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Abstract: In the current modern era of information and technology, emerging remote advancements
have been widely established for detailed virtual inspections and assessments of infrastructure assets,
especially bridges. These technologies are capable of creating an accurate digital representation of
the existing assets, commonly known as the digital twins. Digital twins are suitable alternatives
to in-person and on-site based assessments that can provide safer, cheaper, more reliable, and less
distributive bridge inspections. In the case of bridge monitoring, Unmanned Aerial Vehicle (UAV)
photogrammetry and Terrestrial Laser Scanning (TLS) are among the most common advanced
technologies that hold the potential to provide qualitative digital models; however, the research is
still lacking a reliable methodology to evaluate the generated point clouds in terms of quality and
geometric accuracy for a bridge size case study. Therefore, this paper aims to provide a comprehensive
methodology along with a thorough bridge case study to evaluate two digital point clouds developed
from an existing Australian heritage bridge via both UAV-based photogrammetry and TLS. In
this regard, a range of proposed approaches were employed to compare point clouds in terms of
points’ distribution, level of outlier noise, data completeness, surface deviation, and geometric
accuracy. The comparative results of this case study not only proved the capability and applicability
of the proposed methodology and approaches in evaluating these two voluminous point clouds,
but they also exhibited a higher level of point density and more acceptable agreements with as-is
measurements in TLS-based point clouds subjected to the implementation of a precise data capture
and a 3D reconstruction model.

Keywords: digital twin; quality evaluation; geometric accuracy; point cloud; UAV-based photogram-
metry; terrestrial laser scanning (TLS); bridge inspection

1. Introduction

Bridge infrastructures are among the most expensive and vital components of the
road/transport networks that need to be durable and healthy during their lifetime. Over
the years, as the bridge is used and exposed to environmental effects, the health of the
structure can deteriorate due to various conditions such as over loadings, material aging,
and the corrosion of the environment. Therefore, if the process of deterioration is not
greatly monitored or regularly maintained, this situation can disrupt the normal operation
and service of the infrastructure. However, in some critical situations, any negligence
in choosing a reliable and accurate monitoring and maintenance system may result in
irrepealable structural damages, catastrophes, and future costs [1]. The collapse of Taiwans’
Nanfang’ao bridge in 2019 [2], and the Morandi bridge collapse in 2018 in Italy [3] are some
of the recent instances of catastrophe due to a lack of accurate monitoring and maintenance
systems. Therefore, records of any structural deficiency and changes in the construction
phases to the original as-designed plans and maintenance actions are valuable pieces of

Remote Sens. 2021, 13, 3499. https://doi.org/10.3390/rs13173499 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5730-6743
https://doi.org/10.3390/rs13173499
https://doi.org/10.3390/rs13173499
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13173499
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13173499?type=check_update&version=1


Remote Sens. 2021, 13, 3499 2 of 22

information that need to be accurately retained for future reference. However, amassing
this amount of information regularly is a time-consuming and expensive task, especially
if the bridge is long with high altitude elements and data collection is performed by a
limited number of on-site inspectors manually. According to the National Bridge Inspection
Standards (NBIS) introduced in 1971 [4], the development of bridge defects, measurements
of changes in the geometry, and the overall health condition of the bridge infrastructure
need to be monitored through visual/manual inspections in the frequency of a two year
cycle. This process involves elements of subjectivity and is considerably influenced by
the inspectors’ experience. Given the time and money involved in obtaining the manual
on-site bridge inspections, the need to develop modern, efficient, and reliable methods of
inspection is established [5–8].

Over time, advanced technologies such as photogrammetry and laser scanning have
widely developed a reputation as methods/tools that are capable of extracting rapid and
precise three-dimensional (3D) digital representations of the object, known as a digital
twin, without direct contact [9–11]. During this time, researchers have mainly focused on
adopting these advanced remote techniques to mitigate the consequences of costly and
unsafe methods of manual and direct bridge inspections to satisfy the needs for a mod-
ern/computerized, remote, safer, more cost-effective, more accurate, and less distributive
bridge inspections. Unmanned Aerial Vehicle (UAV)-based photogrammetry [9,10], and
Terrestrial Laser Scanning (TLS) [11], are among the common methods used to overcome
the challenges involved with manual bridge inspection. The outcome of using these state-
of-the-art technologies is a detailed computer-based digital twin as a point cloud that can
be virtually revisited any time for data collection, analysis, and measurements [12]. In the
case of bridge engineering, the application of these remote technologies not only enables
safer and more accurate and reliable works but also decreases the overall inspection time
and costs.

Camera-based bridge inspection methods using permanent analog cameras mounted
on the critical points of the bridge structure were among the primary solutions that signifi-
cantly attracted bridge engineers due to the fact that travel to the bridge site for inspection
is not needed [13]. This method was further developed by Jahanshahi et al. [14], who
proposed an imagery-based system that enabled the use of camera-based images to make
a reliable comparison between the current and former conditions of the bridge structure.
Along with the successful application of the camera-based inspection method, and in order
to make this method more practical and efficient, cameras were mounted on mobile vehicles
such as Unmanned Aerial Vehicles (UAVs), commonly known as drones [15]. Nowadays,
several research studies have emphasized the valuable benefit of using UAV-based pho-
togrammetry as a reliable robot method for bridge inspection, documentation, and surface
evaluation [16,17]. In UAV-based photogrammetry, high-resolution aerial images are taken
remotely from different viewpoints of the proposed object, and then a 3D point cloud is
generated based on further post-processing techniques using matched key points through
Structure from Motion (SfM) or Multi View Stereropsis (MVS) algorithms [18]. In a critical
review study, Remondino et al. [19] evaluated the performance of various image-based
algorithms when dealing with large and complex data sets in regards to accuracy and
data quality. The results of this study for an SfM-based lighthouse data set in a Ground
Control Point (GCP) analysis indicated a 50 mm and 31 mm accuracy in terms of mean
and standard deviation, respectively. In a bridge inspection case study, Seo et al. [20]
investigated the capabilities of drones and their effectiveness in activities related to bridge
inspection. Following this research, an efficient bridge inspection method was presented
and tested for an inspection of a three-span timber bridge in the USA. The result showed
the acceptable usage of drone-based photogrammetry as an efficient bridge inspection
method capable of identifying a variety of surface damages such as corrosion, spalling,
cracking, etc. However, drones are designed to be controlled by the Global Positioning
System (GPS), and the failure or weakness of GPS signals in some places such as the bridge
underneath is a concern that needs to be considered by the drone pilot. In another study,
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Abolhasannejad et al. [21] evaluated the application of UAV-based photogrammetry for
bridge deformation measurements and proposed an image motion correction algorithm to
tackle the camera motions during image data acquisition. In another effort, Pan et al. [22]
presented a semi-automated algorithm for extracting a 3D digital model of a bridge via
UAV-based photogrammetry and evaluated this method for an existing heritage bridge
case study in China. In a similar strategy, Chen, et al. [13] proposed a bridge inspection pro-
cedure using UAV-based photogrammetry for 3D model reconstruction and the subsequent
virtual inspection and damage detection.

The new technology of Terrestrial Laser Scanning (TLS) is another common approach
for the rapid and precise collection of spatial information from an object’s surface [11].
However, unlike traditional surveying methods that only capture the specific individual
points of the targeted object one after another, TLS constantly captures each detail of the
entire scene with the accurate position for each point and stores the data points in a 3D
coordinate system, namely the x, y, z, associated with attributions such as colour. Thou-
sands of data points, each corresponding to different locations of the exposed object, can be
amassed to create a digital representation of the object, often called a point cloud. Therein,
(TLS) presents an alternative to manual onsite inspections in the realm of built structures
as it is capable of capturing the accurate geometry of complex structures such as bridges
within a short time frame [23]. In the case of bridge engineering, this advanced technology
has the potential to be used in a variety of applications in terms of as-built/as-is digital
model development, quality inspection, structural assessment, and management [11,24].
As an initiative, Fuchs et al. [25] were among the first researchers who suggested the
application of the laser system as a 3D coordinate mapping instrument for the inspection
and assessment of highway bridges in the USA. In this research study, the capabilities of
the laser system were assessed based on several laboratories and in-field evaluations for
measuring global rotations on a girder bridge and bridge deflections under static load.
Following this research strategy, Tang et al. [26] reviewed the capabilities of TLS in the
3D model development of bridges and also in the detection of accurate measurements
for geometric features of bridges such as vertical clearance, etc. [27]. In another effort,
Mizoguchi, et al. [28] utilized the acquired TLS-based point cloud for a quantities evalua-
tion of the deficiency of the components such as the level of scaling, spalling, and rate of
section loss caused by corrosion, etc. Moreover, Minehane, et al. [29] utilized the TLS-based
bridge point cloud for the structural assessment of a bridge in the UK. In another research
study, Gyetvai et al. [30] introduced an algorithm for identifying actual cross-sections
of a bridge in Ireland with wrought-iron components. The successful implementation
of this algorithm in reconstructing member cross-sections and the overall geometric di-
mensions proved the valuable benefit of TLS in conducting geometric inspections and
structural assessments. In a recent research study, Gawronek and Makuch [31] utilized TLS
measurements to assess the vertical deformation of a truss bridge under a static load in
Poland. The result of this practical research indicated a ±3 mm maximum deviation in the
vertical deflection measurement analysis. Similar studies were also carried out using TLS
concerning the as-built model development as a basis for a reliable structural assessment
of a bridge [32–36].

Nowadays, the possibility of twinning an existing asset with an accurate digital coun-
terpart using these state-of-the-art technologies with the aim of health monitoring and
the management of civil infrastructure assets has become a strong demand among asset
managers and structural engineers [11,15]. Providing such a detailed source of information
as a digital model and the application of Artificial Intelligence (AI) enables automation in
various aspects of 3D model reconstruction, geometric identification [35,37], quantitative
management, and progress tracking [26,38], as well as damage quality inspection and struc-
tural assessment [30–32,39]. Moreover, this offers the possibility of using low-cost, remote,
rapid, and precise computer visions compared to direct inspections and identifications.
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Aims and Objectives

State-of-the-art technologies such as UAV-based photogrammetry and TLS have ben-
efits related to the rapid, precise, and voluminous collection of remote data. However,
the definition of generating a well-detailed as-built model for a bridge case study can be
varied in terms of the quality, integrity, and the geometric accuracy of the point clouds.
Although a limited number of research studies have investigated the level of geometric
accuracy for different point clouds generated [40–43], the research is still lacking a reliable
methodology for evaluating and comparing the quality of the bridge size point clouds.
Therefore, this research study aims to provide a systematic methodology as a pathway for
engineers to evaluate and compare the quality of such voluminous datasets subjected to
the implementation of a detailed data capture, quality inspection, and precise 3D model
reconstruction. To this end, a range of general and specific approaches are proposed to be
used for quality, consistency, and the accurate evaluations of such bridge size point clouds
(see Section 3). Following the research, the soundness of the proposed methodology is
proved in form of a real bridge case study by evaluating and comparing two available point
clouds generated based on both UAV-based photogrammetry and TLS for a heritage bridge
named the McKanes Falls Bridge in New South Wales (NSW), Australia. The summarized
objectives of this research study are listed below:

• Developing a systematic methodology for quality evaluation and the comparison of
bridge size point clouds.

• Proposing ranges of general and specific evaluation approaches.
• Proving the soundness of the proposed methodology and approaches by evaluating

and comparing two point clouds for a bridge case study.

2. Bridge Case Study

In order to demonstrate the proposed evaluations and comparisons, two field studies
using UAV and TLS were performed to collect the point clouds for a heritage-listed bridge
named the McKanes Falls Bridge over the Coxs river, located in the city of Lithgow, New
South Wales (NSW), Australia, Figure 1. This timber truss bridge is among the four
remaining McDonald style bridges in NSW built in 1893 and was registered as a cultural
heritage site in 2000. The bridge structure consists of two timber truss spans of 27 m in
length supported by sandstone masonry abutments at each end and a concrete pier at the
center. The central pier of the bridge was originally constructed by stone; however, it was
replaced by a reinforced concrete pier following a severe flood in 1986 [44]. The bridge’s
roadway is about 4.5 m in width and does not have a footway for pedestrians. The bridge
deck is comprised of lateral timber beams supported by several longitudinal girders.

This research study is defined as part of an asset management project for upgrading
the existing bridge with a stronger, safer, and more reliable structure while preserving a
similar appearance and similar aspects as the original. This upgrading project includes
restoring the critical timber components, strengthening the bridge structure using new
steel and timber elements, reinforcing the existing foundation and abutments with concrete
to increase the bridge’s load-bearing capacity and ductility [45–48], and allowing safe use
by vehicles up to the General Mass Limit (GML) standard [49]. Therefore, after conducting
preliminary investigations, risk assessments, and some site surveys by experienced engi-
neers and the research group, possible flight plans for UAV and scan positioning for TLS
were evaluated and prepared. These strategies were defined in such a way as to collect
sufficient data with complete coverage of the whole bridge. In the following, a summary of
the data capture using both UAV and TLS methods is presented.
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Figure 1. McKanes Falls Bridge: (a) Bridge satellite view, (b) Bridge status in 2019 [49].

2.1. UAV Photogrammetry Survey

The McKanes Falls Bridge was surveyed using a close-range photogrammetry tech-
nique by capturing high-resolution images from different sides of the bridge. The bridge
survey was carried out by employing the Sony Alpha 7R digital 36 megapixels digital
camera consisting of a 35 mm full-frame lens mounted on the Intel® Falcon 8+ UAV system.
This UAV system, as it is state-of-the-art technology, is designed to be lightweight, quick,
easy to operate, able to support a flight and camera stabilizer technology for challenging
environments and harsh weathers such as a strong wind, and a V-frame body that offers
a wide range of unobstructed views for data capture. Moreover, the control centre of
this technology has the ability to be programmed based on the predesigned flight plan
while automatically setting up the flight speed of the drones, the altitude, and the required
images from various positions, and also the overlap of the images to provide the desired
result within the shortest flight time.

The predesigned flight plan was defined for the control center of the UAV system
to include two take-offs, capturing both sides of the bridge from south to north each in
three paths with angles ranging from 0 to 45 degrees, and one take off observing the bridge
overhead along the bridge length, all with offset distances of less than 20 m. Moreover,
to obtain additional details and to well-document the blind spot of the bridge, several
handheld images were also taken from different locations such as the bridge underneath.

Regarding the post-processing phase, the Structures from Motion (SfM) image process-
ing technique coupled with a Dense Multi-View Stereo (DMVS) were employed to convert
the captured images into a 3D point cloud using ContextCapture software [50]. During
this process, the point cloud was generated based on the attached coordinates of each
image obtained from the UAV Post Processed Kinematic (PPK) system and considering the
high-resolution setting in a geo-referenced system. The final bridge point cloud containing
more than 349 million colorized data points is shown in Figure 2a.
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2.2. TLS Survey

In another field test, the McKanes Falls Bridge was surveyed/scanned utilizing the
Leica ScanStation P40 terrestrial laser scanner. This laser unit offers a great versatility of
features including long-range scanning (up to 270 m away from the unit), fast rating data
acquisition (about 1 million points per second), various ranges of resolution/accuracy (up
to 0.8 mm at 10 m), and a wide field of view 360◦ × 320◦ along with a low range of noise.
This unit is equipped with an integrated positioning system that improves post-processing
procedures and allows real-time on-site registrations [51].

Scans were performed from more than 50 scan stations including multiple positions
around the bridge sides, the deck, and the bridge underneath in line with the predesigned
scan plan, considering close positions with an offset less than 20 m away from the bridge.
Normal resolution (6.3 mm @ 10 m), normal quality settings, and the capture of High
Dynamic Range (HDR) images were considered as the data collection settings of the laser
unit in each scan station.

TLS-based scan data generally contain an amount of redundant data and a range of
noise points which can affect the 3D model reconstruction, measurements, and other related
inspection purposes. In this regard, pre-processing filters were applied to the acquired
data and then clean data sets were registered/matched and colorized in post-processing
procedures using Leica Cyclone software [51]. The outcome as a bridge point cloud
with more than 1590 million points was also geo-referenced according to the geographic
coordinate system, as shown in Figure 2b.

3. Quality Evaluation Methodology

According to the literature study presented, state-of-the-art emerging technologies
such as UAV-based photogrammetry and laser scanning each have their advantages in
the case of bridge monitoring and as-is model reconstruction; however, some consider-
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ations/concerns can negatively affect their implementation in generating a precise and
qualitative as-is 3D model. The weakness or absence of the GPS signal, calibration degrada-
tion, inaccurate or insufficient surveying targets, and the failure of image matchings in case
of UAV-based photogrammetry [10]; and diffusion or poor laser beam reflection, degra-
dation of laser unit’s calibration, a lack of surveying targets, and the choice of unstable
laser positions in the case of TLS are among the concerns that can be triggered to produce
low-quality point clouds and some defects such as a noisy data set with a non-uniform
points density and an inaccurate geometric position [11].

Despite the growing popularity and common application of these advanced technolo-
gies in terms of inspection and monitoring, there is still a lack of information related to the
assessment of the quality and the evaluation of the occurrence of common defects for such
a massive data set based on a specific standard or criteria. However, the VDI/VDE 2643
BLATT 3 guidelines [52] have been initiated to provide various approaches for the quality
evaluation of measuring 3D objects in terms of accuracy and potential errors. Following
this research, considering the approaches presented in the aforementioned guidelines and
some general/well-known error metrics, a systematic methodology is presented. Moreover,
as a real case bridge case study, the quality of the McKane Falls Bridge point clouds is
evaluated and compared using the proposed approaches/methods. The methodology
of this research is presented in Figure 3. This methodology would be useful for bridge
surveyors to achieve a systematic and reliable methodology for data quality evaluation of
the generated point clouds.
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As illustrated in Figure 3, the framework is divided into two main subsections of
bridge survey and data quality evaluation. The bridge survey involved three tasks in-
cluding site survey, data acquisition, and post-processing to achieve a well-detailed 3D
model. This subsection is not the main concern of this study; however, a summary of
the McKane Falls bridge case study as a survey using both TLS and UAV methods is
presented in Section 2. In this study, a series of approaches are presented in the data quality
evaluation subsection to be considered for evaluating the possible defects of the generated
3D point clouds. Data preparation, as the first step of data quality evaluation, refers to
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the definition of both the point clouds compared in a similar coordinate system. In some
circumstances, the generated point clouds are captured, registered, and aligned in different
local coordinate systems and scales which may lead to an unacceptable/unfair comparison.
Therefore, the generated point clouds need to be co-registered and re-scaled based on
similar conditions. In this regard, one of the point clouds can be considered as the reference
data set and the other point cloud becomes co-registered and re-scaled by transforming
the data points to improve the alignment. Let us assume that Xp, Yp, and Zp are the 3D
coordinates of a point, (1 ≤ p ≤ P, P is the number of points), that needs to be transformed.
The transition of this point to Xj, Yj, and Zj (1 ≤ j ≤ P) can be calculated by Equation (1). Xj

Yj
Zj

 = R·S

 Xp
Yp
Zp

+

 Tx
Ty
Tz

 (1)

where R is the rotation matrix based on α, β, and γ as rotation angles along the X, Y, and Z
axes, respectively, as given in Equation (2); S is the scale matrix as given in Equation (3);
and Tx, Ty, and Tz are translations along the X, Y, and Z axes, respectively.

R = Rx·Ry·Rz =

 cosα −sinα 0
sinα cosα 0

0 0 1

·
 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

·
 1 0 0

0 cosγ −sinγ
0 sinγ cosγ

 (2)

S =

 Sx 0 0
0 Sy 0
0 0 Sz

 (3)

In order to minimize the differences between the point clouds, the Iterative Closest
Point (ICP) algorithm needs to be applied to refine the alignments [53]. This algorithm
is based on a search for pairs of the nearest corresponding points in two datasets. Once
both point clouds become well-aligned in a similar coordinate system, other steps of data
quality evaluation can be performed. Following these steps, some well-known error metrics
including Standard Deviation (STD), STD Error, Root Mean Square Error (RMSE), and Mean
Absolute Error (MAE) are used and are presented in Equations (4), (6) and (7), respectively.

STD =

√√√√ 1
M− 1

M

∑
i=1

(
Di − D

)2 (4)

where M is the number of observed data points of the sample, Di is the distance value of
each point to the corresponding reference point or surface, and D is the average value of
the distance that can be calculated by Equation (5).

D =
1
M

(D1 + D2 + · · ·+ Di) (5)

STD Error =
STD√

M
(6)

RMSE =

√√√√ 1
M

M

∑
i=1

(Di)
2 (7)

MAE =

√√√√ 1
M

M

∑
i=1
|Di| (8)
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3.1. General Approaches

An evaluation of points distribution and the outlier noise, and conducting visual
quality assessments are among the most reliable general approaches for evaluating the
consistency of the acquired data points and the surveying instrument/equipment.

Having insufficient points in a low volume density may cause some defects regarding
future investigation and analysis related to the surface generation, as-is model reconstruc-
tions, and proper interpretations for a reliable inspection [54]. Therefore, evaluating the
points distribution can be considered as a valuable approach based on the number of the
collected points per unit area of the object surface.

Generated point clouds usually contain outlier noises that refer to deviant/abnormal
data points which are different from the remaining data [55,56]. Although normal noises
can be defined as redundant data with minor distance errors, outlier noises are defined as
a broader concept that includes discordant data with considerable errors that may arise
from false point measurements and reconstruction faults within the point cloud generation
process. The edges of the objects are among the most susceptible areas prone to this error
either in photogrammetry or laser scanning [55,57,58]. The outlier noise evaluation can
give us valuable information concerning the methods and systems relied on. The outlier
noise can be filtered by establishing a noise removal algorithm or a threshold to control
the maximum distance errors. As suggested by Chen et al. [13], this threshold, α′, can be
defined based on Equation (9).

α′ = λ′ + 2β′ (9)

where λ′ is the mean distance error and β′ is the standard deviation.
Damage quantification and a visual quality assessment of the generated point clouds

is another approach for a quality evaluation of the point clouds referring to the amount of
agreement between the extracted damaged area from the data set and the existing damage
in on-site inspections.

3.2. Specific Approaches

Surface deviation and geometric accuracy evaluations are among the specific ap-
proaches/concepts adopted from the VDI/VDE 2643 guidelines [52,59,60] for assessing
the quality and precision of 3D measuring systems. In the following, these two approaches
are described.

3.2.1. Surface Deviation Evaluation

In theory, the captured texture of an object with a smooth surface is expected to
be presented in a layer of points without thickness; however, this is not the reality, and
the surface is generally quantified by points with a deviation from its ideal form. In
surface metrology, the amount of deviation demonstrates the level of noise obtained and
can generally show the reliability of the surveying equipment and system in terms of
generating a precise as-is/built 3D model [52]. Therefore, it is recommended that this
evaluation be conducted based on some surface deviation evaluation methods/criteria,
such as plane fitting, cylinder fittings, etc. The plane fitting evaluation refers to the
measurement of the spatial distribution of the object’s points to their best-fitted plane. This
process is performed based on defining a fitted plane using the Least Squares Fitting (LSF)
algorithm [61,62]. Considering a plane equation in 3D Euclidean space, Equation (10),
the LSF algorithm is a regression analysis that can find an approximate solution for the
plane equation by minimizing the sum of the squares of the normal distance values, S, for
each point to the corresponding reference point on the approximate plane, Di, as shown in
Equations (11) and (12) [63].

a(xi − x0) + b(yi − y0) + c(zi − z0) = 0 (10)
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where, a, b, and c are defined as the normal vectors of the plane, and x0, y0, z0 are the
positions of the points in a 3D X-Y-Z coordinate system.

Sum =
m

∑
i=1

Di
2 (11)

where, Di, is defined as follows:

Di =
|a(xi − x0) + b(yi − y0) + c(zi − z0)|√

a2 + b2 + c2
(12)

In a similar strategy, considering the surface equation and using the LSF algorithm,
the best-fitted plane can be estimated.

3.2.2. Geometric Accuracy Evaluation

The methodology of using the extracted point clouds as a basis for a detailed quality
inspection of infrastructures, especially bridges, has been widely established. However,
the capability of employing these data for evaluating different levels of inspections has
remained a key problem. Depending on the importance of the project, identifying vari-
ous surface damages and deformations generally requires a high Level of Detail (LoD)
inspection; however, a lower LoD is enough for geometry measurement purposes. Therein,
with an eye on having a geometrically accurate evaluation for the generated point clouds,
this study recommends three methods of point-to-point, profiling, and cloud-to-cloud
comparison between the generated point clouds.

The point-to-point comparison refers to the measurement of the relative distances between
a few recognizable feature pairs in different data sets. As presented by Koutsoudis et al. [64],
this criterion with a comprehensive view can be used to evaluate the level of noise, the
scaling error, and the level of geometric accuracy for the generated point clouds. However,
this method can be extended by evaluating the relative distance between some fitted planes,
known as a plane-to-plane comparison, for a more reliable geometry accuracy evaluation.

Evaluating and comparing the extracted cross-sectional profile of an object in the
different data sets, known as profiling, can be considered as a valuable source of data
for extending the geometric accuracy evaluations. The cross-sectional profile refers to
the two-dimensional linear shape of a 3D object sliced perpendicularly. In the profiling
method, the corresponding spatial distribution of the extracted cross-sectional profiles can
be evaluated and compared overall or for different subsections of an object.

The Cloud-to-Cloud (C2C) comparison refers to the measurement of the nearest
neighboring distance between the reference points in a point cloud and their corresponding
points in another dataset, using the Hausdorff distance algorithm [65,66]. However, this
algorithm is less sensitive to low dense point clouds and could yield unexpected results.
A local modelling strategy is an improved form of this method that is generally faster
and could yield more reliable results for clouds with a more constant density. The local
modelling strategy can compute a local model around the nearest point so as to approximate
a surface and obtain a better estimation of the real distance. This surface can be defined
based on various algorithms such as LSF, triangulation, or the quadric function [67].

4. Results

In this section, in order to further investigate the application of the proposed methodol-
ogy, the quality of the McKanes Falls Bridge point clouds captured/scanned via UAV-based
photogrammetry and TLS are evaluated and compared. Concerning the first step of data
preparation, both point clouds were evaluated to ascertain whether they were registered
in an exact coordinate system with similar scales. To evaluate this concern, a detailed
geometric accuracy analysis was performed, as presented in Section 4.2, and the results
were used for the minor rescaling of the UAV-based point cloud based on the TLS data set.
Moreover, considering the TLS data was set as the benchmark, the rescaled UAV-based
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data set was also co-registered to the TLS data set to make both the point clouds ready
and to prepare for a reliable relative quality evaluation. Handling these point clouds
containing such a massive amount of data was only possible by segregating the data sets
into smaller objects/parts before feeding them into the computer system and software for
further analysis. Therefore, two cross-sections passing through the bridge spans, shown in
Figure 4, were used to segregate the middle part of the bridge with its components as the
intended surveying objects. This part contains concrete piers, a capping concrete beam,
parts of the bottom and top timber chords, the timber deck and diagonals, and wrought
iron cylinder rods. As shown in Figure 4b, four sides of each concrete pier, two sides of
the capping beam, parts of the iron cylinder rods, parts of the bridge deck, and the trusses
were analyzed using the proposed methodology.
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4.1. General Approaches
4.1.1. Points Distribution

Based on the aforementioned methodology, the distribution of the points generated via
both the UAV photogrammetry and the TLS were evaluated and compared by calculating
the density of the points per area on the selected object’s surfaces after applying the
statistical outlier removal algorithm in CloudCompare software [56,68]. Table 1 presents
the result of this evaluation considering the surfaces of the bridge piers and the beam,
shown in Figure 4c, as the intended surveying objects.
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Table 1. Evaluation of the points distribution and density.

Plane Selected Area (m2)
UAV-Based Photogrammetry TLS

Number of Points Density (P/cm2) Number of Points Density (P/cm2)

P1-N 2.12 504,013 24 921,011 43
P1-W 2.11 504,902 24 606,975 29
P1-S 2.00 104,235 5 1,056,905 53
P1-E 1.99 374,667 19 1,014,998 51
P2-N 2.03 482,906 24 904,120 45
P2-W 1.97 471,907 24 730,039 37
P2-S 2.04 336,240 16 976,529 48
P2-E 1.96 442,194 23 575,410 29
B-N 4.63 1,153,831 25 2,334,752 50
B-S 5.28 1,123,152 21 962,805 18

Average 2.61 549,805 21 1,008,355 39

According to Table 1, the average density of the point cloud generated via TLS was
calculated as 39 points per square centimeter (P/cm2) while this amount was roughly half
of the density calculated for similar surfaces generated based on UAV photogrammetry. In
some instances, such as planes P1-S and P2-S, the results demonstrated more than a 50%
difference in terms of the point cloud density which indicates a denser and more reliable
point cloud using TLS with the aims of 3D model reconstruction and inspection.

4.1.2. Outlier Noise

Considering the filtering method presented in Section 3.1 and Equation (9), the TLS
point cloud was aligned with the UAV data using the ICP algorithm [53], and the outlier
noise level for TLS data point was calculated, shown in Table 2. This calculation was
conducted for three different segregations of the bridge named parts A, B, and C including
parts of the timber truss and bridge deck, shown in Figure 4a. Figure 5 presents the outlier
noise points in a red color after this evaluation was conducted for parts A and C. The result
of this evaluation shows an average outlier noise level of 2.36% for TLS data points based
on the referenced UAV data set. Although this amount of noise level is quite normal for a
bridge size point cloud captured by TLS, the evaluations indicated less outlier noise for the
UAV data in the case of the McKanes Falls Bridge inspection.

Table 2. The results of the outlier noise evaluation.

Reference
Objects Part λ′ (mm) β′ (mm) α′ (mm) Number of Points Number of Outlier Points Outlier Noise (%)

A 0.50 7.90 16.30 226,257,806 5,328,371 2.35%
B 0.39 7.13 14.70 249,620,401 3,896,574 1.56%
C 2.00 20.00 42.00 156,609,279 4,991,137 3.18%

Average 2.36%

4.1.3. Visual Quality Assessment

During the initial check of the generated point clouds, some missing/incomplete data
were observed on the UAV data set. In order to further evaluate this issue, the generated
TLS point cloud was revisited on the computer by an expert engineer using CloudCompare
software. As shown in Figure 6, it was observed that some locations/areas of the bridge
deck were not well reconstructed in the UAV data set while these areas were completely
reconstructed in the TLS point cloud. In UAV-based photogrammetry and the following
reconstruction procedures, the missing/incomplete data issue was inevitably caused by
a poor overlapping of the images or the extraction of an insufficient number of features
during the registration/matching process [69]. However, in the case of laser scanning, the
shadowing effect caused by beam obstruction could be the origin [70].
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4.2. Specific Approaches
4.2.1. Surface Deviation Evaluation

As previously mentioned, it is recommended that the measurement of the spatial
distribution of the generated points is conducted based on surface deviation analysis
methods. In this study, all sides of the bridge piers and two sides of the beam were analyzed
based on the proposed methodology by defining the best-fitted plane and evaluating the
spatial distribution of the points in both data sets using well-known error metrics such as
STD, RMSE, etc. The result of this evaluation is presented in Table 3.

As shown in Table 3, the average standard deviation (STD) and the Root Mean Square
Error (RMSE) for the UAV data were 1.80 mm and 1.96 mm, respectively. These amounts
were calculated as 1.62 mm for the TLS data set. This indicated an almost similar level
of noise for both data sets. Individual comparisons also indicated a greater performance
using TLS in terms of generating precise 3D models.
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Table 3. Surface deviation analysis using the plane fitting method, Unit: mm.

Plane
UAV Based Photogrammetry TLS

STD Mean
Distance

Max
Distance RMSE MAE STD Mean

Distance
Max

Distance RMSE MAE

P1-N 2.13 0.59 7.93 3.13 2.47 1.37 0.13 8.54 1.37 1.10
P1-W 1.67 0.33 7.86 1.67 1.08 1.16 0.07 8.73 1.16 10.00
P1-S 1.35 0.20 7.96 1.35 2.30 1.77 0.30 8.50 1.77 1.20
P1-E 2.60 0.40 7.92 2.60 2.02 1.92 0.20 8.40 1.92 1.60
P2-N 1.28 0.19 8.18 1.28 1.00 1.36 0.12 8.68 1.36 1.00
P2-W 1.50 0.10 8.08 1.50 1.00 1.55 0.15 8.40 1.55 1.20
P2-S 2.32 0.30 8.06 2.30 1.70 1.31 0.10 8.80 1.31 1.00
P2-E 1.96 0.20 8.07 1.96 1.60 1.94 0.10 8.80 1.94 1.60
B-N 1.97 0.10 14.10 1.90 1.47 2.11 0.13 17.00 2.13 1.95
B-S 1.90 0.10 14.34 1.90 1.49 1.67 0.41 20.77 1.67 1.30

Average 1.80 0.25 9.25 1.96 1.61 1.62 0.17 10.66 1.62 1.29

In another effort, this evaluation was extended to measure the reliability of using these
two surveying methods to generate small-size components. In this regard, five cylinder
rods (Cyl.), shown in Figure 4b, were evaluated based on the surface deviation analysis by
fitting the best cylinder surface to the object’s points. Then, the spatial distribution of the
points to these surfaces using well-known metric errors such as STD, RMSE and MAE was
calculated. The result of this evaluation is presented in Table 4.

Table 4. Surface deviation analysis using the cylinder fitting method, Unit: mm.

Plane
UAV Based Photogrammetry TLS

STD Mean
Distance

Max
Distance RMSE MAE STD Mean

Distance
Max

Distance RMSE MAE

Cyl. 1 3.60 1.50 3.00 4.00 2.00 2.70 0.60 5.40 2.80 2.20
Cyl. 2 3.90 1.40 5.00 5.50 4.00 3.50 0.29 5.10 3.53 2.60
Cyl. 3 3.90 2.55 5.10 4.70 3.00 4.40 0.10 5.22 3.56 2.40
Cyl. 4 3.45 1.20 4.00 3.60 0.26 3.00 0.12 4.80 3.30 2.40
Cyl. 5 5.00 0.80 4.80 5.40 4.00 3.20 2.30 4.90 4.00 3.20

Average 4.00 1.49 4.00 4.60 2.60 3.36 0.68 5.10 3.40 2.60

According to Table 4, the average results of the STD and the RMSE for the UAV data
set showed values greater than 4 mm while these amounts were calculated as less than
3.4 mm for the TLS data points. However, the maximum distance obtained for the TLS data
set shows a larger value than the UAV data points by a millimeter. This indicates a higher
noise level for the TLS data while showing a greater performance in terms of geometric
accuracy subjected to a 3D model reconstruction of the small-sized object.

4.2.2. Geometric Accuracy Evaluation

Adopting the method presented by Koutsoudis et al. [64], the geometric accuracy
of both point clouds were evaluated and compared using the point-to-point comparison
referring to the measurement of the relative distances between the specific points in each
data set. This method was also extended to be more reliable by measuring the relative
distances between several fitted planes. In this study, considering the intended surveying
object presented in Figure 4c, the average relative distances between the best-fitted planes
of the bridge piers were measured by selecting several corresponding points on their
facing planes. Then, the results were compared with the as-is measurements captured
by traditional survey equipment. The results of this comparison, shown in Table 5, were
later used for data preparation and the re-scaling of the raw point clouds. As presented
in Table 5, this evaluation shows greater scaling errors for the UAV data set than the
TLS-based scaling errors in comparison to the reference as-is measurements.
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Table 5. Geometry accuracy and scaling error evaluation.

UAV (mm) TLS (mm) As-Is (mm) UAV Scaling Error (mm) TLS Scaling Error (mm)

P1-N to P1-S 941.7 910.2 908.1 33.6 2.1
P1-W to P1-E 944.1 910.5 907.9 36.2 2.6
P2-N to P2-S 942.5 911.2 909.0 33.5 2.2
P2-W to P2-E 939.8 911.5 910.1 29.7 1.4

According to the acceptable agreement between the geometric accuracy of the TLS
data and as-is measurements, presented in Table 5, the TLS data set was used as the
reference data in the preparation phase and the UAV data were rescaled and co-registered
based on the TLS data. The successful completion of this phase was further verified by
conducting the proposed geometric accuracy evaluation and calculating the mean distance,
standard error, and uncertainty of the measurements for both point clouds in more than 10
iterations. The result of this verification, shown in Table 6, provided the standard error up
to 0.01 mm difference and uncertainty of 0.016% in measurements from the TLS data set.

Table 6. Verification and geometry accuracy evaluation (Unit: mm).

Number of Iteration
P1-E to P2-W P1-W to P2-E

UAV TLS UAV TLS

1 5479.1 5479.5 7300.0 7298.9
2 5472.1 5471.0 7301.0 7293.6
3 5478.3 5479.2 7299.9 7298.6
4 5479.0 5478.7 7301.5 7301.5
5 5474.7 5476.4 7299.6 7300.5
6 5474.5 5474.2 7301.0 7298.4
7 5472.6 5473.3 7297.3 7302.0
8 5471.2 5472.4 7293.4 7301.1
9 5472.7 5472.5 7300.9 7302.3
10 5475.6 5475.4 7309.4 7302.6
11 5472.8 5472.0 7301.4 7309.0

Average 5474.8 5474.9 7300.5 7300.7
STD 3 2.9 3.8 3.7

Standard error 0.9 0.89 1.14 1.13
MAE 51 51 48 50

Uncertainty in measurement 5470 ± 4 5470 ± 3.5 7300 ± 7 7300 ± 7
Uncertainty (%) 0.016 0.016 0.016 0.016

In another effort, the segmented bridge deck and piers, shown in Figure 4b, were
inspected using the profiling method. In this regard, both point clouds were converted into
polygon meshes (triangle mesh models) using the GOM Inspect computer software [71]
considering similar settings and parameters. Following this research, several cross-sectional
profiles of the bridge deck and piers, shown in Figure 7a,b, were extracted and evaluated.
In Figure 7c, the red lines present the TLS-based cross-sectional profile while the blue lines
show the linear paths of the UAV-based point clouds.
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The result of the profiling comparison, presented in Table 7, showed the maximum
and average distances, STD and RMSE, between the generated cross-sectional profiles in
both point clouds. Considering the cross-sectional profiles of the deck, the average distance
between the two point clouds was less than 7.27 mm; however, this amount was 0.82 mm
on section D-D and 10.17 mm on section E-E for the bridge pier cross-sectional profiles.
Moreover, the STD and RMSE were less than 6.97 mm and 7.53 mm, respectively. This
indicated an acceptable agreement between the generated point clouds; however, some
minor defects might have occurred due to self-shadowing, a lack of beam reflection or
reflection loss in the laser scanning, or matching issues in the UAV photogrammetry.
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Table 7. Profiling comparison (Unit: mm).

Cross-Sectional Profiles Max Distance Average Distance STD RMSE

Sec A-A 15.44 3.11 4.10 3.61
Sec B-B 14.21 3.29 3.94 3.62
Sec C-C 19.79 7.27 6.97 7.13
Sec D-D 6.23 0.82 0.48 0.65
Sec E-E 17.43 10.17 4.89 7.53

The last evaluation involved the analysis of the Cloud-to-Cloud (C2C) distances
based on the local modelling strategy for two different parts of the bridge using various
algorithms of LSF, triangulation, quadric surface function and nearest neighbor. The results
of this evaluation are presented in Figure 8 and Table 8. In order to further clarify the
results, the deviation analysis is presented based on color scales with distance values in
meters from blue to red. Points with blue colors have the closest distance; however, the
points with red colors are located away in both point clouds.
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Table 8. C2C distance computations.

Local Modelling
Method

Number of
Neighboring Points

Pier Part C

Average Distance
(mm) STD (mm) Average Distance

(mm) STD (mm)

Least square plane 6 2.08 3.83 5.83 10.03

12 2.41 4.20 6.61 10.86

Triangulation 6 2.97 9.51 8.13 15.54

12 2.91 9.39 8.07 15.52

Quadric function
6 2.18 4.10 6.16 10.99

12 2.45 4.41 6.80 11.56

Nearest neighbor - 3.08 9.54 8.24 15.54

According to Table 8, the comparison of bridge piers point clouds shows the average
distances were less than 4.5 mm using all local modelling methods; however, this amount
was less than 8.5 mm for part C, which means a lower precision in the point clouds’
coordination/matching considerably due to the structural complexity of the part C as
the intended surveying object. Moreover, the resulting STD values had differences with



Remote Sens. 2021, 13, 3499 18 of 22

average distances values calculated, showing the different level of noises in the generated
point clouds.

5. Discussion

The proposed methodology of this research study contains two series of general and
specific approaches to evaluate the consistency, quality, and precision of the generated
bridge size point clouds. This methodology was further verified and evidenced via com-
parisons of two available bridge point clouds generated/scanned from a bridge named
McKanes Falls Bridge using both UAV and TLS.

In the case of the McKanes Falls Bridge evaluation, the results of the general ap-
proaches indicated a denser TLS-based point cloud. Denser point clouds generally possess
a higher number of points representing the objects’ surface thereby improving the level
of accuracy for precise damage identifications and Level of Detail (LoD) in terms of as-
is/as-built 3D model reconstructions. Moreover, the result of the visual quality assessment
showed some missing/incomplete data in the UAV-derived point cloud which could
be caused by a poor overlapping of the images captured or the definition of an insuffi-
cient number of features in the matching process. However, the outlier noise evaluations
demonstrated less outlier noise for the UAV-based point cloud.

The results of the specific approaches indicated an almost similar level of noise for both
the TLS and UAV-based data points; however, individual comparisons and other factors
showed the greater performance of using TLS in terms of detailed 3D model reconstruction.
The result of the geometric accuracy evaluations showed scaling errors in millimeters
for TLS; however, the UAV-based data point exhibited a centimeter level of agreement
with the as-is measurements. In terms of UAV photogrammetry, scaling errors may be
a result of the inaccurate definition of the Ground Control Points (GPCs) or some issues
related to vehicle settings and the post-processing procedures. Thus, surveying aspects
of a bridge inspection such as selecting a suitable surveying plan, data acquisition, and
post-processing techniques can affect a qualitative point cloud generation which deserves
future investigations. After serving TLS data point as the reference data and rescaling the
UAV data point, the result of profiling and cloud-to-cloud comparisons showed acceptable
agreement with minor defects between both point clouds.

Overall, the results of the McKanes Falls Bridge case study proved the capabilities of
the proposed methodology in data quality evaluation of such voluminous point clouds. It
is clear that both UAV-based photogrammetry and TLS have their own advantages and
drawbacks. Compared to the traditional inspection method, UAV-based photogrammetry
possesses clear advantages regarding its flexibility in the level of geometric accuracy,
accessibility to high altitude areas, inspection safety, cost-effectiveness, and reasonable
inspection time. However, TLS also offers various levels of point density with range based
geometric accuracy suitable for detailed inspections while taking longer surveying and
post-processing times. Therefore, selecting the suitable bridge inspection method and
technology may rely on other considerations such as intended surveying object, available
budget, the required Level of Detail (LoD), site accessibility and project significance.

6. Conclusions

With respect to bridge inspection and monitoring, this research study introduced a
comprehensive methodology for a reliable quality analysis of digital point clouds generated
via various techniques such as imagery acquisition and laser scanning subjected to the
implantation of a detailed 3D reconstruction model. In this regard, a range of general and
specific data evaluation approaches was proposed to evaluate and compare such voluminous
point clouds in terms of points distribution, outlier level of noise, data completeness, surface
deviation, and geometric accuracy evaluation. The proposed methodology and approaches
were further verified and proved by evaluating and comparing two available bridge point
clouds captured/scanned via UAV photogrammetry and Terrestrial Laser Scanning (TLS)
from a heritage bridge named McKanes Falls Bridge located in NSW, Australia.
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The comparative results of this case study exhibited the capability and applicability
of the proposed methodology and evaluation approaches which led to a reliable and
acceptable/fair data quality evaluation and comparison. In the case of the McKanes Falls
Bridge inspection, the results of the proposed methodology and approaches showed a
higher level of points density, a more acceptable agreement with the as-is measurements,
and normal levels of outlier and general noise using TLS. However, considering similar
surveying objects and evaluations, the results exhibited some missing data and greater
scaling errors with a lower geometric accuracy for the UAV-based point cloud. This
indicates that TLS can offer significant advantages in the level of geometric accuracy
while having a high level of point density which are important considerations in terms
of the precise 3D model reconstruction for detailed quality inspections of the bridges.
However, concerns remain including the implementation time, the high equipment cost
and the limited/restricted access of TLS, which can all be compensated by using UAV-based
photogrammetry techniques.

According to the presented study, future research should focus on the assessment of
the surveying aspects of bridge inspections such as data acquisition/collection, surveying
plans and post-processing procedures which can affect qualitative point clouds generation.
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