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Abstract: It is well known that the polarization characteristics in X-band synthetic aperture radar
(SAR) image analysis can provide us with additional information for marine target classification
and detection. Normally, dual-and single-polarized SAR images are acquired by SAR satellites, and
then we must determine how accurate the marine mapping performance from dual-polarized (pol)
images is versus the marine mapping performance from the single-pol images in a given machine
learning model. The purpose of this study is to compare the performance of single- and dual-pol
SAR image classification achieved by the support vector machine (SVM), random forest (RF), and
deep neural network (DNN) models. The test image is a TerraSAR-X dual-pol image acquired from
the 2007 Kerch Strait oil spill event. For this, 824,026 pixels and 1,648,051 pixels were extracted from
the image for the training and test, respectively, and sea, ship, oil, and land objects were classified
from the image by using the three machine learning methods. The mean f1-scores of the SVM, RF,
and DNN models resulting from the single-pol image were approximately 0.822, 0.882, and 0.889,
respectively, and those from the dual-pol image were about 0.852, 0.908, and 0.898, respectively. The
performance improvement achieved by dual-pol was about 3.6%, 2.9%, and 1% in SVM, RF, and
DNN, respectively. The DNN model had the best performance (0.889) in the single-pol test while the
RF model was best (0.908) in the dual-pol test. The performance improvement was approximately
2.1% and not noticeable. If the condition that dual-pol images have two-times lower spatial resolution
versus single-pol images in the azimuth direction is considered, a small improvement may not be
valuable. Therefore, the results show that the performance improvement by X-band dual-pol image
may be not remarkable when classifying the sea, ships, oil spills, and sea and land surfaces.

Keywords: synthetic aperture radar (SAR); polarization; deep neural network; support vector
machine; random forest

1. Introduction

Synthetic aperture radar (SAR) has distinctive advantages in classifying marine fea-
tures, such as ships and oil spills [1–3]. An SAR image is acquired by an active sensor that
utilizes a longer wavelength electromagnetic wave than optical and thermal bands. The
SAR characteristics enable us to provide almost constant quality data regardless of the
weather or solar elevation [4]. Moreover, the radar backscattering signals from the sea, oil
spills, and ships are different. The radar signal backscattered from the oil spill is reduced
due to the dampened sea surface roughness [1,5,6] while the radar signal from ships is
bounced more than twice between ships and the sea surface, which is called the corner
effect. Thus, oil spills have a lower brightness value, while ships have a higher brightness
value compared to the surrounding sea surface on the SAR images [7–10].

The polarimetric SAR (PolSAR) approach provides us with additional information
of the marine target, and hence many studies have been performed on marine-target
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classification and detection using PolSAR images [3,11–15]. The polarization of a traditional
SAR system is usually designed to transmit and receive two orthogonal polarizations of
horizontal (H) or vertical (V) directions. Recently, compact polarization was introduced that
exploits the degree between superpositioned horizontal and vertical polarization [14,15]. It
has been known that the PolSAR approach is effective in reducing false alarm and omission
errors because the backscattering characteristics of marine objects vary depending on the
polarization [14,15]. To use the polarization property efficiently, the co-polarized phase
difference (CPD) approach has been suggested for oil spill mapping, which exploits the
inter-channel correlation of dual-polarized SAR data [12,15]. Brekke and Anfinsen (2010)
have shown the potential of dual-polarized SAR data to detect ships in an ice-infested area
with a suitable SAR statistical model [3] and Shirvany et al. (2012) have shown that the
detection performance of ships depends on the combination of the polarized SAR data [14].

Machine learning approaches, including support vector machine (SVM), random
forest (RF), artificial neural network (ANN), and convolutional neural network (CNN),
have been recently applied to many research fields [16–21]. Since the approaches exploit the
non-linear relationship between the various input data, they can remarkably improve the
SAR-based detection performance of the marine targets of interest (TOI). The SAR-derived
data, such as normalized intensity and texture maps, were employed as input data of
machine learning approaches to reduce noise of the SAR image and enhance the contrast
between the TOI and others [7–9,20,22,23]. Moreover, multi-polarized SAR-derived data
have been applied to machine learning methods for obtaining additional information about
TOI [1,21,24–26].

However, it is unclear how many machine learning models trained with dual-polarized
SAR data improve pixel-wise target classification performance over single-polarized SAR
data in marine TOI environments. Kim and Jung (2018) compared the oil spill mapping per-
formance of single- and dual-polarized SAR data via ANN [17]. In the study, the probability
peak on the lookalikes was reduced from 0.659 to 0.363 after adopting dual-polarized SAR
data. The area under curves of receiver operating characteristics (ROC) curve for single-
and dual-polarized input data were about 0.9503 and 0.9519, respectively. The difference
was not noticeable in showing the performance improvement using dual-polarized SAR
data [17]. Fan et al. (2019) introduced the U-Net architecture for ship detection using
compact polarimetric SAR data and compared the performance achieved by single-, dual-
and full-polarization [26]. The f1-scores among the different polarization modes were about
0.650, 0.863, and 0.912, respectively [26]. The research showed that the polarization data
can improve the performance of ship detection. However, since the performance validation
was tested by an object-wise approach, there was a limitation as well as performance
improvements in distributed targets such as oil spills and land and sea surfaces, which
have not been analyzed.

In this study, we compare the performance of SVM, RF, and deep neural network
(DNN) approaches on marine target classification on ships, oil spills, and sea and land
surfaces to analyze the effect of dual-polarized SAR data on pixel-wise target classification
performance improvement of the machine learning models. For this, the TerraSAR-X image
acquired from the oil spill accident in the Kerch Strait in November 2007 was used. The
data was separated by two groups: (1) group 1 has three input data composed of VV-
polarized normalized SAR intensity and texture maps and digital elevation model (DEM),
and (2) group 2 has five input data consisting of Group 1′s input data and co-polarized
coherence and CPD texture maps. Then, we trained the SVM, RF, and DNN models using
the input data of Group 1 and 2, and evaluated the model performances, and finally, the
classification performances achieved by three models and two input data groups were
analyzed and compared.

2. Study Area and Data

On 11 November 2007, a heavy storm at 35 m/s and waves at 5 m/s broke a 3500 ton
oil tanker into two pieces, which sank in the Kerch Strait [1,17,27,28]. In the aftermath of the
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accident, more than 1300 tons of oil were spilled, and most of the oil spread throughout the
Kerch Strait along the current [1,27]. Several SAR data related to the oil spill accident were
acquired from the COSMO-SkyMed, Radarsat-1, Envisat ASAR, and TerraSAR-X satellites.
Among them, the TerraSAR-X stripmap image was acquired in dual polarization (pol)
mode at 03:52, universal time (UT) on 16 November 2007. The dual-pol mode provides
the orthogonal polarization of HH and VV. Furthermore, since the wind speed at the
acquisition time was moderate (about 2 to 3 m/s), the oil spill area is well distinguished
from the image. Figure 1 shows the study area, and the gray-scaled map shown in the
middle of Figure 1 indicates the TerraSAR-X HH intensity image. Several features in the
TerraSAR-X image are characterized by ships, oil spill areas, and land and sea surfaces.

Figure 1. TerraSAR-X HH polarized intensity image acquired on 16 November 2007 after the oil spill accident occurred in
Kerch Strait on 11 November 2007. The white and black crosshairs indicate the locations of the oil tanker cargo wreck [27].
The natural-color basemap was acquired from the Sentinel-2 on 8 April 2020, and the mini-map was captured from
Google Earth.

In machine learning approaches, since the predictive model is trained based on the
relationship between ground truth and input data, the wrong ground truth can lead to
wrong classification results [7]. Conversely, the ability of classification is largely dependent
on the quality of ground truth. Thus, the confident ground truth is required to validate and
compare the classification performance of the SVM, RF, and DNN models. Ground truth
data seen in Figure 2b was manually generated from TerraSAR-X intensity map by visual
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analysis. It is not difficult to define ships, and land and sea surfaces from the SAR intensity
map. However, defining oil spills is not easy due to lookalikes. This is because pixel values
of the lookalikes are darker than the surrounding ocean surface, such as oil spills [27]. As
shown in the ground truth map, the pixels of oil spills, ships, and sea and land surfaces are
composed of about 7.9%, 0.1%, 75.5%, and 16.6% in the test image, respectively. Figure 2c–f
presents the ground truth maps magnified by the boxes A to D of Figure 2b. As shown in
Figure 2c–f; (i) all the classes are present in Figure 2c; (ii) the sea, oil spill, and land classes
are distributed with balance (Figure 2d); (iii) several ships can be found, and the lookalikes
of oil spill areas are widely distributed in Figure 2e; and (iv) Figure 2f presents several
ships and isolated oil spills.

Figure 2. Ground truth map extracted from previous studies [1,17,27]: (a) HH-polarized SAR intensity map, (b) ground
truth map, (c–f) ground truth maps magnified by the boxes A, B, C, and D from Figure 2b.

3. Methodology

The detailed processing flow is seen in Figure 3. The data processing flow can be
categorized into three main processing steps: (i) data pre-processing, (ii) classification using
the RF, SVM, and DNN models, and (iii) performance validation and comparison.

First, the pre-processing step creates five normalized maps from the TerraSAR-X HH
and VV single look complex (SLC) images and SRTM DEM to prepare the input data
of the machine learning models. Among the five normalized maps, the SAR intensity
map and SAR intensity texture map are created from the VV SLC image; the co-polarized
coherence map and CPD texture map are generated from the phase difference between HH
and VV SLC images, and the normalized topography map is produced from the SRTM
DEM. To reduce the noise of the intensity map, multi-looking and a non-local mean filter
with 5 × 5 kernel size are applied to the intensity map [29]. The normalized intensity
texture map is generated by the root-mean-square of the difference between the NL-means
filtered intensity map and multi-looked intensity map. The coherence map is created by the
ensemble average of multi-looked co-polarized interferogram with a 5× 5 moving window.
The CPD map is calculated by estimating the standard deviation of the phase difference
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between the HH and VV SLC images with a 5 × 5 moving window. The geometry of
SRTM DEM was converted to radar geometry by using look-up table, which calculated, by
intensity, cross-correlation between the multi-looked intensity map and SRTM-simulated
intensity map [17]. More details for the preprocessing can be found in [17]. Then, the
created five maps were divided into two groups: (i) single-pol and (ii) dual-pol, to compare
the classification performance between the two groups. The single-pol group consisted of
the SAR intensity, SAR intensity texture, and topography maps, while the dual-pol group
was composed of all five maps.

Figure 3. Detailed processing flow applied to this study: (a) data pre-processing; (b) classification using the RF, SVM, and
DNN models; (c) performance validation and comparison.

Second, the classification step is performed to classify ships, oil spills, and sea and
land surfaces from the input data of the two groups using the SVM, RF, and DNN models.
Normally, machine learning methods can be categorized as supervised learning, unsu-
pervised learning, semi-supervised learning, and reinforcement learning [30]. The three
models used in this study are of the supervised learning approaches. The different SVM,
RF, and DNN models were selected to analyze and compare the classification performance
between single-pol and dual-pol data. SVM is a representative machine learning model
that can be used for the linear and non-linear classification or regression [30]. RF is an
ensemble method of decision tree [30], and DNN is a deep multi-layer perception (MLP)
neural network [19,30].

To train the models from the input data and estimate the classification performance,
the training and test data were randomly extracted from the input data at a rate of 10%
(824,025 pixels) and 20% (1,648,052 pixels), respectively. Training and test data do not
overlap with each other. The pixel number of (training data and test data) for sea surface,
oil spills, ship, and land classes were (618,149 and 1,236,251), (67,997 and 137,036), (474 and
917), and (137,405 and 273,848) pixels, respectively. The class majority was largely skewed
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on the sea and land pixels. The number of the training data in the ship class was minimal.
Data imbalance can affect the final classification performance for each class [31]. In this
study, the models were trained without consideration for the data imbalance problem.
Thus, there is a limitation to comparing the performance of each class.

The hyperparameters of the SVM, RF, and DNN models were determined from the
training data using the grid search approach based on 5-fold cross validation method [9,20].
The optimal hyperparameters can be selected by comparing 5-fold cross validation perfor-
mances, which are calculated by applying various hyperparameter options, respectively.
The DNN model consists of five hidden layers, which have 200, 200, 100, 100, and 50 neu-
rons, respectively. The rectified linear unit (ReLU) was used as an activation function, and
the softmax function was used for classification in the last layer. The stochastic gradient
descent (SGD) method was used as an optimizer, and the learning rate of 0.01 was applied.
For the RF model, the impurity is a key parameter to determine the splitting criterion of
RF [30]. In this study, the Gini impurity was selected for the splitting criterion because it
has a computational advantage. The number of trees in the RF model was fixed at 100.
Radial basis function (RBF) kernel generally showed best performance among the kernel
trick strategy, making it most widely utilized for the kernel trick of SVM [30]. Thus, the
RBF kernel was adopted for the SVM model. By using the grid search approach (Hwang
and Jung, 2018), the parameters of C and gamma in the single-pol and dual-pol groups
were determined as 78,475,997.0351 and 1.6238 × 10−6 and 9000.0000 and 1.9413 × 10−6,
respectively. The one-vs.-rest (ovr) scheme was used for the multi-label class classification.
The optimal hyperparameters used for this study can be found in Table 1. Three single-pol-
derived classification maps were created from the single-pol input data using the DNN, RF,
and SVM models, and three dual-pol-derived classification maps were generated from the
dual-pol input data using the three models. Thus, a total of six multi-label classification
maps were generated.

Table 1. The principal hyperparameters and architecture of deep neural network, random forest, and
support vector machine used in this study.

Model Hyperparameters Single-Pol. Dual-Pol.

DNN

Epochs 500
Batch size 2000

Number of hidden nodes [50, 100, 100, 200, 200]
Learning rate 0.01

Optimizer Stochastic gradient descent (SGD)
Activation function Rectified linear unit (ReLU)

RF
Number of estimators 100

Criterion Gini

SVM

Kernel Radial basis function (RBF)
Decision function shape One-vs.-rest (ovr)

C 78,475,997.0351 9000.0000
gamma 1.6238 × 10−6 1.9413 × 10−6

Third, the classification performances of the six classification maps were estimated
from the test data by using precision, recall, and f1-score [1,30,32]. The precision can be
defined as follows:

Precision =
True Positive

True Positive + False Positive
(1)

and the recall and f1-score can be defined as given by:

Recall =
True Positive

True Positive + False Negative
(2)
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and
f1-score = 2 ∗ Precision ∗ Recall

Precision + Recall
(3)

In addition, to assess the contrasts of each class in the probability distribution, the
precision-recall curve and average precision (AP) were calculated. The effectiveness of the
multi-pol data in the marine environment classification was analyzed using the estimated
classification performances of the six classification maps.

4. Results and Discussion

Figure 4 shows the normalized input data. To train the SVM, RF, and DNN models,
the input data including (i) the shuttle radar topography mission (SRTM) digital elevation
model (DEM) map, (ii) non-local mean (NL-means) filtered SAR intensity map, (iii) SAR
intensity texture map, (iv) co-polarized interferometric coherence map, and (v) CPD texture
map were generated from the TerraSAR-X image. The input data were normalized by
min-max histogram adjustment; hence, they have a range between 0 and 1.

Figure 4. Normalized input data: (a) digital elevation model from shuttle radar topography mission; (b) VV polarized
SAR intensity map; (c) VV polarized SAR intensity texture map; (d) co-polarized interferometric coherence map; and
(e) co-polarized interferometric phase difference texture map.

The SVM, RF, and DNN model parameters were estimated from the training data using
the optimal hyperparameters (Table 1) in the single-pol and dual-pol groups, respectively.
The training and test data of the single- and dual-pol groups were extracted from the same
positions. However, the number of neurons in the input layer was three in the single-pol
group while the number of neurons was five in the dual-pol group. The multi-label maps,
which were respectively classified from the single-pol group by the SVM, RF, and DNN
models, was seen in Figure 5. The significant difference between the three classification
maps could not be found. However, the oil spill classification of the RF model was worse
than the SVM and DNN models. The predicted proportions between sea surface, oil spills,
ships, and land surface were approximately (1) 75.19%, 8.18%, 0.04%, and 16.58% in the
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DNN model, (2) 75.29%, 8.07%, 0.05%, and 16.59% in the RF model, and (3) 75.90%, 8.04%,
0.03%, and 16.03% in the SVM model, respectively. When compared to the truth data of
75.5%, 7.9%, 0.1%, and 16.6%, respectively, the oil spills were over-predicted, while the
ships were under-predicted, especially for the SVM model, in which the classification
performance for the ships was the worst.

Figure 5. Multi-label maps classified from the single-pol group using the (a) DNN, (b) RF, and
(c) SVM models.

Figure 6 represents the multi-label classification maps magnified from Figure 5 using
the boxes A to D of Figure 3. As shown in Figure 6c,i,l, the ship pixels were not classified
well in the SVM model. Common in the three model results, oil spills were not well
detected in areas with relatively high NL-mean filtering intensity maps. The oil spills
were not well classified in the RF model. The oil spill pixels classified by RF were noisy as
shown in Figure 6b,e,h. This pattern can be found in the false alarms of oil spill lookalikes
(Figure 6h). The result indicates that the input data in the single-pol group does not have
enough information to classify oil spills and its lookalikes using the RF model. In addition,
the misclassification of the oil spill lookalikes was found in all the models as seen in
Figure 6g–i. The lakes in the land were misclassified as oil spills as seen in Figure 6d–f and
the sea surface was misclassified as oil spills as shown in Figure 6g–i. The classification of
the ships and land surface was performed well in the DNN and RF models (Figure 6a,b,d,e)
when compared to the SVM model (Figure 6c,f). In the SVM classification, we can find that
several land surfaces were misclassified as sea surfaces (Figure 6f).
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Figure 6. Multi-label classification maps magnified from Figure 5 using the boxes A to D of Figure 2:
(a,d,g,j) classification maps magnified from DNN; (b,e,h,k) classification maps magnified from RF;
and (c,f,i,l) classification maps magnified from SVM.

By adding co-polarized coherence and CPD texture map as input data, we can deter-
mine if the classified maps become clearer compared to the single-pol group (Figure 7).
The improvement on oil spill classification performance in the DNN and RF models can
be determined by visual analysis (Figure 7a,b). The noisy false positive pattern of RF was
remarkably reduced as shown in Figure 7b. In the SVM model, the false negative of land
surface was reduced, but the false positive of land surface increased as shown in Figure 7c.
The predicted proportions between sea surface, oil spills, ships, and land surface were
approximately (1) 75.64%, 7.71%, 0.04%, and 16.60% in the DNN model, (2) 75.98%, 7.37%,
0.05%, and 16.60% in the RF model, and (3) 76.06%, 7.02%, 0.06%, and 16.87% in the SVM
model, respectively. When compared to the result from the single-pol group, the prediction
proportions of oil spills decreased, and land surfaces increased.
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Figure 7. Multi-label maps classified from the dual-pol group using (a) DNN, (b) RF, and (c)
SVM models.

Figure 8 represents the multi-label classification maps magnified from Figure 7 using
the boxes A to D of Figure 2. In the oil spill classification maps of DNN (Figure 8a,d,g)
and RF (Figure 8b,e,h), a detailed oil spill distribution may be classified better than the
single-pol group. The classification quality of the linear-shaped oil spills has been improved
as seen in Figure 8g,h. The false positive of oil spill lookalikes was reduced in the DNN
and RF models (see Figure 8g,h). Conversely, the oil spill mapping performance of SVM
was degraded versus the single-pol group (see Figure 8c,f,i). Several oil spill areas were
misclassified as the land surface class by SVM. The true positive of linear-shaped oil spills
was reduced as well. In addition, the false positive of oil spill lookalikes was similar to
the SVM result in the single-pol group. The ship pixels were more clearly predicted in
the dual-pol group as seen in Figure 8a–c,g–l, when compared to the single-pol group,
as shown in Figure 6a–c,g–l. In the DNN result, however, several pixels of nearby ships
were misclassified as the land surface class (Figure 8a,g,j). The false positive of ships also
increased in the SVM model as seen in Figure 8l.
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Figure 8. Multi-label classification maps magnified from Figure 7 using the boxes A to D of Figure 2:
(a,d,g,j) classification maps magnified from DNN; (b,e,h,k) classification maps magnified from RF;
and (c,f,i,l) classification maps magnified from SVM.

A quantitative analysis was performed to assess the effect of dual-polarized SAR data
on improving pixel-wise target classification performance of the data mining approach.
Table 2 summarizes the performance evaluation scores of the single- and dual-pol groups,
which are the precision, recall, f1-score, and mean f1-score. Every score was calculated by
comparing ground truth and prediction results using the test data. The f1-score, which
is a harmonic average of precision and recall, can give us a quantitative performance
for the imbalanced class case. The best f1-scores of sea surface, oil spill, ship, and land
classes can be found at the RF model in the dual-pol group. The best f1-scores were
about 0.983, 0.846, 0.809, and 0.992 in the sea surface, oil spills, ships, and land surface,
respectively, while the worst f1-scores were approximately 0.974, 0.779, 0.532, and 0.970,
respectively. The ship classification performance was particularly low due to the data
imbalance problem. When comparing the same model trained from the single- and dual-
pol groups, the dual-pol group increased all the f1-scores except the oil spill classification
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performance of SVM, and the classification performance of the ships in the SVM model
showed the largest improvement of about 0.14. The f1-scores in the RF model improved by
about 0.048 and 0.039 in oil spills and ships, respectively. The improvement was relatively,
high although it was lower than the performance improvement of the ships in SVM. The oil
spill classification degraded from 0.812 to 0.779 in the SVM model. The mean f1-scores of
DNN, RF, and SVM in the single-pol group were about 0.889, 0.882, and 0.822, respectively.
The result from the DNN model showed the best performance in the single-pol group.
The mean f1-scores of the ANN, RF, and SVM models in the dual-pol group were about
0.898, 0.908, and 0.852, respectively. The RF model showed the best performance in the
dual-pol group. The mean f1-scores in the dual-pol group were higher than the single-
pol group. The RF model showed the highest improvement of 0.0251, while the lowest
improvement of 0.0089 could be found at DNN. This result indicates that the dual-pol SAR
data may enhance the performance of the marine environment classification. However,
when compared between the best model in the single- and dual-pol groups, the DNN
model had the best performance (0.889) in the single-pol test while the RF model was best
(0.908) in the dual-pol test. The improvement between the best model performance was
about 2.1%. It may not be said that the improvements are noticeable.

Table 2. Performance evaluation of the single- and dual-pol groups using precision, recall, false alarm, f1-score, and mean
f1-score.

Input Model Hyperparameters Precision Recall F1-Score Mean F1-Score

Single-pol.
group

DNN

Sea surface 0.976 0.978 0.977

0.889
Oil 0.826 0.815 0.821

Ship 0.894 0.681 0.773
Land 0.987 0.984 0.986

RF

Sea surface 0.973 0.977 0.975

0.882
Oil 0.811 0.786 0.799

Ship 0.831 0.718 0.770
Land 0.987 0.984 0.986

SVM

Sea surface 0.968 0.980 0.974

0.822
Oil 0.825 0.800 0.812

Ship 0.758 0.410 0.532
Land 0.989 0.953 0.971

Dual-pol.
group

DNN

Sea surface 0.980 0.982 0.981

0.898
Oil 0.842 0.828 0.835

Ship 0.892 0.704 0.787
Land 0.990 0.988 0.989

RF

Sea surface 0.979 0.986 0.983

0.908
Oil 0.875 0.819 0.846

Ship 0.862 0.762 0.809
Land 0.993 0.991 0.992

SVM

Sea surface 0.973 0.980 0.976

0.852
Oil 0.825 0.738 0.779

Ship 0.641 0.715 0.676
Land 0.970 0.984 0.977

The precision-recall curve and average precision (AP) score were used for quantita-
tively validating the model ability to classify the multi-label classes. Figure 9 indicates the
precision-recall curve and AP scores for each model, which was calculated by comparing
ground truth and prediction results using the test data. The mean AP (mAP) scores of DNN
were about 0.920 and 0.943 in the single- and dual-pol groups. In the single-pol group, the
DNN model was equally best in the f1-score comparison. The DNN classification perfor-
mance in the dual-pol group was approximately 0.023, which was better than the single-pol
group. The mAP scores of RF were about 0.900 and 0.944 in the single- and dual-pol groups,
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respectively. In group 2, the RF model was slightly better than the DNN model. The mAP
score of SVM was worse than other models due to the ship class. Since the SVM’s AP
scores of ships were as low as about 0.333 and 0.708 in the single- and dual-pol groups,
respectively, the mAP score of SVM was significantly reduced (Figure 9). When compared
between the best classification in the single- and dual-pol groups, the DNN model had
the best performance (0.920) in the single-pol test while the RF model was best (0.944) in
the dual-pol test. The improvement between the best model performance was about 2.6%.
This is the same as the f1-score evaluation result. Therefore, the classification performance
based on mAP can be summarized as follows: (i) the dual-pol classification was slightly
better than the single-pol classification in the marine environment classification; (ii) the RF
model was best in the dual-pol group; (iii) the performance of DNN was similar to RF in
the dual-pol group; and iv) SVM was worst in both the single- and dual-pol groups.

Figure 9. Precision-recall curves in (a,b,c) the DNN, RF, and SVM results in the single-pol group and (d,e,f) DNN, RF, and
SVM results in the dual-pol group.

From the results, we can conclude the following: (i) in the case that single-pol SAR
data is only available, the DNN may be the best model for the application of marine target
classification; (ii) the RF model may be the best approach to classify marine targets when
dual-pol SAR data is available; (iii) by using dual-pol SAR data, the improvement of the
classification performance can be expected, but the improvement may not be noticeable
(less than 3%); (iv) the DNN and RF models from the dual-pol SAR data can reduce the
false positive of oil spill lookalikes; and (v) the RF model in the dual-pol group allows us
to produce the marine environment classification map with the mean f1-score, which is
higher than 0.9.
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5. Conclusions

The SAR dual-polarization information can give us additional information for the
marine environment classification. Thus, many studies have been conducted to classify
the marine targets using the dual-polarization data. However, it is not clear whether
the dual-polarized SAR data can improve the classification performance in the marine
environments. In this study, we analyzed and compared the multi-label classification
performance achieved from single- and dual-polarized SAR data using the DNN, RF,
and SVM models. For this, five normalized maps, which are the normalized height
map, non-local mean filtered SAR intensity map, SAR intensity texture map, co-polarized
interferometric coherence map, and CPD texture map, were created from the TerraSAR-
X SLC data, and they were used as the input data of the DNN, RF, and SVM models.
To compare the classification performance estimated from the single- and dual-pol data,
the input data were divided into single-pol and dual-pol groups, and the DNN, RF, and
SVM models were trained by the input data of the two groups. Thus, three multi-label
classification maps were created using the DNN, RF, and SVM models from the single-pol
group, and the other three multi-label classification maps were generated using the DNN,
RF, and SVM models from the dual-pol group.

The mean f1-score and mAP score were used for the performance comparison of the
DNN, RF, and SVM models in both the single- and dual-pol groups. The mean f1-scores
of the dual-pol group were better than those of the single-pol group in all classes and
models. Mean f1-scores of DNN, RF, and SVM were about 0.889 and 0.898 in the single-
and dual-pol groups, respectively, 0.882 and 0.908 in the single- and dual-pol groups,
respectively, and 0.822 and 0.852 in the single- and dual-pol groups, respectively. The mAP
scores of DNN, RF, and SVM were approximately 0.920 and 0.943, 0.900 and 0.944, and
0.798 and 0.890 in the single-pol and dual-pol group, respectively. The estimated mean
f1-score and mAP scores indicate that: (i) when single-pol SAR data is only available, DNN
may be the best model; (ii) the RF may be best in classifying marine targets when dual-pol
SAR data is used; (iii) the improvement of the classification performance by dual-pol data
can be expected, but the improvement may be not remarkable; (iv) in the consideration
that dual-pol images have the expense of resolution or swath, those small improvements
may not be valuable; and (v) the multi-label classification map in the marine environment
may be generated with a mean f1-score of higher than 0.9.

In this study, we compared the single- and dual-pol SAR data for classifying marine
targets. However, this study has three main limitations. First, the spatial characteristics of
the input data could not be exploited in the model training, since the DNN, RF, and SVM
models were not the patch-wise but the pixel-wise model. Thus, further study needs to
be conducted using image-patch-based machine learning models such as convolutional
neural network (CNN), and the performance comparison between the patch- and pixel-
wise models needs to be performed. Second, the input data used in this study had the data
imbalance. The proportions of all the classes were about 75.5%, 7.9%, 0.1%, and 16.6% in
the sea surface, oil spills, ships, and land surface, respectively. Since the class majority was
largely skewed on the sea and land pixels, the trained models were biased toward the major
classes. Thus, we need to make the number of training data similar in all classes. Third, the
results were derived from only a single PolSAR data, although the marine condition (such
as wind speed) at the data acquisition is an important factor in marine target classification.
To assess the influence of PolSAR data on the marine target classification, various case
studies are additionally needed according to the different marine conditions.
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