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Abstract: Cloud detection is an essential and important process in remote sensing when surface
information is required for various fields. For this reason, we developed a daytime cloud detection al-
gorithm for GEOstationary KOrea Multi-Purpose SATellite 2A (GEO-KOMPSAT-2A, GK-2A) imagery.
For each pixel, the filtering technique using angular variance, which denotes the change in top of
atmosphere (TOA) reflectance over time, was applied, and filtering technique by using the minimum
TOA reflectance was used to remove remaining cloud pixels. Furthermore, near-infrared (NIR) and
normalized difference vegetation index (NDVI) images were applied with dynamic thresholds to
improve the accuracy of the cloud detection results. The quantitative results showed that the overall
accuracy of proposed cloud detection was 0.88 and 0.92 with Visible Infrared Imaging Radiometer
Suite (VIIRS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO),
respectively, and indicated that the proposed algorithm has good performance in detecting clouds.

Keywords: GK-2A; cloud detection; multitemporal images

1. Introduction

Clouds are visible masses of condensed water vapor, ice crystals, or other particles
in the atmosphere [1]. Clouds are efficient modulators of Earth’s radiative budget and
control many other aspects of the climate system [2] because clouds reflect solar radiation
back to space and restrict the emission of thermal radiation from Earth [3]. Clouds are
affected by the presence of aerosols and modify the atmospheric composition in several
ways, including the depletion of ozone when they form in the polar stratosphere [4].
Therefore, the Global Climate Observing System (GCOS) has selected cloud properties,
which are considered suitable for global climate observation and have a significant impact
on the needs of the United Nations Framework Convention on Climate Change (UNFCCC)
and other stakeholders, as Essential Climate Variables (ECVs) [4]. On the other hand,
because roughly 50% of the surface is covered by clouds at any time, cloud detection is
an essential and important process of remote sensing data when surface information is
required for various fields, e.g., crop and drought monitoring, land use and land cover
(LULC) classification, surface temperature retrieval, and snow-covered area retrieval [5–8].
For these reasons, several institutions around the world are generating cloud products
using satellite images.

For cloud detection using satellite data, several types of retrieval algorithms, including
spectral-based, multitemporal image-based, and machine learning-based methods, have
been developed [5,8–11]. Mahajan and Fataniya [1] provided algorithms for cloud detection
from satellite imagery classified by the existence of clouds, cloud types, snow/ice detection,
and cloud/cloud shadows from 2004 to 2018.

Spectral-based methods use the different signals of individual spectral bands. Specifi-
cally, clouds reflect more shortwave radiation and are colder than the surface, as measured
by thermal infrared (TIR) [12]. Spectral-based methods mainly use thresholds of individual
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channels, differences in brightness temperature, and ratios of channels. The thresholds are
calculated by using these characteristics of clouds. The method of setting the threshold
is the simulation of the radiance using a radiative transfer model (RTM) [13], and the
adjustment of the RTM-based threshold by using the satellite/solar zenith angle [9,14] or
by experts, e.g., the brightness temperature difference (BTD) between 10.5 µm and 13.3 µm
is for thick high clouds and deep convective clouds, the BTD between 7.3 µm and 8.7 µm
is for nighttime clouds over a humid surface, and the BTD between 3.9 µm and 10.5 µm is
for lower clouds [15,16]. In addition, the thresholds are classified by latitude, day/night,
and land cover because of the different characteristics of the climate and surface, and the
limitation of usable channels in the daytime [12], e.g., in the case of polar regions, when
global threshold is used, it is difficult to detect clouds owing to the poor thermal and visible
contrast between clouds and the underlying snow/ice surface and small radiances from
the cold polar atmosphere [17,18]. Therefore, the thresholds, which are unique in polar
regions, are calculated separately from those in areas with other climatic characteristics.
Spectral-based methods are widely used and applied to various projects, such as the In-
ternational Satellite Cloud Climatology Project (ISCCP), AVHRR Processing scheme Over
clouds, Land, and Ocean (APOLLO), and MODerate resolution Imaging Spectroradiometer
(MODIS) cloud mask algorithms [9,19].

Cloud detection methods based on multitemporal images are mainly conducted by
regression and filtering techniques. Because geostationary satellite takes advantage of
high spatiotemporal resolution, Stökli et al. [20] developed an algorithm that is based
on a regression model using diurnal clear-sky reflectance and brightness temperature. If
the number of clear-sky brightness temperatures in the TIR channel is vacant or limited,
the national weather prediction (NWP)-based skin temperature is collected and used to
generate regression model [20]. After regression models are constructed and simulated
clear-sky reflectance/brightness temperatures are calculated, a Bayesian classifier is applied
to determine the cloud pixels by comparison between the target and simulated datasets.
Zhu and Woodcock [21] developed a multitemporal mask (Tmask) algorithm by using
multitemporal images to improve the accuracy of the function of mask (Fmask) [22], which
is a spectral-based cloud detection method. Tmask builds a time series model by using
robust iteratively reweighted least squares (RIRLS) with multitemporal images, in which
clouds are filtered with Fmask. The difference between the estimated value of the time
series model and the actual value is compared, and clouds, cloud shadows, and snow for
an entire stack of images are discriminated. Qiu et al. [23] developed a cirrus cloud mask
(Cmask) to enhance the accuracy of cirrus cloud detection. Cmask also uses RIRLS as the
time series model, and only a cirrus channel (1.38 µm) is used. The difference from Tmask
is that Cmask uses the water vapor because sudden changes in the cirrus band due to
fluctuations in water vapor are captured and applied to the time series model.

Machine learning-based methods can be classified by whether they involve finding
thresholds or segmenting features of grayscale or RGB images. All machine learning-
based methods require gathering the proper and sufficient reference data to meet the
research purposes. In the case of thresholds, random forest (RF) models [24–26] and neural
networks [10,27] are mainly used in many studies. Since these methods use time-fixed
reference data, they cannot respond to changes in pixel values due to climate change or
special weather phenomena. To solve this problem, the training process is performed
periodically or when a certain threshold is reached through comparison with the true
value [26]. In the case of feature segmentation of grayscale or RGB images, convolutional
neural network (CNN)-based algorithms are widely used with the rapid development of
image processing [10,28,29]. Similar threshold-based machine learning methods, CNNs,
also require using a training and true dataset [10]. Xie et al. [28] made a deep CNN
with two branches, which were followed by two fully connected layers, with multiscale
features. As the true dataset, satellite images were converted to hue, saturation, intensity
(HSI) for the enhancement of cloud pixels. Additionally, the superpixel segmentation
method, which was modified by Xie et al. [28], was used to extract cloud pixels. Drönner



Remote Sens. 2021, 13, 3215 3 of 21

et al. [10] developed the cloud segmentation CNN (CS-CNN) with Spinning Enhanced
Visible and InfraRed Imager (SEVIRI) on Meteosat Second Generation (MSG) satellite. The
CS-CNN was based on the U-Net architecture in terms of the composition of a sequence
of downsampling layers, followed by another sequence of upsampling layers. The true
(reference) dataset was the CLoud property dAtAset using SEVIRI-Edition 2 (CLAAS-2),
and this dataset was generated by using spectral-based method.

The National Meteorological Satellite Center (NMSC) of the Korea Meteorological
Administration (KMA) developed a cloud detection algorithm using GEOstationary KO-
rea Multi-Purpose SATellite 2A (GEO-KOMPSAT-2A, GK-2A), which was launched on
4 December 2018. The cloud detection algorithm developed by NMSC was mainly a
spectral-based method, which was calculated by comparison with the results of Radiative
Transfer for TIROS Operational Vertical Sounder (RTTOV) and the fine adjustment pro-
cess by experts [16]. In addition to the spectral-based method, tests of spatial uniformity,
inversion layer correction, and usage of top of atmosphere (TOA) reflectance in clear-sky
conditions were executed and used to improve the accuracy [16]. However, in the case
of TOA reflectance under clear-sky conditions, the probability of acquiring the minimum
TOA reflectance under clear-sky conditions is low, especially in the summer season, be-
cause there are many periods of precipitation [16]. Furthermore, thresholds are sometimes
unstable because of the effect of changes in atmospheric components and the composition
of complex land surfaces.

Therefore, to improve the performance of cloud detection in the daytime, we propose
a multitemporal image-based cloud detection algorithm by combining filtering techniques,
which consist of angular variation and minimum TOA reflectance, and dynamic thresholds
with near-infrared (NIR) and normalized difference vegetation index (NDVI) images. This
study is organized as follows: Section 2 presents the input, comparison, and validation data
used in this study, Section 3 describes the methodology of the cloud mask using GK-2A
multitemporal images, and Section 4 provides the validation results (against Visible In-
frared Imaging Radiometer Suite (VIIRS) and Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) cloud products with the GK-2A spectral-based algorithm
made by NMSC). Section 5 presents a discussion of the proposed algorithm, and Section 6
presents a summary and conclusion.

2. Materials
2.1. GK-2A

GK-2A is the second geostationary meteorological satellite for meteorological missions
and space weather observation tasks in the Rep. of Korea. GK-2A was launched on 4 De-
cember 2018. GK-2A has a high-performance meteorological sensor named the Advanced
Meteorological Imager (AMI). The AMI sensor has four visible channels, two shortwave
infrared channels, four midwave infrared channels, and six thermal infrared channels. In
addition, the AMI has a spatial resolution from 0.5 km to 2 km, and it captures imagery
every 2 min around the Korean Peninsula and every 10 min for the full disk (FD) [15]. In
this study, we used visible and near-infrared (VNIR) channels observed in East Asia that
were clipped from the FD dataset, as shown in Figure 1.
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Figure 1. Study area of East Asia.

2.2. Comparison Dataset
GK-2A Cloud Mask

The GK-2A cloud mask developed by NMSC, as shown in Figure 2a, utilizes the con-
ventional spectral-based algorithm by using a single channel and the difference between
channels. A single channel-based threshold detects thick clouds by using shortwave chan-
nels (0.6, 0.8, 1.3, and 1.6 µm) and a longwave channel (10.4 µm). In the case of shortwave
channels, the reflectance in clear-sky conditions is derived from the minimum value of the
stacked dataset for 15 days. The clouds can be detected with a defined threshold calculated
by the difference between the target TOA reflectance and clear-sky reflectance. In the case
of a difference between channels, BTD is based on spectral characteristics by combining
the channels from 3.9 µm to 13.3 µm [16], e.g., the BTD between 10.4 µm and 12.3 µm,
which is organized by window channels, is for cirrus cloud detection [16]. When a cirrus
cloud exists in the pixel, the value of BTD between 10.4 µm and 12.3 µm is higher than
when there is a clear sky or thick cloud. Similar to the BTD between 10.4 µm and 12.3 µm,
eight threshold tests using BTD were executed and used. Thresholds are defined by using
RTTOV, and the analyst adjusts the threshold by checking the result [16]. In addition, a
spatial homogeneity test is also used, and discontinuities are resolved considering tem-
poral variability [16]. The spatial homogeneity test is based on the standard deviation in
3 × 3 pixels [16]. If 3 × 3 pixels are filled with only clouds or only clear-sky observations,
the standard deviation is lower. However, when clouds and clear-sky observations are
mixed in pixels, the standard deviation is higher. Therefore, the spatial homogeneity test is
useful for checking cloud edges [16]. The GK-2A cloud mask has a problem, in which the
probability of acquiring the minimum TOA reflectance under clear-sky conditions is low,
especially in the summer season, because there are many periods of precipitation [16]. For
this reason, we used the GK-2A cloud mask as a comparison dataset to demonstrate that
the proposed algorithm improves the accuracy by solving this problem. The GK-2A cloud
mask is available via NMSC webpage [30].
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Figure 2. Example of comparison and validation dataset: (a) GK-2A cloud mask acquired from 15 June 2020 03:00 UTC,
(b) CALIPSO cloud product acquired from 15 June 2020 05:40 UTC. The red line in the image denotes path of CALIPSO
data in specific time range, and (c) VIIRS cloud mask acquired from 15 June 2020 06:50 UTC.

2.3. Validation Dataset
2.3.1. Suomi-NPP

The Suomi National Polar-orbiting Partnership (Suomi-NPP) was launched in Octo-
ber 2011 to demonstrate the performance of environmental data records and to provide
continuity for data series observations initiated by NASA’s EOS series missions (Terra,
Aqua and Aura) [31]. The VIIRS equipped in Suomi-NPP has sixteen moderate resolution
bands, five imaging bands, and a day-night band from 0.41 µm to 12.5 µm to observe
the environment [15]. We used the VIIRS cloud mask (VCM) ‘CLDMSK_L2_VIIRS_SNPP’
as the validation dataset, which is available on the Earthdata webpage [32]. The VCM
algorithm consists of various cloud detection tests grouped by surface type and solar
illumination condition [33]. Each cloud detection test employs three thresholds: high
cloud-free confidence, low cloud-free confidence, and a midpoint threshold [33]. Assuming
three tests are applied to pixels, the overall cloud confidence is based on the cube root of
the product of the probabilities for these three tests [33]. Based on this overall cloud-free
probability, the VCM categorizes a pixel as confidently cloud, probably cloud, probably
clear, or confidently clear. The VCM has a spatial resolution of 750 m and a temporal
resolution of twice a day. Only daytime data were used among the provided VCM, and the
spatial resolution was resampled to 2 km, which is in the same resolution as GK-2A cloud
detection data, with nearest neighbor resampling method.

2.3.2. CALIPSO

CALIPSO was launched in April 2006 to observe the global distribution and prop-
erties of aerosols and clouds and is now flying in formation with the A-train constel-
lation of satellites [34,35]. CALIPSO carries an Imaging Infrared Radiometer (IIR), a
moderate spatial resolution Wide Field of-view Camera (WFC), and a Cloud-Aerosol LI-
dar with Orthogonal Polarization (CALIOP). Among the sensors, CALIOP has a pulse
width of 20 ns and a pulse repetition rate of 20.25 Hz using a unique Nd:YAG laser pulse.
CALIPSO detects the backscattered signal at wavelengths of 532 nm and 1064 nm [36]. In
this study, we used cloud layer data with 1 km spatial resolution (Figure 2b), which is
named ‘CAL_LID_L2_01kmCLay-Standard, version 4.20′ and is available on the Earth-
data webpage [32]. In the dataset, cloud pixels in feature classification flags were used to
validate the proposed algorithm. We made a collocation dataset between the GK-2A and
CALIPSO cloud datasets via a K-dimension tree (KDTree) and nearest neighbor search
(NNS) within 0.03◦, as shown in Figure 2b. The red line in Figure 2b is an example of the
CALIPSO dataset.



Remote Sens. 2021, 13, 3215 6 of 21

3. Methodology

Owing to the high temporal resolution of the GK-2A, there is a large opportunity
to obtain clear-sky reflectance even if there is an influx of clouds. In addition, variations
in TOA reflectance due to cloud inflow and the occurrence of convective clouds can be
identified. Since these advantages are useful for cloud masks, we developed a four-step
cloud detection algorithm, as shown in Figure 3.

• Preprocessing;
• Filtering by angular variation;
• Filtering using minimum TOA reflectance;
• Dynamic threshold.

We primarily used 0.86 µm in the processes of filtering techniques and dynamic
thresholds because 0.86 µm is widely used in various daytime cloud detection algo-
rithms [13,16,37,38]. The other channels of 0.64, 1.38, and 1.6 µm were additionally used
in the dynamic threshold section to improve the accuracy of the cloud mask. In case of
0.64 µm, we used this channel to calculate NDVI. All the imagery was resampled to 2 km
using linear spline interpolation.

Figure 3. Flowchart of GK-2A multitemporal cloud detection algorithm.
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3.1. Preprocessing

The digital number (DN) of the GK-2A observation dataset was converted to TOA
reflectance to facilitate identification of the data in each pixel and to minimize the effect of
the solar zenith angle.

Re fi,j,λ =
π
(
aλDNi,j,λ + bλ

)
d2

ESUNλcos
(
SZAi,j

) (1)

where Re f denotes the TOA reflectance, i and j are the pixel coordinates, λ is the wave-
length, d is the distance between Earth and Sun in astronomical units, a and b are the gain
and offset to convert DN to radiance, respectively, ESUN is the mean solar exoatmospheric
irradiance, and SZA is the solar zenith angle. ESUN can be calculated by integrating the
solar spectral irradiance IRR and the GK-2A spectral response function spectral response
function (SRF). The solar spectrum to derive solar spectral irradiance (Wm−2µm−1) is
acquired from the National Renewable Energy Laboratory (NREL) webpage [39–41]. We
used the synthetic Gueymard spectrum, which covers the spectral region from 0.4 µm to
1.7 µm in 1 nm steps and from 1.7 µm to 4 µm in 5 nm steps [40]. Because a difference in
resolution between the solar spectrum and GK-2A SRF exists, we used linear interpolation.

ESUNλ =
∫ IRRλSRFλdλ

SRFλdλ
(2)

The ESUNλ values of 0.6, 0.8, 1.3, and 1.6 µm were calculated and are shown in Table 1.

Table 1. Mean solar exoatmospheric irradiance from visible to NIR channels of GK-2A.

Band 0.64 µm 0.86 µm 1.38 µm 1.6 µm

ESUNλ 1638.95 977.48 360.87 246.16

3.2. Filtering Technique by Angular Variation

Reflectance represents the ratio of reflected radiance to the incident flux at a specific
surface. Reflectance under clear-sky conditions is almost unchanged if the effect of the
change in solar zenith angle is corrected and the effects of atmospheric components (scat-
tering, absorption) are weak. As shown in Figure 4a, red and blue lines (dot) indicate
the variation in reflectance observed under clear-sky conditions, and orange and cyan
lines (square) indicate that clouds are approaching or flowing away from a specific pixel.
When clouds approach a specific pixel, the reflectance of the pixel gradually increases.
By using these characteristics, we propose the time-variant filtering technique by using
angular variation to detect and mask cloud pixels. If there is a pixel located in a clear
sky, change in reflectance over time should be approximately 45 degrees. However, since
there are changes in reflectance due to variations in surface characteristics and atmospheric
components that cause the scattering and absorption of radiance, the angle of reflectance
varies within a certain range. As shown in Figure 4b, the upper figure shows the variation
in angle in clear-sky reflectance, which is located in specific pixels of land and sea. The
lower figure presents the change in angle caused by clouds. Regular angle variation can be
checked in clear-sky observations through Figure 4b. The angle variation is more stable
on land than on sea. Therefore, we set the threshold from 44◦ to 46◦ for both land and sea,
and the range of thresholds was selected by finding the angular change in several pixels
in clear-sky observations. The filtering technique is inspired by Graham’s scan algorithm,
which is a method to find the convex hull of finite points on a plane.

θt = arctan
(

Re ft

Re ft−∆t

)
(3)

where θ denotes an angle, t is the acquisition time of imagery, ∆t is the time step, and we
set 10 min as the time step.
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Figure 4. Variations in TOA reflectance of 0.86 µm and the angle of cloud/clear-sky pixels (6 June 2020 and 8 June 2020) in
specific locations (land: 36.76◦ N/127.48◦ E, sea: 39.01◦ N/128.58◦ E): (a) TOA reflectance and (b) angle in degrees over
UTC time.

3.3. Filtering Technique Using Minimum TOA Reflectance

If clouds continue to flow into the area, the filtering technique of angular variation
cannot detect and mask the clouds. This is because high reflectance in the pixel is main-
tained. In other words, even though the pixel is located in clouds, the angle obtained as the
time changes remains within 44◦ to 46◦ , similar to the clear-sky observation. Therefore, we
solve this problem by using minimum TOA reflectance [42,43]. Specifically, we calculated
the minimum TOA reflectance with a stacked dataset for seven days, and we calculated
the difference between the target and minimum TOA reflectance. The cloud pixels were
detected and masked by using a threshold calculated in advance. In this process, if only
the minimum TOA reflectance was used to filter the clouds without using a threshold,
the variation in reflectance due to the changes in surface characteristics and atmospheric
components could not be considered. To prevent this problem, we used a threshold. To
calculate the threshold, we need to fully separate cloud pixels from clear-sky observations
in time series graphs. Therefore, we revised and used the cloth simulation filtering (CSF)
method [44]. CSF was originally developed to find the shape of terrain, which is a digital
surface model (DSM), by dropping a virtual cloth down on an inverted (upside-down)
point cloud [44]. CSF consists of two steps: ‘displacement by gravity’ and ‘internal force’.
Of these steps, we only used the displacement by gravity.

Xt = 2Re ft − Re fmin +
G
m

∆t2 (4)

where Xt denotes displacement by gravity, Re fmin represents the minimum TOA reflectance,
and it is calculated by accumulating all imagery for seven days before the target date; m is
the mass of the particle, which is usually set to 1, and G is the gravitational constant. We
reverse the dataset by using (1− Re f )× 10 and use Equation (4). The red dots shown in
Figure 5 are the results of the calculated displacement by gravity. As shown in Figure 5a,c,
if clouds which were not masked by filtering by angular variation exist, the difference from
the minimum TOA reflectance (highest point, blue dot) is higher when using displacement
by gravity than when using only the observed reflectance. Therefore, displacement by
gravity used in this study amplifies the difference between the minimum and target TOA
reflectance, as shown in Figure 5.
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Figure 5. Graph of filtering process using minimum TOA reflectance. The TOA reflectance in the imagery were converted
to (1− TOA reflectance)× 10. The bar graph indicates the difference between blue and red dots, the blue point indicates
the minimum TOA reflectance, the red point indicates the value calculated by Equation (4), and the black point indicates
the real TOA reflectance. Comparison between target (Displacement by gravity) and minimum TOA reflectance (Highest
point) on land (36.76◦ N/127.48◦ E) (a) 7 June 2020 and (b) 8 June 2020; (c,d) are comparison on sea (39.01◦ N/128.58◦ E)
(c) 10 June 2020 and (d) 8 June 2020; (a,c) mean that the values change when clouds flow into or disappear the specific pixel,
and (b,d) mean clear-sky.

To calculate the threshold, we stacked the TOA reflectance dataset for 30 days in
June 2020 and used the Otsu multilevel threshold method with three classes, as shown in
Figure 6 [45,46].

σ2
B =

k

∑
i=1

ωi(µi − µT)
2 (5)

where k denotes the clusters, ωi indicates the cumulative probability, µk indicates the
mean gray level for each cluster, µT indicates the mean intensity of the whole image,
and σ2

B denotes the between-class variance. The optimal threshold can be determined by
maximizing the between-class variance [46]. Among the thresholds, the closest to the cloud
pixel value of 4.237, as shown in Figure 6, was used.
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Figure 6. Kernel Density Estimation (KDE) of the difference between the target and minimum TOA
reflectance. The red lines indicate the threshold values calculated from the Otsu multi-threshold
method. We used the threshold on the right side. The number of data points was 65,609,628, which
were stacked over 30 days in land and sea areas.

3.4. Dynamic Threshold

Because of atmospheric blocking and the occurrence of stationary fronts due to the
expansion of the North Pacific high, pixels where clouds are constantly maintained exist
in the image. As shown in Figure 7a, the pixels with remained clouds that are not masked
when using the proposed filtering techniques mentioned above appear to have higher TOA
reflectance than other pixels. Since these cloud pixels are less distributed among the whole
image, we set the threshold value through the Otsu multilevel threshold method [45,46],
which is used in Section 3.3. The number of classes was set to 4, which was determined
empirically. Additionally, to improve the accuracy of the proposed algorithm, the NIR and
NDVI images applied with cloud mask, which was result of the proposed filtering techniques,
were also used in this study with the Otsu method, as shown in Figure 7. Among the
thresholds, the closest to the cloud pixel value was used. When a dynamic threshold was
applied to the channels, we divided the land and sea areas by using annual International
Geosphere-Biosphere Programme (IGBP) classification data of MCD12Q1 [47], which is the
MODIS Terra and Aqua combined land cover product. After reprojection of MCD12Q1 data
to Lambert Conic Conformal (LCC), only the data over the water bodies were used.

Figure 7. Cont.
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Figure 7. Results from applying the dynamic threshold. The imagery was captured on 15 June 2020 at 03:00 UTC: (a) the
TOA reflectance of 0.8 µm applied by filtering techniques using angular variation and minimum TOA reflectance; (b) the
result of applying the dynamic threshold by classifying land and sea in (a); (c) the NDVI in the sea with the dynamic
threshold; (d) the TOA reflectance of 1.6 µm in the sea with the dynamic threshold; and (e) the TOA reflectance of 1.3 µm
with the dynamic threshold. Originally, an initial threshold of 0.02 is applied. Therefore, the maximum of the color bar is set
to 0.02. (f) The result from applying the filtering methods and dynamic threshold. It is produced by applying the results of
(c–e) to (b).

3.4.1. NDVI

The NDVI is a frequently used index that expresses the status of plant health. In
particular, the NDVI has been useful in analyzing temporal changes in vegetation [45].
The range of the NDVI is from −1 to 1. If the pixel value approaches 0, there is a small
difference between the observed radiances of the red and NIR channels. A pixel value near
zero indicates sand, clouds, and rocks [48–50]. Therefore, if the NDVI is applied to land to
classify cloud pixels, it is difficult to be used because the TOA reflectance of cloud is similar
to that of the desert [51]. For this reason, only the NDVI in the sea was used in this study.

NDVI =
R0.86 − R0.64

R0.86 + R0.64
(6)

where R0.86 and R0.64 indicate the TOA reflectance of 0.86 µm and 0.64 µm, respectively,
which are calculated by Equation (1).

3.4.2. Near-Infrared

We used 1.38 µm and 1.6 µm in the dynamic threshold part. The 1.38 µm (from 1.36 µm
to 1.39 µm) channel is located in strong atmospheric water absorption. It is observed by
radiance mainly reflected by the troposphere because the upward radiance from the surface
or the lower-middle atmosphere is blocked by water vapor in the upper atmosphere [52].
Therefore, 1.38 µm has been used for decades in MODIS to detect cirrus clouds even over
polar regions where the atmosphere is extremely dry [13,23]. The threshold to detect thick
cirrus clouds is set to 0.02 globally in MODIS and Landsat-8 cloud products [23]. In the case
of the MODIS cloud product, separate thresholds are divided according to the existence
of snow and confidence levels [12,23]. In this study, we set the initial global threshold to
0.02 and then adjust the threshold by applying the Otsu method because the use of the
global threshold misses some thin cirrus clouds.

In the case of 1.6 µm, because this channel has low reflectance in snow and ice particles,
it can be used to discriminate between snow/ice and water [25,53,54]. In this study, 1.6 µm,
which is clipped on the sea, was used only to improve the classification accuracy between
water in the sea and ice clouds.
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4. Results

As the solar radiance reaching Earth gradually increases from June to August, the
North Pacific high shifts to the north, and low pressure occurs in East Asia [55]. On
the other hand, dry air from the north acts as a kind of ‘invisible wall’ that blocks the
movement of moist air, and as a result, a large amount of water vapor in the atmosphere
falls as rain [55]. Therefore, in general, precipitation increases in southeastern China and
Japan in mid-June, increases in South Korea in late June, and then moves north to North
Korea [55]. In July 2020, the extreme values of average temperature, maximum temperature,
and the number of heatwave days were updated in the Rep. of Korea. At the end of June,
since the North Pacific high was located in the southeastern Rep. of Korea, the low pressure
that developed in southern China approached, the southwest wind strengthened, and a
large amount of water vapor was introduced.

As the North Pacific high is maintained until the first half of September, it shows a
form of an atmospheric pressure pattern in summer, causing a temporary high temperature
phenomenon [56]. In October, a migratory anticyclone develops in inland of China and
moves eastward, generating clear and dry air [56]. Therefore, cirrus, cirrostratus, and
cumulus clouds are primarily created. In case of October 2020, the seven typhoons were
occurred in East Asia due to continuance of La Niña [57]. This is the unusual natural
phenomena compared with the occurrence of three typhoon in October of normal year
(1981 to 2010) [57]. Therefore, we select June and October 2020 as the date to compare and
validate the proposed algorithm because various cloud types can be found.

We conducted a qualitative comparison and quantitative validation with GK-2A and
LEO cloud products. For the qualitative comparison, the true color image and natural
color image, which were made by using the RGB recipe of NMSC, were used [52]. For the
quantitative validation, we used the confusion matrix as shown in Figure 8, and the precision,
recall, accuracy (hit rate), false positive rate (FPR), and F1score were calculated to compare
the proposed algorithm with LEO products. The precision and FPR are also referred to as
the probability of detection (POD) and false alarm rate (FAR), respectively [15,58].

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

FPR =
FP

FP + TN

F1score = 2
(

Precision× Recall
Precision + Recall

)
where true positive (TP) means the number of pixels when validation data was cloud,
and proposed algorithm was set to cloud. False positive (FP) means the number of pixels
when validation data was clear observation, and proposed algorithm was set to cloud.
False negative (FN) means the number of pixels when validation data was cloud, and
proposed algorithm was set to clear observation. True negative (TN) means the number
of pixels when validation data was clear observation, and proposed algorithm was set to
clear observation, as shown in Figure 8.
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Figure 8. Confusion matrix.

The precision indicates how accurate the masked cloud pixel from GK-2A is. In other
words, it shows how many pixels that are actual clouds are included in the GK-2A cloud
detection results. The recall indicates how well the cloud was found without dropping it.
The accuracy is an indicator of how accurately the proposed algorithm detects clouds. The
FPR is the probability of falsely rejecting the null hypothesis. The F1score calculated by the
harmonic mean represents the difference between precision and recall. If the difference
between the two values increases, the F1score increases, and if the difference between the
two values decreases, the F1score decreases.

4.1. Qualitative Comparison

As a qualitative comparison of the proposed algorithm, the true color and natural
color images, which are made by GK-2A images, are used. The true color RGB is designed
close to the human eye and is made by using visible channels (0.47 µm, hybrid green,
0.64 µm) applied with histogram equalization. Hybrid green is calculated by using 0.51
and 0.86 µm [52]. The natural color RGB is designed to distinguish ice from the water
phase and is made by using visible channels (0.64 µm, 0.86 µm) and a NIR channel (1.6 µm)
applied with histogram equalization [52].

The only 3 dates of June 2020 were used as shown in Figure 9. The area colored grey in
Figure 9c,i is removed by the restriction of the solar zenith angle. In the case of 1 June 2020
00 UTC, as shown in Figure 9a–c, the proposed algorithm can detect convective clouds
occurring over the Shandong Peninsula (37.175◦ N, 121.297◦ E) of China and cirrus clouds
over the Yellow Sea and East Sea of the Rep. of Korea, in addition to detecting the overall
clouds. In the case of 08 June 2020 03 UTC, as shown in Figure 9d–f, the stationary front
located at 20◦ N is well detected, and the cirrus clouds located on land (40◦ N, 90◦ E) are
also well detected. As shown in Figure 9g–i, most of the clouds, including cirrus, were well
detected. However, the cloud detection accuracy is decreased in the area where sunglint
occurs (Figure 9c,f). When sunlight is reflected off the sea at the same angle as the satellite
sensor detects the surface, sunglint occurs. Therefore, the area where sunglint occurs varies
over time. Since the proposed algorithm is based on multitemporal images, error occurs
due to phenomena that change with time, such as sunglint.
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Figure 9. Qualitative comparison with GK-2A-based true color and natural color RGB in June 2020. Images are listed in the
order of the true color, natural color, and proposed cloud mask, and each row is separated by date: (a–c) are at 00 UTC on
1 June 2020; (d–f) are at 03 UTC on 8 June 2020; and (g–i) are at 08 UTC on 24 June 2020.

The only 3 dates of October 2020 were used as shown in Figure 10. In the case of
2 June 2020 01 UTC, as shown in Figure 10a–c, most of opaque clouds can be detected over
land and sea. Especially, proposed algorithm can detect cirrus clouds over Jeju Island in
Rep. of Korea (33.387◦ N, 126.556◦ E) and neighboring sea (Southern sea of Rep. of Korea).
In case of 11 October 2020 04 UTC, as shown in Figure 10d–f, typhoon Chan-Hom and
accompanying clouds are clearly detected in the sea located east (33.784◦ N, 139.786◦ E)
of Tokyo, Japan. However, as compared with true color RGB in Figure 10d, misclassified
results as clouds were found in Qinghai Province (35◦ N, 95◦ E), China. The reason why
misclassified result was revealed is that dust storm was occurred and the effect of solar
zenith angle in desert still remained.
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Figure 10. Qualitative comparison with GK-2A-based true color and natural color RGB in October 2020. Images are listed in
the order of the true color, natural color, and proposed cloud mask, and each row is separated by date: (a–c) are examples at
01 UTC on 2 October 2020; (d–f) are at 04 UTC on 11 October 2020; and (g–i) are at 07 UTC on 26 October 2020.

4.2. Validation with the VIIRS Cloud Product

The VIIRS cloud product was collected for 60 days from 1 to 30 in June and October
2020 to validate the proposed algorithm. The VIIRS cloud product distinguishes between
confident and probably clouds according to the threshold test. The VIIRS cloud mask sets
three thresholds between high confidence cloudy and high confidence clear and uses these
thresholds to determine the confidence flag [13]. According to the validation score of the
VIIIRS cloud mask, the overall hit rate (%) was 88.4% in July 2007 and 89% in October
2007 [59].

In this study, confident and probably clouds were classified and validated with the
proposed algorithm and GK-2A cloud mask. The GK-2A cloud mask was originally
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developed by NMSC and is available via webpage [60]. The GK-2A cloud mask also
provides clouds as confident and probably by using threshold tests similar to the VIIRS
cloud detection algorithm. Therefore, when only confident clouds in VIIRS products were
used, only confident clouds in GK-2A cloud masks were used, and the same was applied
when using probably clouds.

The result of validation with the VIIRS cloud product is shown in Table 2, and when
VIIRS with confident and probably clouds was used, the accuracy of both the multitemporal
and spectral-based algorithms was higher. In the case of the spectral-based algorithm, the
precision, recall, accuracy, and F1score significantly increased. However, when compared
with the proposed multitemporal algorithm, the degree of agreement with the VIIRS
cloud product is significantly different as difference of the accuracy is 0.15, and the F1score
is 0.1 as mean value between June and October. In the case of the recall value in the
comparison between the proposed algorithm and VIIRS with confident and probably
clouds, as shown in Table 2, the result was close to 1. The VIIRS cloud data and the proposed
GK-2A cloud detection algorithm are almost identical. In addition, since the F1score of the
proposed algorithm represents 0.92 (June and October), the proposed algorithm has good
performance in detecting clouds.

Table 2. Quantitative validation results between GK-2A and VIIRS cloud mask products.

Precision Recall Accuracy FPR F1score

VIIRS
withConfident

Clouds

June
GK-2A

(Multitemporal) 0.905 0.981 0.912 0.249 0.939

GK-2A
(NMSC) 0.758 0.731 0.631 0.644 0.744

October
GK-2A

(Multitemporal) 0.832 0.982 0.856 0.395 0.901

GK-2A
(NMSC) 0.622 0.741 0.520 0.945 0.677

VIIRS
withConfident
and Probably

Clouds

June
GK-2A

(Multitemporal) 0.911 0.977 0.912 0.281 0.943

GK-2A
(NMSC) 0.807 0.913 0.772 0.645 0.857

October
GK-2A

(Multitemporal) 0.842 0.972 0.856 0.395 0.902

GK-2A
(NMSC) 0.712 0.911 0.695 0.740 0.799

4.3. Validation with the CALIPSO Cloud Product

In this section, we compare the CALIPSO cloud product and proposed algorithm, as
shown in Table 3. The CALIPSO cloud product was collected for 60 days from 1 to 30 June
and October 2020 to validate the proposed algorithm. In the case of the GK-2A (NMSC)
cloud mask, when the dataset used both confident and probably clouds, the accuracy was
slightly higher in Section 4.2. Therefore, we used both confident and probably clouds in
this section. As a result of validation with CALIPSO, the proposed algorithm showed
a high accuracy of 0.92, which is mean value (Table 3). The all of precision, recall, and
F1score also showed high values of about 0.9 or higher (Table 3). Compared to GK-2A
(NMSC) cloud detection, the proposed algorithm is superior based on the overall indexes.
Therefore, these results indicated that the proposed algorithm detects most of the clouds
with good performance.
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Table 3. Quantitative validation results with CALIPSO cloud products.

Number Precision Recall Accuracy FPR F1score

CALIPSO
Cloud

June
GK-2A

(Multitemporal) 199,807 0.891 0.982 0.902 0.284 0.934

GK-2A
(NMSC) 210,415 0.784 0.935 0.775 0.601 0.853

October
GK-2A

(Multitemporal) 190,382 0.911 0.989 0.930 0.184 0.949

GK-2A
(NMSC) 191,877 0.687 0.933 0.691 0.713 0.791

Additionally, we conducted an accuracy assessment according to cloud types, which
is provided from ‘Feature_Classification_Flags’ of the CALIPSO cloud product. Eight
cloud types (feature subtype) were classified in the CALIPSO cloud dataset. We evaluated
whether the proposed algorithm detects each cloud type well, as shown in Figure 11. For
validation by cloud types, we used only the recall because the pixels, which are located in
clear-sky conditions or classified by aerosols, were set to not-a-number (NaN) values in the
cloud product. As the results of validation by cloud types, recall values of 0.96 or higher are
shown in Figure 11. Among the eight cloud types, low (broken cumulus) and altocumulus
(transparent) had the lowest recall values of 0.96. Since the two types of clouds are smaller
than the other clouds, the proposed algorithm classified a few pixels with these two types
of clouds as clear sky. However, since the overall result had a very high score, there seems
to be no loss of accuracy depending on cloud types.

Figure 11. Comparison of recall value between GK-2A (Multitemporal) and CALIPSO cloud product according to
cloud types.
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5. Discussions

The proposed algorithm has four steps to detect clouds. Each step must be in harmony
with the others to derive the results shown in Tables 2 and 3. The harmony of each step can
be checked with a simple accuracy test for each step. We divided algorithms (1) with all
steps, (2) that used only filtering techniques by using angular variation and minimum TOA
reflectance, and (3) that used only the dynamic threshold for each GK-2A channel. The test
dataset to check the accuracy of each step is set to 30 days (1 to 30 June 2020) of collocated
images between GK-2A and VIIRS, as shown in Table 4. When only filtering techniques
were used, the accuracy and F1score decreased by approximately 0.05 and 0.03, respectively.
Additionally, when using only the dynamic threshold for GK-2A NIR and NDVI images,
the accuracy was decreased by approximately 0.4. These results mean that all the steps
are operating harmoniously. As mentioned above, if only filtering techniques were used,
abnormal TOA reflectance was revealed due to the existence of clouds on stacking days.
In addition, if images not to be applied with filtering methods were used in the dynamic
threshold step, the threshold values in each channel used in this study were irregular. This
is because the Otsu threshold method found the point of inflection in each image histogram.
In other words, when an image is applied with filtering techniques, the rest of the cloud
can be easily found because there is a gap between the surface and the remaining cloud.

Table 4. Accuracy test for each step of the GK-2A multitemporal cloud detection algorithm.

Precision Recall Accuracy FPR F1score

GK-2A
(Multitem-

poral)

1
(Overall Steps) 0.911 0.977 0.912 0.281 0.943

2
(Using only filtering

techniques)
0.881 0.949 0.866 0.379 0.914

3
(Using only the

dynamic threshold)
0.711 0.652 0.542 0.783 0.681

Regarding thresholds used in filtering techniques of proposed algorithm, it is effective
even if the thresholds were applied to images of other seasons. In other words, the
thresholds were calculated from images acquired for one month of June 2020. When the
thresholds were applied in other images acquired in October 2020, the satisfactory results
were obtained as shown in Tables 2 and 3. It can be shown as an advantage of proposed
algorithm, because the problems that arise when applying this algorithm in other seasons
can be flexibly captured through the fusion of filtering techniques and dynamic threshold.

Although the accuracy of the proposed algorithm of the GK-2A cloud mask was found
to be reliable according to statistical values, this algorithm involves some issues due to
sunglint and desert areas. In case of sunglint, Figure 9c,f show the areas misclassified as
clouds, although they are under clear-sky conditions. As mentioned above, the problem
was a change in sunglint area. When the sunglint area moved from east to west over
the daytime, the reflectance on the sea fluctuated. Since it is caused by angular variation
in specific pixels, error in the sunglint area occurs. In case of desert, some area was
misclassified as clouds because of dust storm and the effect of solar zenith angle in desert,
as shown in Figure 10f. Therefore, additional approaches of GK-2A multitemporal cloud
detection should be considered.

6. Summary and Conclusions

We propose a cloud detection algorithm with GK-2A multitemporal and multispectral
images during the daytime. The steps are to (1) find and mask the cloud pixels if TOA
reflectance changes greatly as time changes; (2) find and mask the remaining cloud pixels by
using the difference with minimum TOA reflectance; and (3) find and mask the remaining
cloud pixels by additionally using NIR and NDVI images applied with a dynamic threshold.
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All the steps in this study operate in harmony. We evaluated the reason why three steps
are needed to detect clouds. In addition, we evaluated whether the proposed algorithm
is very well suited to classify clouds, as validated with frequently used CALIPSO and
VIIRS cloud products. The validation result indicates that the proposed cloud detection
algorithm detects most of the clouds with good performance. Although the cloud detection
algorithm obtains satisfactory results, the misclassification occurs in sunglint and desert
areas. Because the proposed cloud detection algorithm is based on multitemporal data,
the variance in TOA reflectance affected by sunglint and the remained effect of solar
zenith angle in desert area cause misclassification. In the future, we will try to develop an
additional algorithm to solve the misclassification.
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