
remote sensing  

Article

Comparative Analysis of Variations and Patterns between
Surface Urban Heat Island Intensity and Frequency across
305 Chinese Cities

Kangning Li, Yunhao Chen * and Shengjun Gao

����������
�������

Citation: Li, K.; Chen, Y.; Gao, S.

Comparative Analysis of Variations

and Patterns between Surface Urban

Heat Island Intensity and Frequency

across 305 Chinese Cities. Remote

Sens. 2021, 13, 3505. https://

doi.org/10.3390/rs13173505

Academic Editors: Elhadi Adam,

John Odindi, Elfatih Abdel-Rahman

and Yuyu Zhou

Received: 9 August 2021

Accepted: 1 September 2021

Published: 3 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University,
Beijing 100875, China; 201631190001@mail.bnu.edu.cn (K.L.); 201931051039@mail.bnu.edu.cn (S.G.)
* Correspondence: cyh@bnu.edu.cn; Tel.: +86-010-5880-4056

Abstract: Urban heat island (UHI), referring to higher temperatures in urban extents than its sur-
rounding rural regions, is widely reported in terms of negative effects to both the ecological environ-
ment and human health. To propose effective mitigation measurements, spatiotemporal variations
and control machines of surface UHI (SUHI) have been widely investigated, in particular based
on the indicator of SUHI intensity (SUHII). However, studies on SUHI frequency (SUHIF), an im-
portant temporal indicator, are challenged by a large number of missing data in daily land surface
temperature (LST). Whether there is any city with strong SUHII and low SUHIF remains unclear.
Thanks to the publication of daily seamless all-weather LST, this paper is proposed to investigate
spatiotemporal variations of SUHIF, to compare SUHII and SUHIF, to conduct a pattern classifica-
tion, and to further explore their driving factors across 305 Chinese cities. Four main findings are
summarized below: (1) SUHIF is found to be higher in the south during the day, while it is higher in
the north at night. Cities within the latitude from 20◦ N and 40◦ N indicate strong intensity and high
frequency at day. Climate zone-based variations of SUHII and SUHIF are different, in particular at
nighttime. (2) SUHIF are observed in great diurnal and seasonal variations. Summer daytime with
3.01 K of SUHII and 80 of SUHIF, possibly coupling with heat waves, increases the risk of heat-related
diseases. (3) K-means clustering is employed to conduct pattern classification of the selected cities.
SUHIF is found possibly to be consistent to its SUHII in the same city, while they provide quantitative
and temporal characters respectively. (4) Controls for SUHIF and SUHII are found in significant
variations among temporal scales and different patterns. This paper first conducts a comparison
between SUHII and SUHIF, and provides pattern classification for further research and practice on
mitigation measurements.

Keywords: surface urban heat island frequency; surface urban heat island intensity; all-weather land
surface temperature; spatiotemporal variations; factor analysis

1. Introduction

Over half of the world’s population have aggregated in urban areas [1], in particular
with the rapid development of urbanization in recent years. Urbanization brings not only
demographic and socioeconomic advancement, but also some urban environmental issues.
The transformation, from natural surface to impervious areas, introduces evident pertur-
bations to the Earth’s energy balance [2]. These perturbations can possibly be attributed
to low albedo and high thermal capacity of impervious areas compared to evaporative
vegetated cover [3,4]. Coupling with a mass of anthropogenic heat from rapid urbanization,
urban heat island (UHI), with a higher temperature in urban extents than their surrounding
areas, are reported in a large number of cities throughout the world [5–16]. The UHI is
reported to be closely associated with a wide range of environmental issues, including
air pollution [17], biodiversity reduction [18], and increased energy consumption [19,20].
Moreover, The UHI poses a potential threat to resident comfort and even human health,
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with increasing heat-related mortality [21,22], especially when heat waves strike simultane-
ously [23]. Thus, to propose effective mitigation measurements in future urban planning,
extensive exploration of the variations and controls of UHI is necessary.

According to the way and height of observation, the UHI is generally grouped into two
major categories: namely atmospheric (AUHI) and surface UHI (SUHI) [24,25]. The AUHI
includes canopy and boundary UHI [5], which are detected by ground-based and high-
altitude equipment, respectively. The sparse distribution and expensive installation of
these observation measurements pose great challenges to AUHI studies, especially on
a large scale. On the contrary, the SUHI takes advantage of thermal remote sensing with
the capability of large-scale periodic observations [26]. Therefore, SUHI is reported as
the main part of the UHI research from local to global scales [5].

Since Rao [27] first employed satellite-based data in the study of SUHI, a large num-
ber of SUHI studies have been published. Voogt and Oke [25] conducted a literature
review on the application of thermal remote sensing in urban climates, and demonstrated
their advantages in UHI studies. Streutker [28] explored the growth of SUHI in Hous-
ton, Texas from 1989 to 1999 based on an Advanced Very High Resolution Radiometer
(AVHRR). Weng et al. [29] reported that interactions between land surface temperature
(LST) and vegetation largely contribute to the spatial patterns of UHI, based on Landsat
ETM+ thermal observation. Weng et al. [30] summarized the studies of urban climates
based on remotely sensed thermal infrared (TIR) and pointed out that less attention has
been paid to the estimation of UHI parameters. Imhoff et al. [7] analyzed the relationship
between impervious surface area (ISA) and LST, and found great effects from the ecolog-
ical context on the amplitude of SUHII during the summer daytime. Schwarz et al. [31]
reported a large discrepancy and a low correlation among eleven different SUHI indica-
tors, and suggested a combination of several indicators for comprehensive SUHI studies.
Peng et al. [6] investigated SUHI across 419 global big cities and reported different driving
mechanisms between daytime and nighttime. Quan et al. [32] employed the Gaussian
volume model to explore the trajectory of SUHI in Beijing, and found temporal variations
of the UHI centroid. Zhao et al. [33] reported that the efficiency of thermal convection make
a strong contribution to the geographic variations of daytime UHI, and proposed albedo
managements as promising mitigation measurements on a large scale. Zhou et al. [34]
analyzed spatial–temporal patterns of SUHI across 32 major cities in China, and found
that vegetation and anthropogenic heat were closely related to the SUHI during summer
daytime. Lai et al. [35] proposed a four-parameter diurnal temperature cycle (DTC) model,
and characterized 354 Chinese cities into five typical temporal patterns. Manoli et al. [36]
introduced a coarse-grained model based on population and precipitation, and reported
their strong contribution to magnitude of SUHI.

Taking advantage of remote sensing, SUHI intensity (SUHII) has been widely investi-
gated. Despite considerable applications of satellite-based TIR data, TIR measurements
are largely limited by their low tolerance to cloud cover [37–41], resulting in over half
of the missing data [42]. Since there is a hard availability of daily seamless LST directly
from the TIR products, the spatial–temporal variations of SUHI frequency (SUHIF) and
its controls remain largely unknown. To compensate for missing data in the TIR products,
several methods were proposed to reconstruct seamless LST. These methods can generally
be grouped into two broad classes, namely spatial–temporal interpolation [37,41–44] and
model simulation [38–40,45]. The spatial–temporal interpolation refers to two major ways,
including gap-filling based on spatial neighboring or temporal adjacent pixels [37], and
correlation between LST and other data sources. The former way is limited by a deficiency
in adjacent pixels, while the latter one is challenged by the quality of auxiliary data [38]. In
contrast, LST reconstruction based on model simulation benefits from the stability of its
physical or semi-physical model. Liu et al. [38] proposed a hybrid ATC model on the base
of TIR LST, taking into account both the estimation accuracy and efficiency. To compensate
for the limitation of TIR, passive microwave (PMW), with the capability of penetrating
cloud, was employed to estimate all-weather LST. Zhang et al. [40] proposed a tempo-
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ral decomposition-based method including ATC, diurnal temperature cycle (DTC) and
a weather temperature component by combining TIR and PMW to reconstruct all-weather
LST. To compensate for the swath gap of PMW, Zhang et al. [39] modified this method on
the base of reanalysis data at the low–mid latitudes. Thanks to their great efforts, a daily
all-weather LST dataset proposed by Zhang et al. [39,40] for China and its surrounding
areas has recently been released.

Great efforts have been paid to SUHI studies from local to global scales. In particular,
SUHII rather than urban temperature was widely applied as an evaluation indicator in
large-scale studies [46] due to its comparability among different cities. Compared to
quantitative information from SUHII, SUHIF is a frequency indicator to show the number
of occurrences of SUHI effects during a period of time. As the annual average of SUHII
is the most popular temporal scale, the occurrences of SUHI effects during a year were
taken as the major concentration here. However, the spatiotemporal variations of SUHIF
remain largely unknown as a result of the absence of daily seamless LST. Fortunately,
the recent publication of a daily seamless LST dataset across China has provided the data
basis for the investigation on SUHIF. There are three issues about SUHIF requiring further
exploration. Frist, the spatial and temporal variations of SUHIF are not clear. Second,
the relationship between SUHII and SUHIF remains unknown. There are several questions
on their comparisons. Does high SUHII necessarily accompany high SUHIF? Is there any
city with a strong SUHII but weak SUHIF (vice versa)? Can the pattern classification
of these cities based on SUHII and SUHIF generalize their characteristics? Third, there
are some questions on their driving mechanisms which remain unclear. Are controls of
SUHII and SUHIF coincident or different? Do their driving factors vary with different
SUHI patterns?

To address the aforementioned issues, this paper proposed to compare spatial–temporal
variations between SUHII and SUHIF, to identify SUHI patterns, and to explore their driv-
ing factors across 305 Chinese cities. These comparisons can bring insights into the quanti-
tative and temporal characteristics of SUHI. Furthermore, it can provide a foundation for
further exploration, which is closely correlated to heat-related diseases and poses stronger
negative effects on human health, SUHII or SUHIF.

2. Study Area and Data
2.1. Study Area

China is located on the eastern Eurasian continent and on the western Pacific coast
(from 72◦ E to 135◦ E, from 19◦ N to 55◦ N). Thanks to its vast territory, there are great
gradients in terms of temperature and precipitation across China. Additionally, there
is significant economic and social development in China with the implementation of
the reform and opening-up policy. Considerable urbanization brings not only economic
boosts, but also great perturbations to the urban environment. Zhou et al. [5] reported that
the UHI possibly became serious issues under conditions of global warming and rapid
urbanization, especially in China. Accordingly, various natural environments and rapid
urbanization make China an ideal place to conduct studies on SUHI. A total of 305 Chinese
cities (Figure 1) with population over than 500,000 in 2018 were selected. A population
of 500,000 was utilized as the threshold for city selection due to its wide applications in
the difference of small cities and large towns.
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Figure 1. Spatial distribution of the 305 selected cities across China. The background of the map
shows Land use and land cover from MODIS MCD12Q1. The bar plot (b) shows the percentage of
these cities according to five population classifications.

2.2. Data

LST was collected from the daily 1-km all-weather LST dataset for the Chinese land-
mass and its surrounding areas [39,40,47,48], also named TRIMS LST (Thermal and Re-
analysis Integrating Moderate-resolution Spatial-seamless LST), in 2018. This dataset is
available at the National Qinghai-Tibet Plateau Science Data Center (http://data.tpdc.ac.
cn/zh-hans/, accessed on 1 July 2021). Good image quality and accuracy of TRIMS LST
were illustrated according to data validations. The consistency between TRIMS LST and
Aqua MODIS LST was validated. Compared to MODIS LST, the MAE (mean absolute
error) of TRIMS LST is 0.08 K and 0.16 K at day and night. Thanks to the advantages
of the high accuracy and seamless images, TRIMS LST provides a data foundation for
the study on SUHIF.

Land cover, land use (LULC), and Enhanced Vegetation Index (EVI) were collected
from MODIS products in 2018. LULC was collected from the annual 500-m MCD12Q1,
which was produced based on supervised classification and further post-processing. EVI
was collected from 16-Day 500-m MYD13A1 V6 (Version 6), which utilized the blue band
to mitigate effects from atmosphere contamination. These two MODIS data are available at
the Level-1 and Atmosphere Archive and Distribution System (LAADS) Distributed Active
Archive Center (DAAC) (https://ladsweb.modaps.eosdis.nasa.gov/search/, accessed on
1 July 2021).

Total precipitation (TP) was collected from ERA5-Land hourly 0.1◦ × 0.1◦ climate
reanalysis dataset at the European Centre for Medium-Range Weather Forecasts (ECWMF).
A digital elevation model (DEM) was collected from GTOPO30, a global 1-km DEM product.
GTOPO30 is available at the United States Geological Survey (https://earthexplorer.usgs.
gov/, accessed on 1 July 2021). Monthly 1-km nighttime light (NTL) was collected from
the Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer
Suite (VIIRS) Day/Night Band (DNB), available at the NOAA National Geophysical Data
Center (https://ngdc.noaa.gov/eog/download.html, accessed on 1 July 2021). Adminis-
trative boundaries for the 305 Chinese cities were collected from the Global Administrative
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Unit Layers (GAUL). The population of the selected cities was collected from the yearbook
of Chinese cities.

3. Methods

The flowchart was generally grouped into four steps, namely SUHII calculation,
SUHIF estimation, pattern classification and factor analysis (Figure 2).
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3.1. SUHII Calculation

SUHII is commonly defined as a temperature difference between urban and rural
areas (Equation (1)). Before SUHII calculation, two basic preparations were the definition of
these two regions and elimination of the effects from water and DEM. First, urban extents
were defined as urban land cover from MODIS LULC data within the administrative
boundaries of the selected cities. There were two major methods for defining rural extents
for SUHII, namely buffer-based and size-based methods. The buffer-based rural definition
were reported to be limited by the difficulties of buffer selection [46] and the in-adaptability
of one fixed buffer for various cities [35]. Thus, the size-based method was employed to
define rural reference with an equal size of urban extents. Before generating equal-size rural
surroundings, water and ice cover were removed to mitigate their effects on temperature.
Besides, pixels with DEM over ±50 m of the urban average were eliminated. To mitigate
the impacts from human activities, the rural reference was defined as an equal-size ring
distant to urban cores. Nighttime light (NTL) benefiting from a representation of human
impacts was applied to distinguish rural extents. As a twice-size ring was first prepared,
the median NTL of it was used to extract two equal-sized areas with a higher and lower
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NTL respectively. To keep temporal consistency, SUHII was first calculated at a daily scale,
and then temporally aggregated to seasonal and annual scales.

SUHIIi,d = LSTUrban,i,d − LSTRural,i,d , (1)

where i represents the ith city, and d represents the DOY (Date-Of-Year). LSTUrban,i,d
represents average urban LST of the ith city in the dth day.

3.2. SUHIF Estimation

To our knowledge, few studies on SUHIF were conducted due to a lack of daily
seamless LST. Therefore, the selection of the threshold for SUHI was first discussed. 1 K
was selected as the threshold to estimate SUHIF. There were three major reasons for
the selection of 1 K rather than 0 K. First, a large number of large-scale studies on SUHII
have reported that the average of SUHII was approximately 1 K [6–9,34,46,49]. Second,
the selection of 0 K as the threshold was possibly more sensitive to the accuracy of LST,
compared to 1 K. Third, the selection of the threshold was determined on the basis of
the application requirements. After determination of the threshold, SUHIF was estimated
based on daily SUHII from seamless LST under all-weather conditions. According to
the difference between temporal periods, SUHIF was estimated at annual (Equation (2))
and seasonal (Equation (3)) scales, respectively.

SUHIFannual,i = count(i f SUHIIi,d ≥ 1 K), d ∈ (0, dannual) (2)

SUHIFseason.i = count(i f SUHIIi,d ≥ 1 K), d ∈ (dseason,start, dseason,end) (3)

where i represents the ith city, and d represents the DOY (Date-Of-Year). SUHIFannual,i
represents the annual SUHIF of the ith city, SUHIFseason,i represents SUHIF at a certain
season (spring, summer, autumn and winter) of the ith city. dannual represents the number
of days in the year. dseason,start and dseason,end represent the DOY of the start and end date of
a certain season.

3.3. Pattern Classification

This paper was proposed to discuss the consistency and difference between SUHII
and SUHIF, and then to conduct a pattern classification for better characterization of urban
heat island in China. As SUHII and SUHIF represent quantity and temporal information
respectively, they were taken as features for the pattern classification. The K-means cluster-
ing algorithm, aiming at the partition of a dataset into K clusters [50], was employed to
determine the pattern classification. There were two major steps of this iterative algorithm.
First, K objects from the dataset were randomly selected as cluster centers, and each object
was divided into clusters based on its distance to the center. Second, the cluster center
was recalculated when a new object was divided into it. The second step was iterated
until no more new object was grouped into different clusters. Since the number of classes
is important in the K-means clustering algorithm, there are three reasons for the num-
ber selection. (1) According to the Gap statistics, a method to validate the efficiency of
the number, three clusters can distinguish the characteristics of the dataset. (2) Three
classes, namely the low, medium and high patterns, can not only characterize their features
but also provide meaningful information for related researchers, policymakers and even
residents who concern for the surrounding thermal environment and its heat-related illness.
(3) Great differences among these three patterns was found across 305 Chinese cities.

3.4. Factor Analysis

There were five features being selected in the factor analysis, namely EVI difference
(∆EVI), LST, total precipitation (TP), population (Pop) and NTL. Since these factors have
been widely reported as important controls for UHI [6,7,29,33,34,36,51], a factor analysis
was conducted to explore whether they also largely contributed to the spatiotemporal
variations of SUHIF. ∆EVI was the absolute value of EVI difference between urban and rural
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extents. Two indicators for background climate, LST and TP, were the average of urban and
rural regions. NTL was estimated based on its average within urban areas. Despite various
resolutions of data sources for these factors, the spatial average within certain boundaries
makes them comparable. According to the literature review, the ordinary lest squares
(OLS) with Pearson’s correlation were reported as the dominant methods for investigating
controls for SUHI [52]. The Pearson’s correlation was utilized to explore the relationship
between these selected factors and SUHIF. The factor analysis was conducted in terms of
SUHII, SUHIF, and their comparisons. Despite great efforts on SUHII drivers, limited by
the lack of daily data, the correlation between SUHII and these factors was first conducted
at daily scales. Factor analysis for SUHIF was conducted at annual and seasonal scales.
Additionally, to determine whether the controls for SUHII or SUHIF varied among different
patterns, factor analysis was investigated in terms of pattern classification.

4. Results and Discussion
4.1. Comparison of Spatial Distribution between SUHII and SUHIF

To explore the similarities and differences of geographic variations between SUHII
and SUHIF, two major steps were conducted. They are a qualitative analysis of the over-
all distribution (Figure 3) and further quantitative estimation in terms of latitude and
climate zone-based variations (Figure 4). Figure 3 shows the overall spatial distribution
of SUHII and SUHIF across 305 Chinese cities. At daytime, SUHII is observed in an ev-
ident north–south contrast, with the higher intensity in the south and the weaker one in
the northern regions. According to the previous studies on the driving mechanism, vegeta-
tion is widely reported as an important indicator for daytime SUHII [6,8,53]. Referring to
LULC in Figure 1, a north–south contrast of vegetation distribution is found to be similar to
that of SUHII. This similar distribution possibly suggests that the difference of vegetation
distribution between northern and southern China is related to the north–south contrast of
SUHII. Conversely, an opposite distribution pattern with a weaker intensity in the south,
and a higher one in the northern areas, is found from nighttime SUHII. Despite different
city selections across China, these spatial patterns and diurnal contrasts of SUHII are
consistent with Zhou’s findings [34]. Additionally, the daytime SUHIF shows an increasing
gradient from the north to the southern regions. At night, an inverse gradient of SUHIF
is observed. SUHIF is also found to be higher in the southern regions at day, while they
are higher in the north at night. On the whole, SUHIF is observed to have similar spatial
patterns to SUHII at both day and night.

Furthermore, Figure 4 shows a quantitative analysis based on the latitudinal and
climatic variations of SUHII and SUHIF. Considering the geographic distribution of the se-
lected cities, latitudinal variations were conducted from 20◦ to 50◦ N with an interval
of 5◦. At daytime, there are three primary changing points of SUHII. Daytime SUHII
decreases from 1.14 K at the 50◦ N zone to 0.43 K at the 40◦ N zone, and rises to 3.65 K
at the 20◦ N zone. This decrease from 50◦ N to 40◦ N possibly results from different
vegetation distributions between them. According to Figure 1, vegetation cover of rural
areas in Hegang and Jiamusi (at 50◦ N zone), with high daytime SUHII, are deciduous
broadleaf forests (Figure 1), while cities at 40◦ N zone are mainly surrounded by croplands.
At night, SUHII decreases from 1.31 K at 45◦ N to 0.64 K at 25◦ N, and then increases to
1.33 K at 20◦ N. Nighttime SUHII is observed to have a less significant north–south contrast.
Latitudinal variations of SUHIF indicate similar patterns to that of SUHII, especially at
daytime. Daytime SUHIF decreases from 167.50 at 50◦ N to 121.73 at 40◦ N, and rises to 364
at 20◦ N. Accordingly, due to the latitude between 35◦ N and 20◦ N, more than 200 days in
a year are affected by SUHII over 1 K. Despite general consistency to the low north and
high south patterns of daytime SUHIF (Figure 3), latitudinal analysis provides more details
about the north–south contrast. At night, SUHIF shows greater variations from 25◦ N to
20◦ N compared to nighttime SUHII.
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The climate zone-based variations were conducted in terms of five major climate types,
namely Temperate Monsoon (TM), Temperate Continental (TC), Subtropical Monsoon (SM),
Tropical Monsoon (Tro-M) and Plateau Mountain (PM) climate. At daytime, the average of
the climate zones from the highest to the lowest are listed as Tro-M, SM, TM, TC and PM,
with values of 3.64 K, 2.17 K, 0.81 K, −0.07 K and −1.21 K, respectively. Stronger daytime
SUHII in the monsoon climate is observed compared to that in TC and PM. In addition,
previous studies reported a larger daytime SUHII in humid-hot cities than cold-drier
ones [6,7,10]. Despite the similar climate variations on average, daytime SUHIF indicates
larger value ranges than that of SUHII. During the day, over 200 of SUHIF in the SM and
Tro-M climate means that a large number of cities in these two climate zones are influenced
by SUHI for more than 200 days in a year. Additionally, the order of average SUHII at
night is listed as TC, Tro-M, TM, SM, and PM, from 1.44 K to −0.94 K. The highest average
of nighttime SUHII is found in the TC climate, whereas that of SUHIF is found in Tro-M.
Compared to daytime SUHIF, the nighttime one indicates larger internal variations in each
climate zone.

4.2. Comparison of Temporal Variations between SUHII and SUHIF

To compare temporal patterns between SUHII and SUHIF, annual and seasonal vari-
ations were conducted. Figure 5 shows the Probability Distribution Function (PDF) and
Cumulative Distribution Function (CDF) of SUHII and SUHIF across the selected cities.
Daytime SUHII is primarily found between 0 and 4 K with an average of 1.53 K. As
Zhou et al. [5] reported that UHI largely challenged the ecological environment and human
health in China, we found that more than 66.87% of Chinese cities suffer from SUHII over
1 K. Nighttime SUHII, mainly varying from 0 to 2 K with an average of 0.95 K, is less
evident than the daytime one. This diurnal contrast was also reported in some previous
large-scale studies [6,8,9]. This contrast is possibly attributed to more driving factors for
daytime SUHI than for the nighttime one [8]. Additionally, rather than an approximate
Gaussian distribution of SUHII, the CDF and PDF of SUHIF indicate different patterns.
There is an aggregation in the highest value range (from 354 to 365) accounting for 8.50%
of daytime SUHIF. Conversely, nighttime SUHIF shows an aggregation within the lowest
value range, accounting for 15.41%. The annual average of SUHIF is 210.88 and 145.27 at
day and night respectively, indicating a strong diurnal contrast. Greater SUHIF is found
at day than at night. To explore more detail about SUHIF across China, the extremum
is excluded from zooming graphs. PDF of SUHIF in the zooming graphs is found to
have an approximately homogeneous distribution, which further illustrates the difference
from SUHII.

Figure 6 shows the seasonal variations of SHUII and SUHIF on the basis of both
seasonal average and value distribution, to provide more information and details. At
daytime, SUHII indicates evident seasonal variations. Over four seasons, SUHII over 1 K
accounts for 63.93%, 92.78%, 58.36%, and 25.90%, respectively. The strongest season of
SUHII is found in summer, with an average of 3.01 K, while the weakest one is found in
winter with 0.39 K. Summer daytime is also widely reported to be the strongest season
of SUHII in a large number of related studies [5], which is possibly attributed to a strong
and negative correlation between ∆EVI and SUHII in the summer [34]. Nevertheless, less
evident seasonal variations are observed from nighttime SUHII. Summer, with an average
of 1.05 K, is found to be the strongest season, while winter with 0.83 K is found to be
the weakest one. This seasonal contrast is also found in some SUHII studies at a global
scale [6,8]. Additionally, daytime SUHIF indicates significant seasonal variations, also
referred to as being strongest in summer and weakest in winter. SUHIF over 80 days in
a season (about 90 days) accounts for about 70.16% of the selected cities in summer, while
a SUHIF less than 20 accounts for 60.32% in winter. For both daytime SUHII and SUHIF,
the extremums are found in summer and winter, while transition seasons (spring and
autumn) are found to have similar variations to each other. Tan et al. [54] reported that
daytime SUHI in summer was responsible for the exacerbation of heat waves and was
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closely associated with heat-related mortality. Thus, the summer SUHI at day, with a strong
intensity (3.01 K) and high frequency (80), should be further explored in terms of driving
factors and mitigation measurements. At night, a similar average of SUHIF during four
seasons (36, 37, 38 and 31) indicates less evident seasonal variations.
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show the value distribution across the selected cities. To clearly show their variations, zoom-in images without the extremum
are added for SUHIF.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 6. Seasonal variations of SUHII and SUHIF at daytime (a) and nighttime (b). The discrete distribution as horizontal 

bar charts in the first row shows seasonal variations of SUHII (a1,b1) and the second row charts show that of SUHIF 

(a3,b3). Percentage over 10% is labelled in the graph. The line plots in the first row show the average of SUHII (a2,b2) and 

plots in the second row show that of SUHIF (a4,b4) among the different seasons. 

4.3. Pattern Classification Based on SUHII and SUHIF 

After comparing their spatial and temporal variations between SUHII and SUHIF 

across 305 Chinese cities, further exploration was conducted to determine their relation-

ship and to conduct a pattern classification (Figure 7). Scatter plots based on SUHII and 

SUHIF show that there is no city with a high intensity and a low frequency of UHI (vice 

versa). Despite different value distributions based on their PDF, SUHII and SUHIF of the 

same city are observed to have a relative consistency, especially at night. Accordingly, a 

city with high SUHI intensity possibly accompanies high frequency. This closer correla-

tion at night results from the less significant variations of nighttime SUHI. In spite of the 

consistency between SUHII and SUHIF, it is noted that they provide two different aspects 

of information from quantity and time. Furthermore, the K-means clustering was em-

ployed in the attempts of SUHI pattern classification based on these two important fea-

tures. This pattern classification allows easy characterization and further exploration to 

determine whether driving factors vary among these patterns. Three categories, namely 

the low, medium, and high patterns, are not only proven by the gap statistics as a rational 

number of classification, but are also meaningful to related researchers and decision-mak-

ers. The amount of the selected cities in these three classes is 89, 123, and 93 at day, and 

124, 94, and 87 at night. To further explore the discrepancy of these patterns, grouped 

statistics were conducted. At day, the average of SUHII among these three classes is 0.18 

K, 1.49 K, and 2.89 K, and that of SUHIF is 94.06, 210.62, and 323.01. At night, SUHII of 

three patterns is 0.35 K, 0.93 K, and 1.82 K, and SUHIF is 28.84, 154.31, and 301.46. Cities 

labelled into the high pattern, of which intensity and frequency are found to be much 

higher than the average of them all, should attract more attention in both research and 

practice. 

Figure 6. Seasonal variations of SUHII and SUHIF at daytime (a) and nighttime (b). The discrete distribution as horizontal
bar charts in the first row shows seasonal variations of SUHII (a1,b1) and the second row charts show that of SUHIF (a3,b3).
Percentage over 10% is labelled in the graph. The line plots in the first row show the average of SUHII (a2,b2) and plots in
the second row show that of SUHIF (a4,b4) among the different seasons.

4.3. Pattern Classification Based on SUHII and SUHIF

After comparing their spatial and temporal variations between SUHII and SUHIF
across 305 Chinese cities, further exploration was conducted to determine their relationship
and to conduct a pattern classification (Figure 7). Scatter plots based on SUHII and SUHIF
show that there is no city with a high intensity and a low frequency of UHI (vice versa).
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Despite different value distributions based on their PDF, SUHII and SUHIF of the same city
are observed to have a relative consistency, especially at night. Accordingly, a city with high
SUHI intensity possibly accompanies high frequency. This closer correlation at night results
from the less significant variations of nighttime SUHI. In spite of the consistency between
SUHII and SUHIF, it is noted that they provide two different aspects of information from
quantity and time. Furthermore, the K-means clustering was employed in the attempts of
SUHI pattern classification based on these two important features. This pattern classifica-
tion allows easy characterization and further exploration to determine whether driving
factors vary among these patterns. Three categories, namely the low, medium, and high
patterns, are not only proven by the gap statistics as a rational number of classification, but
are also meaningful to related researchers and decision-makers. The amount of the selected
cities in these three classes is 89, 123, and 93 at day, and 124, 94, and 87 at night. To
further explore the discrepancy of these patterns, grouped statistics were conducted. At
day, the average of SUHII among these three classes is 0.18 K, 1.49 K, and 2.89 K, and that
of SUHIF is 94.06, 210.62, and 323.01. At night, SUHII of three patterns is 0.35 K, 0.93 K,
and 1.82 K, and SUHIF is 28.84, 154.31, and 301.46. Cities labelled into the high pattern, of
which intensity and frequency are found to be much higher than the average of them all,
should attract more attention in both research and practice.
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Figure 7. Relationship between SUHII and SUHIF at daytime (a) and nighttime (b). The scatter plots show their relationship,
with color representation of three categories, namely the low (L), medium (M), and high (H) patterns. To clearly show
the characteristics of these three categories, the bar charts show the average of SUHII (a1-R,b1-R) and SUHIF (a1-L,b1-L).
The histograms represent the PDF of SUHII (a2,b2) and SUHIF (a3,b3).

Figure 8 shows the spatial distribution of these SUHI patterns in three aspects, namely
the overall, latitudinal, and climate zone-based variations. On the whole, cities labelled
as the high pattern at daytime are densely located in the south of China, while those of
the low one are primarily located in the northern regions. At night, cities of the high
pattern are distributed in the north, while the low ones are mainly in the southern regions.
Although a distribution of the two extreme patterns differ to each other, cities of the medium
pattern are scattered across China at both day and night. Only 86 cities are found to have
consistency patterns during the whole day, and most of the cities accounting for about
71% are found to have a pattern transformation from day to night. This significant diurnal
contrast can be possibly attributed to different driving mechanisms of UHI at day and
night, which has been widely reported in previous studies [6,17,33,35]. Furthermore,
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latitudinal variations of patterns show that cities of the low pattern are mainly located in
the 35–50◦ N zone at day, while those of the high ones are densely distributed from 25◦ to
35◦. Apart from scatter distribution, cities of the medium pattern are further observed to
have an aggregation of around 35◦ N based on the quantitative analysis of their latitudinal
variations. At night, these three patterns are densely distributed in 45◦ N, 35◦ N, and
35◦ N, respectively. Moreover, almost all of cities grouped into the daytime high pattern are
aggregated in the SM climate, according to the climate zone-based variations. Therefore,
the climate characteristics of SM are closely associated with high intensity and frequency
of SUHI. This close relation between SM and the high pattern of SUHI is possibly due
to daytime SUHI being reported to be stronger in humid-hot regions than in cold-drier
ones [6,7,10]. Conversely, there is no complete aggregation of any patterns in one climate
zone at night.
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4.4. Factor Analysis of SUHII and SUHIF

To compare the controls between SUHII and SUHIF, and to further explore pattern
effects on controls, the factor analysis was conducted based on SUHII (Figure 9), SUHIF
(Figure 10) and pattern classifications (Figure 11), respectively.
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Figure 9. Relationships between SUHII and potential factors at a daily scale. The heat maps represent their correlation at
daytime (a1) and nighttime (a2). The bar charts (b) show a diurnal contrast of their relationships in terms of each factor
((b1) for ∆EVI, (b2) for T, (b3) for TP, (b4) for Pop, (b5) for NTL). To make the results clear, the correlation with a p-value less
than 0.05 is shown in the bar charts. The fitting lines are employed to clearly show the annual variations in their correlation,
where days with p-values less than 0.05 are found to be over 270 during a year.
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Figure 10. Relationship between SUHIF and potential factors in terms of annual and seasonal scales. The heat maps represent
their correlation at daytime (a1) and nighttime (a2). The bar charts (b) show a diurnal contrast of their relationship in terms
of each factor ((b1) for ∆EVI, (b2) for T, (b3) for TP, (b4) for Pop, (b5) for NTL). To make the results clear, the correlation
with p-values less than 0.05 are labeled in the heat maps.
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Figure 11. Comparisons of factor analysis based on SUHII and SUHIF in terms of pattern classifications at daytime (a) and
nighttime (b). There are two temporal scales, namely annual and seasonal scales. I is the abbreviation of SUHII and F is
the abbreviation of SUHIF. To make the results clear, the correlations with p-value less than 0.05 are labeled in the heat maps.

Figure 9 shows the correlation between SUHII and potential factors in terms of a daily
scale. As great challenges on the reconstruction of daily seamless LST, few factor analyses
are conducted on a daily scale. Thanks to the publication of daily all-weather LSTs, this
paper can provide insights into daily-scale analysis of their relationship. At day, ∆EVI
is found to have a significant correlation with daily SUHII. To make the EVI difference
between urban and rural clear, ∆EVI is taken as its absolute value. Accordingly, a posi-
tive correlation in this paper is consistent with a negative one in previous studies [8,9].
Vegetation has been widely recognized to have an important cooling factor [6,8,34,54,55],
owing to its evapotranspiration. Despite its significance on almost every day of the year
(342 days), their correlation coefficients indicate a fluctuation with higher relations in
the two transition seasons. This annual fluctuation of the effects from ∆EVI is also found
in the studies of driving factors across highly populated cities across eastern China, as
proposed by Zhou et al. [9] Temperature and total precipitation are taken as indicators
for background climates across the selected cities, which have been reported as important
controls for UHI [33,36]. A closer correlation between TP and daytime SUHII throughout
the year compared to that in previous studies possibly results from all-weather rather than
clear-sky LST employed in this paper. At night, populations in the selected cities indi-
cates the continuous effects on SUHII. Chakraborty and Lee [8] reported that heat storage
and anthropogenic heat emission (AHE) were closely related to nighttime UHI. A close
association between population and AHE [56] explains the impacts from population on
nighttime SUHII. Besides, an evident diurnal contrast from factor correlation is consistent
with previous studies of UHI controls [6,9,51].

Figure 10 shows the correlation between SUHIF and potential factors at annual and
seasonal scales. At daytime, ∆EVI and TP are found to be significantly correlated to SUHIF,
in particular in spring and autumn. Since ∆EVI is an associated indicator for energy transfer
between urban and rural environments, it influences not only SUHII, but also its frequency.
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SUHIF is found to be closely correlated to precipitation at an annual scale. In previous
studies, the temporal aggregation of clear-sky data was biased sampling with an ignorance
of weather conditions. Here, SUHIF, on the basis of all-weather rather than clear-sky LST,
makes it possible to analyze the relationship between it and precipitation. Manoli et al. [36]
reported that precipitation influences the UHI based on changes in evapotranspiration and
convection efficiency. This close relationship suggests that precipitation makes a strong
contribution not only to the magnitude, but also to the frequency. There are two reasons
why the effects from ∆EVI and precipitation are more significant in the transition seasons
than in summer and winter. First, saturation of daytime SUHIF at summer across most
of the selected cities results in a weaker correlation with continuous variables like ∆EVI
and precipitation. In winter, a dense aggregation of around zero also influences the
factor analysis. Secondly, there are other potential factors that contribute to variations
in SUHIF. At night, the relationships between SUHIF and these factors is observed to
have less seasonal variations than daytime ones. This is possibly as a result of the non-
significant seasonal variations of SUHIF at nighttime. Population is related to daytime
SUHIF throughout the year, whereas NTL is correlated to the nighttime one.

After exploring controls for SUHII and SUHIF respectively, comparisons on factor
analysis were conducted on the basis of pattern classification at annual and seasonal
scales (Figure 11). Two objectives are a comparisons on the controls of SUHII and SUHIF,
exploration on temporal variations and pattern variations of factor analysis. At daytime,
∆EVI and TP indicate a significant correlation to both intensity and frequency at an annual
scale, while population is found to be presumably irrelevant to their variations. ∆EVI and
TP are widely reported as important factors for explaining spatial and temporal variations
of SUHI [6,9,36]. In spite of the significant correlation at the annual scale, their impacts
are observed to have variations between SUHII and SUHIF among different patterns. On
an annual scale, ∆EVI indicates a closer relationship to SUHII, while temperature and
precipitation indicate a closer relationship to SUHIF. The frequency is estimated on the basis
of daily all-weather LST, which receives considerable impacts from weather conditions.
In the cities classified into the high pattern, vegetation is found to be an important factor
for daytime SUHII, whereas a much lesser correlation is found in the low and medium
patterns. At night, the weak explanation of the selected factors suggest the necessity of
a further exploration into the driving factors for nighttime SUHII and SUHIF. Additionally,
the factor analysis shows evident seasonal variations. At daytime, there are greater impacts
from three important factors (∆EVI, T and TP) on both SUHII and SUHIF in spring and
autumn, rather than during the extreme seasons. In particular, the cities labelled as the high
patterns in summer, possibly coupled with heat waves to pose great threats on residential
health [57], needs a more comprehensive factor analysis for further mitigations.

5. Conclusions

Great efforts have been devoted to the study of spatiotemporal variations and driving
mechanisms of SUHI from the local to the global scale, due to its close association with
environmental issues and human health. However, studies on SUHIF are largely challenged
by a great number of missing LSTs on a daily scale. There are three issues concerning
SUHIF which remain largely unknown, namely its spatiotemporal variations, pattern
classifications, and driving factors. Additionally, it is unclear whether SUHII and SUHIF
are consistent or different to each other in terms of their variations and controls. Thanks
to the release of daily all-weather LSTs across China, this paper is allowed to conduct
comparisons between SUHII and SUHIF, to conduct a pattern classification and to further
explore their controls.

There are four major findings, which are summarized as follows. First, SUHIF indi-
cates a different north–south contrast between day and night. Cities within the latitude
of 20◦ N to 40◦ N should be have more attention paid to them, since they are found to
have a strong intensity and a high frequency during the day. Despite the overall consis-
tency of spatial distribution, discrepancy between SUHII and SUHIF is observed from
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the climate zone-based variations, especially at night. Second, SUHIF shows a significant
diurnal and seasonal contrast. The difference in SUHIF between day and night is 65.61,
while for SUHII it is 0.58 K. Summer daytime is found to have the highest intensity and
frequency. Third, the selected 305 Chinese cities are grouped into three patterns based on
K-means clustering. After comparative analysis, SUHIF is possibly consistent with SUHII
in the same city. Despite the generally similar spatiotemporal patterns between SUHII
and SUHIF, they provide quantitative and temporal characteristics, respectively. Fourth,
impacts from driving factors on SUHII and SUHIF are found to have significant variations
among different times and patterns. Daytime SUHIF is found to be closely associated with
precipitation in spring and autumn.

In summer, strong urban heat island and heat waves are reported as great contributors
for high heat-related mortality. Therefore, cities classified into the high pattern with both
strong intensity and high frequency during summer should be taken as a research emphasis
in future exploration, to propose targeting mitigation measurements.

Author Contributions: Conceptualization, K.L. and Y.C.; Methodology, K.L.; Formal Analysis, K.L.;
Investigation, K.L.; Data K.L. and S.G.; Writing—Original Draft Preparation, K.L.; Writing—Review
and Editing, K.L.; Visualization, K.L.; Supervision, Y.C.; Project Administration, Y.C.; Funding
Acquisition, Y.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Beijing Natural Science Foundation (8192025), National
Key R&D Program of China (2017YFC1502406), Projects of Beijing Advanced Innovation Center for
Future Urban Design, Beijing University of Civil Engineering and Architecture (UDC2019031321),
and in part by the Beijing Laboratory of Water Resources Security and Beijing Key Laboratory of
Environmental Remote Sensing and Digital Cities.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Center for Geodata and Analysis, Faculty of
Geographical Science, and Beijing Normal University for the high-performance computing support.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. United Nations Population Division. The World’s Cities in 2018 Data Booklet; United Nations Population Division: New York, NY,

USA, 2018.
2. Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities.

Science 2008, 319, 756–760. [CrossRef]
3. Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat.

Commun. 2020, 11, 2647. [CrossRef]
4. Oke, T.R. The urban energy balance. Prog. Phys. Geogr. Earth Environ. 1988, 12, 471–508. [CrossRef]
5. Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite Remote

Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2018, 11, 48. [CrossRef]
6. Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.-M.; Nan, H.; Zhou, L.; Myneni, R. Surface Urban Heat Island

Across 419 Global Big Cities. Environ. Sci. Technol. 2011, 46, 696–703. [CrossRef] [PubMed]
7. Imhoff, M.L.; Zhang, P.; Wolfe, R.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental

USA. Remote Sens. Environ. 2010, 114, 504–513. [CrossRef]
8. Chakraborty, T.; Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and

examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 269–280. [CrossRef]
9. Zhou, D.; Bonafoni, S.; Zhang, L.; Wang, R. Remote sensing of the urban heat island effect in a highly populated urban

agglomeration area in East China. Sci. Total Environ. 2018, 628–629, 415–429. [CrossRef] [PubMed]
10. Peng, J.; Ma, J.; Liu, Q.; Liu, Y.; Hu, Y.; Li, Y.; Yue, Y. Spatial-temporal change of land surface temperature across 285 cities in

China: An urban-rural contrast perspective. Sci. Total Environ. 2018, 635, 487–497. [CrossRef]
11. Yang, Q.; Huang, X.; Tang, Q. The footprint of urban heat island effect in 302 Chinese cities: Temporal trends and associated

factors. Sci. Total Environ. 2019, 655, 652–662. [CrossRef]
12. Santamouris, M. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions.

Sci. Total Environ. 2015, 512–513, 582–598. [CrossRef]
13. Zhou, D.; Zhang, L.; Hao, L.; Sun, G.; Liu, Y.; Zhu, C. Spatiotemporal trends of urban heat island effect along the urban

development intensity gradient in China. Sci. Total Environ. 2016, 544, 617–626. [CrossRef]

http://doi.org/10.1126/science.1150195
http://doi.org/10.1038/s41467-020-16461-9
http://doi.org/10.1177/030913338801200401
http://doi.org/10.3390/rs11010048
http://doi.org/10.1021/es2030438
http://www.ncbi.nlm.nih.gov/pubmed/22142232
http://doi.org/10.1016/j.rse.2009.10.008
http://doi.org/10.1016/j.jag.2018.09.015
http://doi.org/10.1016/j.scitotenv.2018.02.074
http://www.ncbi.nlm.nih.gov/pubmed/29448025
http://doi.org/10.1016/j.scitotenv.2018.04.105
http://doi.org/10.1016/j.scitotenv.2018.11.171
http://doi.org/10.1016/j.scitotenv.2015.01.060
http://doi.org/10.1016/j.scitotenv.2015.11.168


Remote Sens. 2021, 13, 3505 17 of 18

14. Azevedo, J.A.; Chapman, L.; Muller, C.L. Quantifying the Daytime and Night-Time Urban Heat Island in Birmingham, UK:
A Comparison of Satellite Derived Land Surface Temperature and High Resolution Air Temperature Observations. Remote Sens.
2016, 8, 153. [CrossRef]

15. Fabrizi, R.; Bonafoni, S.; Biondi, R. Satellite and Ground-Based Sensors for the Urban Heat Island Analysis in the City of Rome.
Remote Sens. 2010, 2, 1400–1415. [CrossRef]

16. Huang, W.; Li, J.; Guo, Q.; Mansaray, L.R.; Li, X.; Huang, J. A Satellite-Derived Climatological Analysis of Urban Heat Island over
Shanghai during 2000–2013. Remote Sens. 2017, 9, 641. [CrossRef]

17. Cao, C.; Lee, X.; Liu, S.; Schultz, N.; Xiao, W.; Zhang, M.; Zhao, L. Urban heat islands in China enhanced by haze pollution. Nat.
Commun. 2016, 7, 12509. [CrossRef]
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