scenes 1–3. This is because the
coloring of the point cloud is not only related to the point cloud collection equipment
but it is also affected by the illumination to a certain extent. This makes the coloring
of the point cloud collected indoors more uniform than the point cloud collected
outdoors. Thus, compared with outdoor scenes, the classification accuracy of indoor
scenes is better.

In order to highlight the advantages of the random forest classifier selected in this
paper, classification comparison experiments are carried out under the conditions of dif-
ferent features and classifiers. As shown in Table 4, the average running time of FVLBP,
original color feature (FRGB), normal vector feature FNormal), and fast feature histogram
feature (FFPFH) of the point cloud in the five scenarios are 2.86 min, 0.58 min, 1.73 min,
and 1.47 min, respectively. The average running time (i.e., the training time and test time)
of the random forest classifier, the MLP classifier, and the SVM classifier are 3.80 min,
5.03 min, and 16.3 min, with the fusion features (FVLBP, FRGB, FNormal, and FFPFH). It takes
an average of 145.86 min to classify the point cloud with PointNet (including 143.76 min
for training and 2.1 min for testing). The random forest classifier is not only excellent in the
classification effect but also excellent in time efficiency; thus, the random forest classifier is
selected to classify the extracted fusion features.

Table 4. Statistics of average running time under the condition of different features and classifiers.

Feature Average Time (min)

FVLBP 2.86
FRGB 0.58

FNormal 1.73
FFPFH 1.47

Classifier Average Time (min)

RF 3.80
MLP 5.03
SVM 16.3

PointNet 145.86

To show the classification effect of the proposed algorithm more prominently, this
paper compares the classification algorithms of different feature constructions using the
random forest classifier. As shown in Table 5, Method 1 is a prediction classification
method based on FVLBP features and Method 2 is a prediction classification based on
geometric features (i.e., normal vector and FPFH features). Method 3 is a type of predictive
classification based on FN_F_RGB features. Our method is a combination of point cloud color
features (RGB and VLBP features) and point cloud geometric structure features (normal
vector and FPFH features) for predictive classification.

Table 5. Comparison with the four methods in terms of “Feature Expression”.

Method Feature Dimension

Method 1 FVLBP 10
Method 2 FNormal + FFPFH 36
Method 3 FNormal + FFPFH + FRGB 39

Our Method FNormal + FFPFH + FRGB + FVLBP 49

As shown in Table 6, the comparison of five point cloud scenes classification results
are given.
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Table 6. Comparison of the classification effects of ground objects and ground objects in each scene with precision/recall/F1-
scores. For each scene, bold font indicates the best results of each metric.

Method Floor Car Tree Building Kappa (%) OA (%)

Scene 1

Method 1 0.71/0.71/0.71 0.27/0.12/0.17 0.80/0.92/0.86 51.9 73.8
Method 2 0.96/0.81/0.88 0.68/0.84/0.75 0.95/0.99/0.97 84.0 90.7
Method 3 0.96/0.82/0.88 0.69/0.85/0.76 0.96/0.99/0.98 85.7 91.4

Our 0.96/0.83/0.89 0.70/0.87/0.77 0.97/1.00/0.98 86.8 92.1

Scene 2

Method 1 0.47/0.82/0.60 0.22/0.06/0.09 0.39/0.31/0.35 0.68/0.46/0.60 32.0 53.6
Method 2 0.91/0.88/0.90 0.87/0.55/0.68 0.79/0.73/0.76 0.87/0.94/0.90 79.1 87.6
Method 3 0.91/0.88/0.90 0.89/0.55/0.68 0.80/0.74/0.77 0.87/0.94/0.90 79.1 87.7

Our 0.91/0.89/0.90 0.89/0.57/0.69 0.82/0.75/0.77 0.87/0.94/0.90 79.4 87.9

Scene 3

Method 1 0.71/0.51/0.59 0.11/0.02/0.03 0.60/0.06/0.12 0.51/0.86/0.64 33.8 55.7
Method 2 0.99/0.91/0.95 0.80/0.30/0.43 0.92/0.45/0.60 0.73/0.98/0.84 73.0 82.9
Method 3 0.99/0.91/0.95 0.45/0.28/0.34 0.93/0.53/0.68 0.74/0.95/0.83 73.6 83.3

Our 0.99/0.91/0.95 0.58/0.29/0.38 0.92/0.48/0.63 0.73/0.96/0.83 73.2 83.1

Method Chair Table Floor Flower Kappa (%) OA (%)

Scene 4

Method 1 0.30/0.20/0.24 0.72/0.37/0.49 0.78/0.95/0.86 43.3 71.0
Method 2 0.89/0.99/0.94 0.69/0.80/0.74 0.98/0.91/0.94 81.9 90.9
Method 3 0.90/0.99/0.94 0.90/0.89/0.89 0.99/0.97/0.98 91.4 95.9

Our 0.90/0.99/0.94 0.97/0.90/0.93 0.99/0.98/0.99 94.4 97.1

Scene 5

Method 1 0.53/0.33/0.41 0.67/0.55/0.60 0.69/0.87/0.77 0.66/0.71/0.68 45.7 65.8
Method 2 0.89/0.77/0.83 0.79/0.75/0.77 0.92/0.97/0.94 0.83/0.92/0.88 82.5 88.0
Method 3 0.90/0.78/0.83 0.82/0.80/0.82 0.94/0.98/0.96 0.82/0.92/0.88 84.4 88.1

Our 0.90/0.78/0.83 0.83/0.80/0.82 0.94/0.98/0.96 0.84/0.93/0.88 84.6 89.5

From the results listed in Table 6, it is easy to draw the following conclusions below:

(1) From the comparison of each metric, we can see that the proposed classification
algorithm achieved 86.8/92.1%, 79.4/87.9%, 73.2/83.1%, 94.4/97.1%, and 84.6/89.5%
classification Kappa/accuracy in the five scenarios. Considering all evaluation indica-
tors, the proposed algorithm has advantages over both the algorithm without color
features (Method 2) and the algorithm with RGB features (Method 3).

(2) A comparison of the four algorithms shows that Method 3 introduces RGB based
on the geometric structure characteristics of the point cloud and improves the clas-
sification effect of each scene by 0.7%, 0.1%, 0.4%, 5.0%, and 0.1%. The proposed
algorithm integrates RGB and VLBP features based on geometric structure features,
and the fusion features increase the classification accuracy of each scene by 1.4%, 0.3%,
0.2%, 6.2%, and 1.5%, respectively. This shows that the four fusion features are more
discriminative to the point cloud representation, which improves the classification
effect. The proposed algorithm can achieve better point cloud classification on the
point cloud data of different scenes and the proposed VLBP feature can improve the
point cloud classification.

(3) From the comparison in Table 3, it can be seen that Method 3 shows significant
improvements for most indicators compared to Method 1 and Method 2, especially
in Scene 4 and 5, and the classification effect is significantly improved. This shows
that the point cloud color feature has an improved effect on point cloud classification.
From a comparison between Method 3 and the algorithm in this paper, it can be
seen that in the outdoor Scenes 1–3, the algorithm in this paper performs better
than Method 3 in most cases. It can be seen that in the indoor Scene 4 and 5, the
algorithm in this paper shows a significant improvement for all indicators compared
to Method 3. This also shows that in the case of less noise in the color information
of the point cloud coloring, the VLBP feature descriptor proposed in this paper can
significantly improve the point cloud classification effect.

(4) By observing Scene 4 and the other four scenes, we can see that the proposed method
has the best classification performance on the point cloud scene containing only man-
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made objects. When there are irregular objects such as plants in the scene, it will
increase the complexity of the scene, thereby reducing the classification performance.
It can be seen from the precision/recall/F1-scores in Table 6 that the performance
of the proposed method for the vast majority objects has a certain improvement.
Especially for the indoor point clouds, the improvement is more significant. This is
because the color information of the indoor point cloud is more accurate than the
outdoor point clouds, which is caused by the colored point cloud collection device.

In this paper, the proposed method has been compared with other methods by multiple
evaluation metrics at the same time. Considering the time efficiency, it can be seen from
Table 4 that the proposed method outperforms PointNet. For the Kappa and OA, the
proposed method can achieve better performance than the other methods with different
features and classifiers. Therefore, we can make the satisfactory conclusion that the overall
performance of the proposed classification method is a promising method by considering
different evaluation metrics and ablation studies.

To show the point cloud classification effect of the algorithm in this paper more
intuitively, Figures 9–13 show the classification effect of different algorithms on five point
cloud scenes. It can be seen from the figure that the classification result of the algorithm in
this paper is closest to the true value effect and the classification effect of trees in Scenes
1–3 is better than that of other algorithms. According to a comparison of (b) and (c) in
Figures 9–13, the classification based on VLBP features and the classification based on the
normal vector and FPFH features will have a certain complementary effect. After the fusion
of RGB and VLBP features, for Scene 2 and Scene 3, which are medium and small scenes,
some building points are misclassified as tree points, some table points and chair points in
Scene 4 are misclassified, and potted plants and chairs in Scene 5 are misclassified. This
confusion is caused by the similar colors in the point cloud but the overall classification
effect is generally good.

Figure 9. Classification results for Scene 1. (a) Ground truth; (b) Method 1; (c) Method 2; (d) Method 3;
and (e) our method. Red, blue, and yellow points represent trees, floors, and cars, respectively.
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Figure 10. Classification results for Scene 2. (a) Ground truth; (b) Method 1; (c) Method 2; (d) Method 3; and (e) our method.
Red, green, blue, and yellow points represent trees, buildings, floors, and cars, respectively.

Figure 11. Classification results for Scene 3. (a) Ground truth; (b) Method 1; (c) Method 2; (d) Method 3; and (e) our method.
Red, green, blue, and yellow points represent trees, buildings, floors, and cars, respectively.
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Figure 12. Classification results for Scene 4. (a) Ground truth; (b) Method 1; (c) Method 2; (d) Method 3; and (e) our method.
Red, green, and blue points represent the table, floor, and chair, respectively.

Figure 13. Classification results for Scene 5. (a) Ground truth; (b) Method 1; (c) Method 2; (d) Method 3; and (e) our method.
Red, green, blue, and yellow points represent flowers, tables, chairs, and floors, respectively.
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In this article, Scenes 1–3 are outdoor point cloud scenes. As shown in Figures 9–11
(the black circles/boxes in the figure), the proposed algorithm has obvious advantages but
the difference between the proposed algorithm and Method 3 is relatively small. This is
because in outdoor scenes, as shown in Figures 4–6, the color information corresponding to
the color point cloud has certain noise and errors, making the effect of the proposed VLBP
feature descriptor not obvious. However, Scene 4 and Scene 5 are indoor scenes based on
the color point cloud data collected by a Kinect, as shown in Figures 7 and 8. The color
information is relatively stable and there is less noise. As shown in Figures 12 and 13 (the
black circle/box), the algorithm proposed in this paper has obvious advantages over other
algorithms. Although Method 3 also uses color features, the effect is still not as good as the
algorithm in this paper. This also shows the effectiveness of the VLBP feature descriptor
proposed in this paper.

6. Conclusions

This paper proposes a novel voxel-based color point cloud local feature VLBP and
three defined descriptors (VLBP_C, VLBP_S, and VLBP_M) to extract the local grayscale
and local difference sign and magnitude of each voxel corresponding to each point in the
point cloud. In addition, this paper proposes a point cloud classification algorithm based
on multifeature fusion and a random forest classifier. The proposed algorithm uses the
color information of the colored point cloud to obtain the color features of each point of the
point cloud.

To represent the point cloud features more robustly, the geometric structure informa-
tion of the point cloud is characterized by the introduction of normal vector features and
FPFH features. In addition, the color, feature, and geometric structure features are merged
to construct the feature of each point of the point cloud. Finally, each point is classified
based on a random forest classifier. The proposed algorithm was used to experiment
on point clouds in different scenes. The experimental results showed that the proposed
VLBP feature is effective in improving the classification accuracy of point clouds and
the proposed point cloud classification algorithm can effectively classify point clouds in
different scenes.

Although the proposed algorithm can achieve good classification results in the five
point cloud scenes, the point cloud scenes contained a lot objects including trees, shrubs,
etc., that maybe reduce the classification performance. Thus, there is still room for improve-
ment. The future work is summarized as follows: the features selected in this paper are
the classical point cloud feature descriptors and more efficient geometry features can be
designed to fuse the VLBP feature to improve the point cloud classification accuracy. In
the process of features’ fusion, the direct connection method is used in this paper. In the
future, more excellent feature fusion methods can be used to construct the aggregation
features of the point cloud. Although the proposed classification algorithm achieves good
classification results, there are still some details of the misclassification phenomenon. In
the future, the classification results can be optimized by post-processing optimization with
neighborhood information. In addition, the point cloud scenes selected in this paper do
not involve the intensity information. The introduction of the intensity information of the
point cloud on the basis of the fusion feature will be used for point cloud classification.
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