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Abstract: Loop closure detection is an important component of visual simultaneous localization
and mapping (SLAM). However, most existing loop closure detection methods are vulnerable to
complex environments and use limited information from images. As higher-level image information
and multi-information fusion can improve the robustness of place recognition, a semantic–visual–
geometric information-based loop closure detection algorithm (SVG-Loop) is proposed in this paper.
In detail, to reduce the interference of dynamic features, a semantic bag-of-words model was firstly
constructed by connecting visual features with semantic labels. Secondly, in order to improve
detection robustness in different scenes, a semantic landmark vector model was designed by encoding
the geometric relationship of the semantic graph. Finally, semantic, visual, and geometric information
was integrated by fuse calculation of the two modules. Compared with art-of-the-state methods,
experiments on the TUM RBG-D dataset, KITTI odometry dataset, and practical environment show
that SVG-Loop has advantages in complex environments with varying light, changeable weather,
and dynamic interference.

Keywords: loop closure detection; bag of words; panoptic segmentation; visual simultaneous
localization and mapping

1. Introduction

Simultaneous localization and mapping (SLAM) [1] is the key technology of automatic
navigation and has become a research hotspot in the past decade. SLAM mainly focuses
on the problem of robots or vehicles positioning themselves and building maps when they
enter an unfamiliar environment [2]. A camera can obtain abundant information as a low-
cost, small-scale, and convenient human-computer interaction sensor. Thus, camera-based
visual SLAM technology has attracted increasing attention. Loop closure detection is an
important module in visual SLAM [3]. Loop closure detection can be employed to judge
whether robots return to a previous position and help to eliminate the cumulative error in
a front-end odometer [4]. Currently, achieving accurate and efficient loop detection is a
challenging problem.

Traditional loop detection algorithms rely on visual appearance. These methods
extract various features [5–7] to compare similarities of images. Visual-based algorithms
can work effectively in various environments and have become mainstream methods of
visual SLAM systems. For example, FAB-MAP [8] utilized Speeded-Up Robust Features
(SURF) to build a visual bag-of-words model. Adrien et al. [9] used Scale Invariant Feature
Transform (SIFT) to detect the loop. Gálvez-López and Tardós [10] proposed a visual place
recognition method using the From Accelerated Segment Test (FAST) keypoint detector and
Binary Robust Independent Elementary Features (BRIEF) descriptor. The Oriented FAST
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and Rotated BRIEF (ORB) feature were employed to complete the loop closure detection
in ORB-SLAM [11–13]. Most of these methods utilize the bag-of-words model [14], which
generates words from feature points to build a dictionary structure and then queries the
similarity of words in each image to make a loop judgment. These mentioned methods are
computationally efficient but only suitable for processing static scenes with limited scene
changes. Moreover, these methods make full use of low-level visual features but ignore
geometric and structural information. Finally, tiny details can be effectively identified, but
macro characteristics are difficult to grasp.

In the task of place recognition in different weather and seasons, sequence-based
methods have significant results. Instead of calculating single frames, SeqSLAM [15] ac-
quires candidates with coherent image sequences to deal with perceptual change. Local
best matches are found by contrast enhancement and localized template matching. Sayem
et al. [16] designed a Fast-SeqSLAM system which narrowed the search scope to the initial
match images and used motion continuity to complete an extended search. In DOSeqS-
LAM [17], fixed-size length of sequences are replaced by dynamic lengths which are related
to image similarity. This improvement allows the system to reduce the computational
cost of operation and run on-line. Based on the visual features, Konstantinos et al. [18]
proposed the concept of Tracked Words, which are generated through feature tracking and
matching in the sequence. The distance of Tracked Words is leveraged to set up a voting
mechanism for loop closure detection. Renata et al. [19] employed similarity between
intervals in image and temporal constraints to find loop closures. The above methods
are more robust for resolving the problem of light changes and weather transformation.
However, these methods are not sensitive enough to ensure loop closure and are only
effective in continuous image sequences.

The development of neural networks in computer vision fields has led to their use
in the extraction of high-level features and application to loop detection. Chen et al. [20]
leveraged convolutional neural networks (CNN) to extract landmarks as image features.
These features were employed to achieve localization and place recognition in different
seasons. Wang et al. [21] proposed a robust loop detection algorithm that combined
semantic segmentation and a CNN. Semantic segmentation provided semantic topological
graphs and landmark regions. The CNN was used to acquire features of landmark regions.
Similarity scores of topological graphs and CNN features were calculated to complete loop
closure detection. Finman et al. [22] extracted the objects in a dense map and connected
them in a sparse map to complete location recognition faster. In [23], graph information
formed by the relative positions of landmarks was recorded in an adjacency matrix. Word
adjacency matrixes of scenes were leveraged for position matching. Abel et al. [24] proposed
an X-View global localization system that employs semantic topology graph descriptor
matching to complete place recognition and global localization. The algorithm in [25] relied
on visual landmarks extracted by a pre-trained CNN. To solve the issue of viewpoint jitter,
an incremental covisibility graph was built to improve the robustness of the system. In [26],
a CNN architecture named NetVLAD was developed for place recognition. Furthermore,
Patch-NetVLAD, combining both local and global descriptors, was proposed to complete
loop closure detection in [27]. Most of these methods have achieved great results. However,
the neural-network-based method ignored local details in the process of extracting image
features, so scenes with missing semantic and texture information were difficult to process.

Inspired by the above modules, a loop closure detection algorithm based on a semantic
bag of words and a semantic landmark vector is proposed in this paper. The proposed
method named SVG-Loop integrates semantic–visual–geometric information. Visual infor-
mation can mine the details of images and increase the computational speed. Geometric
and semantic information, being more advanced image content, can improve the robust-
ness of the proposed algorithm in complex environments. SVG-Loop mainly consists of
two parts: a semantic bag-of-words model and semantic landmark vector calculation. The
semantic bag-of-words model combines visual information and semantic information to
perform quick pixel-level matching. The semantic landmark vector is obtained to complete
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instance-level matching, which can combine geometric and semantic information. Experi-
ments on public databases TUM RGB-D [28] and KITTI odometry [29] were used to verify
the effectiveness of the proposed algorithm. In order to further explore the generalization
and robustness of the SVG-Loop algorithm, further extended experiments were conducted
on real indoor and outdoor scenes.

In short, the main contributions of this work are as follows:

(1) A semantic bag-of-words model was constructed to reduce the interference caused by
dynamic objects and improve the accuracy of image matching.

(2) A semantic landmark vector was designed that can express semantic and geometric
information of images and improve the robustness of loop closure detection.

(3) A semantic–visual–geometric information-based loop detection algorithm SVG-Loop
is proposed to improve robustness in complex environments.

The remainder of this paper is organized as follows: Section 2 introduces the related
work; Section 3 provides the general pipeline and detailed description of SVG-Loop.
Section 4 details the process of experiments and comparative analysis of experimental
results. Section 5 discusses the results and future research direction. Finally, the conclusion
is presented in Section 6.

2. Related Work

Loop closure detection is an important task in the field of monocular SLAM, and it
has also been a hot research topic in recent years. References [30–32] give a variety of loop
detection and location recognition algorithms. These methods have their advantages in
efficiency, accuracy, and generalization. Two types of loop closure detection methods closely
related to our work are based on bag-of-words and semantic information approaches.

2.1. Bag-of-Words Model-Based Loop Closure Detection

At present, the vision-based method is a mainstream method of loop closure detection.
One of the classic algorithms is FAB-MAP [8], which uses the Chow Liu tree structure to
construct a bag of visual words. FAB-MAP achieved excellent results and once became the
baseline for loop detection algorithms. Reference [33] provided a fully open-source imple-
mentation of FAB-MAP. DBoW2 [10] is another representative algorithm that integrates
the BRIEF descriptor and FAST features to speed up the calculation. DBoW2 chooses a k-d
tree structure to build a bag-of-words model, which is used for image similarity queries.
Reference [34] further improved the efficiency based on DBoW2 by using the ORB descrip-
tor, which retained the scale invariance and rotation invariance. Incremental bag of binary
words for appearance-based loop closure detection (IBuILD) was proposed in [35]. An
online, incremental formulation of a binary vocabulary was derived for place recognition
in IBuILD. In [36], dynamic segmentation of image stream and an online visual words
clustering algorithm were designed to define the target place. Then, a nearest neighbor
voting scheme was used to select suitable candidates. Reference [37] used the words in
the image sequence to generate a sequence visual-word vector containing image-to-image
association for matching. Tsintotas [38] proposed a sequence-based loop closure detection
approach fusing the SeqSLAM and Bag-of -Words methods. On this basis, an incremental
bag-of-tracked-words model was proposed in [39]. Then, nearest-neighbor voting was
leveraged to acquire the probabilistic scores to positions in sequence. Bag-of-words model-
based loop closure detection is computationally efficient but cannot adequately handle a
dynamic environment.

2.2. Semantic-Information-Based Loop Closure Detection

Semantic-information-based loop closure detection leverages semantic segmentation
and an instance segmentation network. DS-SLAM [40] and Segnet [41] were employed
to segment dynamic objects. DS-SLAM removed the feature points located in the area
of the dynamic scene to alleviate dynamic interference in loop detection. In [42], a Mask
region-based convolutional neural network (R-CNN) [43] was designed as an independent
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thread for instance segmentation. The segmentation results were shared in tracking,
local-mapping, and loop closure detection. The authors of [44] utilized a deep CNN
to perform semantic segmentation and extract loop feature of images at the same time.
In [45], an unsupervised semi-semantic auto-encoder model DeepLab_AE was designed
to obtain semantic features of scenes. The authors of [46] proposed a place recognition
method via re-identification of salient objects. Oh et al. [47] performed loop detection by
matching graphs of detected objects. Foreground information was mainly employed in
this algorithm. The X-View [24] global localization system was used to design a semantic
topology graph descriptor. The graph structure was stored in node descriptors and applied
to complete place recognition and global localization. A semantic loop closure detection
(SLCD) approach was designed to reduce the issue of semantic inconsistency in [48]. This
method fused instance-level semantic information obtained from object detection and
feature information. In [21], a robust loop closure detection algorithm integrated semantic
segmentation and a CNN. The CNN was used to extract landmark information divided
by a segmentation network. The semantic topological graph and CNN features were
jointly used as the basis of loop closure detection judgment. These methods all attempt to
combine the semantic and higher-level information to improve the performance of loop
closure detection and SLAM systems. However, the extraction and utilization of semantic
information are insufficient. This paper proposes the SVG-Loop algorithm, which leverages
the latest panoptic segmentation. In SVG-Loop, foreground and background information
is effectively utilized to improve the accuracy and robustness of loop closure detection.

3. Methodology

The pipeline of the proposed SVG-Loop method is shown in Figure 1. SVG-Loop is
mainly composed of two modules: semantic bag-of-words model, and semantic landmark
vector model. In this section, the construction of the semantic bag-of-words model is
introduced firstly. Then, a detailed description of the semantic landmark vector is provided.
Finally, a fusion calculation method of the two models is presented.

3.1. Semantic Bag-of-Words Model

Bag of words is a model that transforms an image into a sparse vector, which can be
used to calculate the similarity of images by leveraging feature vocabulary. The process of
semantic bag-of-words construction includes two steps: semantic–visual word extraction
and vocabulary construction.

3.1.1. Semantic–Visual Word Extraction

As shown in Figure 2, each input image is processed by two parts: feature extraction
and panoptic segmentation. Corner points with rich visual information of objects are
determined by feature extraction. Semantic information in the instance level is acquired by
panoptic segmentation. Visual features and corresponding semantic labels are acquired at
the same time.
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Figure 1. The pipeline of the proposed SVG-Loop. The blue box on the left is the semantic bag-of-
words model and the purple box on the right is the semantic landmark vector model.

The extracted feature, which is the visual part of the semantic–visual words, consists
of the keypoint and descriptor. To maintain the rotation invariance and scale invariance,
the ORB feature [7] is selected in the feature extraction. When viewpoints change, the
place recognizer can still work efficiently. The OpenCV library is employed to complete
ORB feature extraction and descriptor generation. The quantity of features influences the
performance of scene similarity detection: too small a quantity affects the distance matching
and too large a quantity reduces the accuracy of keypoints. After the experimental test,
1000 features are chosen from each image for distance matching. Furthermore, although
the matching probability is slightly decreased, non-maximum suppression is employed to
improve the distribution situation of features.
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Figure 2. Extraction process of semantic–visual words. Corners are extracted by feature extraction and semantic labels are
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words through clustering.

Panoptic segmentation [49] incorporates semantic segmentation and object detection.
Foreground and background information is obtained by panoptic segmentation at the same
time. Panoptic feature pyramid networks (Panoptic-FPN) [43] were applied to complete
panoptic segmentation in this study. Panoptic-FPN combine a Mask R-CNN and feature
pyramid networks (FPN) [50] to achieve pixel-wise semantic segmentation prediction.

After feature extraction and panoptic segmentation, semantic and visual information
are combined. Each feature is connected with the corresponding semantic label to generate
semantic–visual words. Descriptor vectors and semantic labels of keypoints are stored
in words. Because the descriptor consists of a binary vector, the distance between two
descriptors can be expressed by Hamming distance, which includes the xor operation
of bits.

3.1.2. Vocabulary Construction

The vocabulary structure is constructed offline with a large image dataset that in-
cludes a semantic marker. In the semantic bag-of-words model, a k-d tree structure [51] is
employed to store the vocabulary space. As shown in Figure 3, the tree structure includes
two layers: the semantic layer and the feature layer. In the semantic layer, labels of objects
are divided into two categories: dynamic objects and static objects. Static objects in the
sensor field of view are excellent landmarks to the loop closure detection algorithms. On
the contrary, dynamic objects may become interference factors for place recognition. In
order to decrease the undesirable effects of dynamic objects, features of dynamic objects are
discarded in the process of semantic verification. To build vocabulary, a series of features
with semantic labels were extracted from the image dataset and constitutes the tree struc-
ture (Figure 3). Weight Wi

j for semantic–visual words is designed in leaf nodes. According

to the term frequency-inverse document frequency (TF-IDF) [14], Wi
j is defined by:

Wi
j =

ni,j

∑
k

nk,j
· log

(
Nall

Ni + 1

)
(1)

where ni,j denotes the number of features i in the image j, Nall represents the number of
images in training datasets, and Ni indicates the number of images that include the term i.
Words with higher scores can provide more effective matching information. In particular,
because of the high frequency of human movement, the weights of words belonging to the
person node are set to 0.
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Along with the vocabulary tree, two kinds of index information are recorded. On
the one hand, the direct index stores features of images and semantic labels of connected
nodes according to levels. On the other hand, the inverse index stores image IDs associated
with the word node and weight of relevance. When new images enter the dataset, both
indexes are updated. The direct index of images and inverse index of words accelerate the
efficiency of image matching and loop closure verification.

3.1.3. Visual Loop Closure Candidate Detection

After constructing the model, the vocabulary tree is applied to detect the loop closure
in image sequences. Image Ij of the input data is transformed into a bag-of-words vector
Vj ∈ RN . Features within Ij are grouped into word nodes through traversing the vocabulary
tree. From the root to the leaves, the feature matches the associated node, which has a
minimum Hamming distance at each level.

The similarity between two bag-of-words vectors Vm and Vn is calculated as L1-score
s(m, n):

s(m, n) = 1− 1
2

∣∣∣∣ Vm

|Vm|
− Vn

|Vn|

∣∣∣∣ (2)

where s(m, n) is normalized to compute the similarity between different images. After
illustrating the measurement of similarity, the inverse index is used to accelerate loop
closure detection. Image Ij containing word i and the weight Wi

j of word node i is stored in
the inverse index structure. When loop closure is detected, only images with part of the
same words are computed for similarity. By selecting image pairs according to the inverse
index, unnecessary calculations can be reduced.

To prevent adjacent frames from being misjudged as loop closure, a sliding window is
set in the process of detection. The current image Ij is the central node of a window whose
width is 30. Frames in the window are excluded as loop closure. The maximum similarity
score smax in the window between Ij and the other frames remains. Under the assumption
that the camera’s movement speed is not too fast, the similarity between adjacent frames in
the sliding window is high. Thus, images with similarity scores sc of Ij more than smax or
without an acquired number of common semantic visual words are discarded. When sc is
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less than the preset threshold α and at the local minimum, the corresponding frame Ic is
selected as a visual candidate for Ij and accepted to the verification stage.

In the verification phase, temporal consistency verification [10] and geometric verifi-
cation [34] are common choices for filtering loop closure candidates. The prerequisite of
temporal consistency (the image sequence has a certain loop scene overlap) is strict and
does not match the real situation. Thus, the traditional time constraint [52] used to limit
loop closure candidates was discarded in this work. However, to ensure the credibility of
loop closure, semantic verification to screen loop closure candidates is proposed. In the
semantic layer of the vocabulary tree, the similarity of static object nodes of two images
must reach 80% before they are passed to the semantic verification. Furthermore, dynamic
object nodes are removed to reduce the dynamic interference of different scenes in this
step. Geometric verification is completed by computing a fundamental matrix, which is
supported by at least 12 correspondences between the matched frames with the RANSAC
scheme. In order to speed up feature matching, calculating approximate nearest neighbors
in the tree structure replaces the exhaustive comparison method. A direct index is lever-
aged to compute correspondence points more efficiently. Correspondences are searched
from the middle layer of the tree to balance calculation speed and recall rate. At level L,
features of the same nodes and semantic labels in the direct index are approximated as
nearest neighbors. Correspondences are computed from the nearest neighbor features.

Finally, loop closure candidates that pass semantic and geometric verification are
output as visual loop closure candidates Iv. Visual loop closure candidates Iv and their
similarity scores Sv enter the process of fusion calculation.

3.2. Semantic Landmark Vector Model

To make full use of semantic and geometric information of images, a semantic land-
mark vector is designed from the semantic graph of each frame. As shown in Figure 4,
firstly, foreground and background information of the image sequence is acquired by the
Panoptic-FPN. Next, the semantic landmark vector of each image is generated from the
semantic topologic graph. Then, the similarity of different vectors is measured, and similar
vectors corresponding to frames are captured. Finally, geometric verification of matched
frames is completed, and semantic loop closure candidates are selected.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 26 
 

 

Panoptic Segmentation Similarity Measure

Frame 1 Frame x

High similarity

Geometry check & 
Find Loop

Semantic Landmark Vector 
generation 

Frame 1 Frame n

...

 
Figure 4. Process of the semantic landmark vector model. 

3.2.1. Semantic Descriptor Generation 
A semantic descriptor incorporating semantic and geometric information is 

employed to store the content of the node in the graph. In the process of panoptic 
segmentation, static and dynamic objects are segmented at the instance level (see Figure 
5a). To mitigate the uncertain interference of dynamic objects, dynamic nodes are 
excluded when constructing the graph (see Figure 5b). As shown in Figure 5c, information 
of each node is recorded by the semantic descriptor i

jζ . The label of the node, the centroid 
of the node, and labels of connected nodes according to spatial geometric distribution are 
contained in i

jζ . The label of a node is used to match similar nodes in different graphs. 
The centroid of the node is leveraged to find the nearest neighbor nodes in the same class. 
Class labels of connected nodes are stored in a clockwise direction starting from the top, 
so the spatial relationship between this node and adjacent nodes can be recorded in a 
consistent order. Finally, all semantic descriptors of nodes in the graph are assembled into 
semantic landmark vector jV  of image j  (see Figure 5d). Length of descriptor i

jζ  in 
the image depends on the maximum number of nodes connected, and length of vector jV  
is determined by the number of nodes in the semantic topological graph. In descriptors, 
the missing connected nodes are set to 0. 

Compared with existing descriptors expressed by the random walk method 
[16,19,49], the semantic descriptor proposed in this work eliminates the cumulative error 
caused by random selection. Moreover, cumulative error increases as the length of 
random walk increases in the above algorithms. To enrich the node expression, centroids 
of nodes are added into descriptors. Furthermore, centroid distance can be applied to limit 
the node drift error caused by segmentation error. 

C

C1
C2

C3

C4

C5

C6

C7

C8

 
(a) (b) (c) (d) 

Figure 5. Generation of semantic descriptor and semantic landmark vector: (a) result of panoptic segmentation, (b) 
semantic graph, (c) semantic descriptor generation, and (d) semantic landmark vector of image. 

  

Figure 4. Process of the semantic landmark vector model.

3.2.1. Semantic Descriptor Generation

A semantic descriptor incorporating semantic and geometric information is employed
to store the content of the node in the graph. In the process of panoptic segmentation, static
and dynamic objects are segmented at the instance level (see Figure 5a). To mitigate the
uncertain interference of dynamic objects, dynamic nodes are excluded when constructing
the graph (see Figure 5b). As shown in Figure 5c, information of each node is recorded by
the semantic descriptor ζ i

j. The label of the node, the centroid of the node, and labels of

connected nodes according to spatial geometric distribution are contained in ζ i
j. The label
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of a node is used to match similar nodes in different graphs. The centroid of the node is
leveraged to find the nearest neighbor nodes in the same class. Class labels of connected
nodes are stored in a clockwise direction starting from the top, so the spatial relationship
between this node and adjacent nodes can be recorded in a consistent order. Finally, all
semantic descriptors of nodes in the graph are assembled into semantic landmark vector Vj

of image j (see Figure 5d). Length of descriptor ζ i
j in the image depends on the maximum

number of nodes connected, and length of vector Vj is determined by the number of nodes
in the semantic topological graph. In descriptors, the missing connected nodes are set to 0.
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Compared with existing descriptors expressed by the random walk method [16,19,49],
the semantic descriptor proposed in this work eliminates the cumulative error caused by
random selection. Moreover, cumulative error increases as the length of random walk
increases in the above algorithms. To enrich the node expression, centroids of nodes are
added into descriptors. Furthermore, centroid distance can be applied to limit the node
drift error caused by segmentation error.

3.2.2. Semantic Loop Closure Candidate Detection

Each image Ij is converted to a semantic topologic graph Gj and acquires the semantic
landmark vector Vj. To reduce computation cost and limit the drifting error, a graph
distance Ds was designed and calculated as follows:

Ds(j, k) = min
N

∑
n=1

M

∑
m=1
‖Cm

j,n − Cm
k,n‖2

(3)

where Cm
j,n and Cm

k,n are the centroids of instances in different semantic topologic graphs Gj
and Gk, M is the number of objects with the same label, and N is the number of common
categories in image pair. The similarity score between semantic landmark vector Vj and Vk
only needs to be calculated if Ds(i, k) is less than distance threshold Dth,. Otherwise, Ik is
not regarded as a candidate for Ij.

In the iterative calculation process of Ds(j, k), correspondence between nodes in
graphs Gj and Gk is determined. Instead of computing a similarity score Ss of vectors using
the sequential method, descriptor similarity is calculated according to the nearest neighbor
principle (see Figure 4). Huge errors caused by descriptor alignment drift can be avoided
with this option. The similarity measure Ss is computed by Equation (4):

Ss(Vj, Vk) =
1

Ds(j, k)
·

∑ φ(ζ i
j, ζ i

k)

∑ φ(ζ i
j, ζ i

j)
(4)

where the function φ(ζ i
j, ζ i

k) is used to determine the same elements between descriptor ζ i
j

and ζ i
k. Ss(Vj, Vk) is normalized to [0,1] and can be used to acquire semantic candidates

of Ij. As with the semantic bag-of-words model, the sliding window is also set in this
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part to reduce the interference of contiguous frames. Firstly, the images in the window
are removed from the semantic candidates. The next step is discarding the images with a
similarity score less than the threshold Sth. Then, because the adjacent frames may have
similar graph structures, only the images that have the local minimum of distance Ds with
Ij are selected as semantic loop candidates Is.

3.3. Fuse Calculation

After obtaining both visual loop closure candidate Iv and semantic loop closure
candidates Is, Iv, and Is are calculated jointly to detect real loop closure. Visual similarity
score Sv and semantic similarity score Ss of Iv and Is are leveraged to calculate the loop
closure similarity score S according to Equation (5):

S =
1
2

(
tan(

π

2
Sv) + tan(

π

2
Ss)
)

(5)

If the similarity score S of the candidate reaches the expected value α, it is judged as a
real loop closure. In various environments, semantic bag-of-words and semantic landmark
vector models have different sensitivity to the scenes. When one of the models deviates
greatly from the ground truth in some scenarios, information of the other model needs
to be enhanced by a large margin. The tangent function in Equation (5) is leveraged to
non-linearly amplify the dominant model. In the hypothesis, candidates from two models
with higher similarity scores provide more loop closure credibility.

4. Experimental Results and Analysis

To carry out a comprehensive and accurate assessment of the system, the SVG-Loop
approach was evaluated on two different public datasets and practical environments. The
TUM RGB-D dataset [28] was selected as an indoor dataset, and the KITTI odometry
dataset [28] was chosen as an outdoor dataset. In addition, the experiments in practical
scenes were also conducted in indoor and outdoor environments.

The experiments using the proposed approach were implemented with a desktop
computer equipped with an AMD Ryzen7 4800H CPU running at 2.90 GHz and a GTX
1650Ti GPU. A pre-trained model of the Panoptic-FPN [43] based on Pytorch [53] was
employed to complete panoptic segmentation.

4.1. Dataset Experiments
4.1.1. Indoor Dataset

The TUM RGB-D dataset [28], which includes 39 sequences of offices, was selected as
the indoor dataset to test the SVG-Loop algorithm. The sensor of this dataset is a handheld
Kinect RGB-D camera with a resolution of 640 × 480. Only RGB images in sequences were
applied to verify different methods. The images contain a slight jitter of viewpoint caused
by unsteady hands. In addition, the dynamic objects of the dataset are mainly people.
There are two characteristics of the loop closure in the TUM RGB-D dataset caused by
motions of the unconstrained 6DOF: sparse and short overlap time. This database was
used to test the sensitivity of the SVG-Loop algorithm to loop closure and the ability of the
proposed method to capture loop closure quickly.

In order to directly demonstrate the results of loop closure detection methods, SVG-
Loop was transplanted to ORB-SLAM3 [13], which is one of the most popular visual SLAM
systems. Keyframes of the front-end visual odometer were used as input for the SVG-Loop
model. Detected loop closure was merged into the process of global optimization. Then, the
trajectory graph of different methods was used to visually display the loop closure detection
results. Two monocular visual SLAM systems, LDSO [54] and ORB-SLAM3 [13], that
include loop closure detection modules were selected to complete comparative experiments
with ORB-SLAM3 + SVG-Loop. Furthermore, trajectory error was computed to evaluate
the impact of the SVG-Loop algorithm on SLAM system accuracy. Absolute pose error
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(APE) was employed to measure the accuracy of the trajectory of the SLAM systems. The
APE of frame i is calculated by Equation (6):

Ei = log (T−1
gt,iTesti,i)

∨
(6)

where Tgt,i is the trajectory of ground truth and Testi,i is the trajectory of estimation. After
obtaining the APE, the root mean squared error (RMSE) over all frames is computed by
Equation (7):

RMSE(E1:n) =

√√√√ 1
N

N

∑
i=1
‖Ei‖2

2 (7)

According to Figure 6, there is only one loop closure in the trajectory of the fr2_desk
sequence. Among LDSO, ORB-SLAM3, and ORB-SLAM3 + SVG-Loop methods, only ORB-
SLAM3 + SVG-Loop detected the loop closure. Similarly, loop closure in the fr3_long_office
sequence was only detected successfully by SVG-Loop (see Figure 7).

To quantitatively analyze the effect of loop closure detection, APE is calculated and
displayed in a grid graph. According to Figure 8, the RMSEs of LDSO, ORB-SLAM3, and
ORB-SLAM3 + SVG-Loop are 1.09064, 0.010287, and 0.008958 m, respectively. The accuracy
of the ORB-SLAM3 system is improved by 12.9% due to the superimposed SVG-Loop
algorithm. In the fr3_long_office sequence (Figure 9), the RMSEs of LDSO, ORB-SLAM3,
and ORB-SLAM3 + SVG-Loop are 0.385381, 0.012877, and 0.010924 m, respectively. The ac-
curacy of the ORB-SLAM3 system with SVG-Loop increased by 15.1%. Thus, experimental
results indicate that the SVG-Loop technique improves the accuracy of the ORB-SLAM3
system efficiently.

Experiments using the TUM RGB-D dataset illustrate that SVG-Loop has advantages
in the face of loop closure with a short overlap time. Compared with the other two loop
closure detection modules, SVG-Loop uses semantic verification to replace the traditional
temporal verification. Loop closure can therefore be captured quickly. Furthermore, SVG-
Loop can be adapted to the SLAM system and improve its accuracy. However, fast loop
closure decision speed may bring the risk of reduced accuracy. Thus, the precision and
recall rate of detection methods was verified on the outdoor KITTI odometry dataset with
multiple loop closure in the next step.
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4.1.2. Outdoor Dataset

The KITTI odometry dataset, which was compiled using images of different roads,
was selected as the outdoor dataset. Sensors of the KITTI color sequences are PointGray
Flea2 color cameras (FL2-14S3C-C). Images in the sequence are 1.4 megapixels, and the
viewpoint of the camera is stable. Compared with the TUM dataset, diverse dynamic
objects and changes in light that flows over time are contained in scenes of the KITTI
dataset. In addition, there is a lengthy overlap time of multiple loop closures in the KITTI
odometry dataset. This dataset was leveraged to test the robustness and accuracy of the
SVG-Loop method in the outdoor environment.

DBoW2 [34], OpenFABMAP [33], SRLCD [46], and BoWT-LCD [39] were selected to
complete comparative experiments with SVG-Loop. DBoW2 and OpenFABMAP are the
most popular and practical visual-based methods in loop closure detection. SRLCD is the
latest open-source loop closure detection method and is based on salient object information.
BoWT-LCD is the art-of-the-state sequence-based loop closure detection model which
leveraged the information between images. The precision-recall (POR) curve was chosen
as an evaluation metric. The precision-recall metric is calculated as follows:

Presicion =
tp

tp + f p
(8)

Recall =
tp

tp + f n
(9)

where tp is the number of true positives, f p is the number of false positives, and f n is
the number of false negatives. Because error loop closure brings incalculable trajectory
deviation in the SLAM system, recall rate at 100% precision has become the most common
metric in loop closure detection.

As shown in Figure 10a, the recall rate of SVG-Loop at 100% precision is 73.51%,
which outperforms the other methods in sequence 00. According to Figure 10b, the recall
rate of SVG-Loop at 100% precision (78.07%), the precision rate of SVG-Loop at 100%
recall (30.12%), and the area under curve (AUC) are higher than the other algorithms. In
Figure 10c, the recall rate of SVG-Loop at 100% precision is 47.87%, and the precision rate
of SVG-Loop at 100% recall is 30.00%, which is the best performing result. SVG-Loop has
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the highest precision at any point of the same recall rate in Figure 10d. The above results
indicate that SVG-Loop has the best performance out of the five methods in sequences 00,
02, 05, and 06. With more uncontrolled factors, a combination of information in SVG-Loop
enhances robustness and precision compared with other loop closure detection methods.
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Table 1 lists the maximum recall rates of the five loop closure detection methods at
100% precision. In sequences 00, 02, 05, and 06, SVG-Loop has the highest recall rate
at 100% precision. In addition, the performance of DBoW2 and BoWT-LCD are better
than SVG-Loop method in sequences 07 and 09. Performance degradation of SVG-Loop
compared with DBoW2 techniques reflects that SVG-Loop loses the advantage of high-level
information utilization in monotonous scenes without effective semantic information.

Table 1. The maximum recall rate (%) of five different loop closure detection methods at 100%
precision in the KITTI dataset.

Sequence DBoW2 OpenFABMAP SRLCD BoTW-LCD SVG-Loop

00 58.83 30.04 68.32 63.23 73.51
02 53.23 24.43 63.38 72.62 78.07
05 44.46 39.23 43.12 42.89 47.87
06 47.71 35.33 33.26 52.85 58.11
07 56.35 30.96 26.20 58.49 50.46
09 57.89 41.87 20.00 74.58 46.12

Figure 11 displays loop closure results of SVG-Loop in sequences 00, 02, 05, and 06.
Blue lines are trajectories of sequences, and red lines represent correct loop closure detected
by the SVG-Loop method in different time nodes. Compared with the change of horizontal
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position, vertical fluctuation is negligible in the KITTI dataset. By converting the vertical
axis to frame ID, it can be clearly seen that the spatially overlapping loop closures are
detected by SVG-Loop. Under the premise of 100% precision, the area with sparse red lines
means that the recall rate of the method is relatively low. On the contrary, the dense red
line indicates that the recall rate of the algorithm is high. The performance of the SVG-Loop
method on the KITTI dataset indicates that the proposed algorithm could maintain high
precision and robustness under the dynamic interference of the outdoor environment.
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4.2. Practical Environmental Experiments

To further test the accuracy and robustness of the SVG-Loop algorithm with viewpoint
jitter, light changes, and dynamic interference, experiments were implemented in different
indoor and outdoor environments. As shown in Figure 12a, the camera model used to
capture images is a Logitech C922. The resolution of the camera is 960 × 720, and the frame
rate is 30 FPS. The field of view (FOV) is 78◦, the aperture value is 2.8 and the focus method
is an automatic focus (AF). Figure 12b shows some collection scenes in the outdoor test.
The experiment was divided into two parts: indoor experiments and outdoor experiments.
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4.2.1. Indoor Experiments

Indoor experiments were designed to test sensitivity to loop closures and robustness
to light changes. The camera was held in an office environment for loop closure motion.
The data collected in different rooms mainly has two challenges: viewpoint jitter and light
change (turning a fluorescent light on and off). The test data was mainly divided into
four groups: Room 1, Room 2, Room 3, and Room 4. Room 1 and Room 2 included more
reference objects, which can provide landmarks and obvious feature information. The
data in Room 3 and Room 4 had the characteristics of strong light changes. Comparative
experiments of DBoW2, OpenFABMAP, SRLCD, BoTW-LCD and SVG-Loop methods were
completed in different indoor condition.

Table 2 shows the comparative results of the DBoW2, OpenFABMAP, SRLCD, BoTW-
LCD, and SVG-Loop methods. According to Table 2, the SVG-Loop algorithm performed
better than the other techniques in Room 1, Room 2 and Room 3. However, the recall
rate of SVG-Loop at 100% precision is lower 6.53% than BoTW-LCD in Room 4. Light
change and absence of reference objects caused the simultaneous reduction of semantic
bag-of-word and semantic landmark vector models, which led to the poor performance of
the SVG-Loop method.
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Table 2. The comparative results of five different loop closure detection methods in practical indoor dataset.

Dataset
DBoW2 OpenFABMAP SRLCD BoTW-LCD SVG-Loop

P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%)

Room 1 100.00 68.33 100.00 65.00 100.00 58.33 100.00 78.33 100.00 86.67
Room 2 100.00 56.41 100.00 53.84 100.00 21.79 100.00 60.26 100.00 71.79
Room 3 23.56 12.28 15.34 7.02 100.00 38.60 100.00 54.38 100.00 64.91
Room 4 20.00 3.26 13.71 5.43 12.51 6.52 100.00 28.26 100.00 21.73

As shown in Figure 13a, the first loop closure in the meeting room was without
light changes. The semantic bag-of-words model can work well and match words in the
image pair. At the same time, the semantic graphs and landmark vectors of two-loop
scenes are similar. On the contrary, there is an obvious light change in the second loop
closure according to Figure 13b. For the semantic bag-of-words model, light change greatly
affected the distribution of visual words, which were difficult to match correctly. However,
the construction of the semantic graph and landmark vector was robust to the ambient
luminosity changes. Finally, the second loop closure was detected successfully. The results
of the experiments illustrate that SVG-Loop is robust in the face of light changes and can
compensate for the shortcomings of visual-based algorithms.
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4.2.2. Outdoor Experiments

Outdoor experiments were leveraged to further test the accuracy and robustness of
SVG-Loop in more complex environments. The outdoor dataset included light changes,
weather variations, and dynamic objects. As shown in Figure 12a, the camera was fixed
on the car to capture images on different streets. Three loops, which were selected to
complete verification experiments, are shown in Figure 14. Loop 1 was located on the
main road, with strong light and more dynamic interference. Loop 2 passed through the
building complex, with more light and shadow changes. Loop 3 data were collected at
8 a.m., 12 a.m., 6 p.m., and 10 p.m. with different weather. These loops included three
conditions: weather change, light change, and dynamic object interference.
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After obtaining the loop closure video data in an outdoor environment, the Global
Navigation Satellite System (GNSS) was leveraged to obtain the longitude and latitude of
the location in real-time. Then, the longitudes and latitudes of the positions were matched
with the loop data and converted into 3D space coordinates (28◦23′34.33′′ N, 113◦00′72.25′′

E is the coordinate origin; altitude is set to 0). Figure 15 shows the detection results of SVG-
Loop in loop 1 with different dimensions. In outdoor experiments, DBoW2, OpenFABMAP,
SRLCD, BoTW-LCD and SVG-Loop algorithms were verified in different loop data. The
comparative results of above five methods in practical outdoor dataset are presented in
Table 3. As shown in Table 3, the precision and recall rates of SVG-Loop method are
higher than the other algorithms. Compared to the state-of-the-art, the recall rates at 100%
precision increased by 10.43%, 14.17%, and 4.88%, respectively.

Table 3. The comparative results of five different loop closure detection methods in practical outdoor dataset.

Dataset
DBoW2 OpenFABMAP SRLCD BoTW-LCD SVG-Loop

P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%)

Loop 1 100.00 30.36 100.00 23.00 100.00 30.06 100.00 24.23 100.00 40.79
Loop 2 100.00 42.20 100.00 38.04 100.00 45.95 100.00 49.06 100.00 63.20
Loop 3 5.12 1.03 3.11 0.86 74.96 16.23 100.00 19.17 100.00 21.41
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Figure 15 shows the detection results of SVG-Loop in different dimensions. As shown
in Figure 15a, loop closures detected by SVG-Loop are correct, and the precision of the
proposed method remains 100%. According to Figure 15b, the red line area shows that
the recall rate of the SVG-Loop algorithm is 40.79% at 100% precision. In contrast, the
maximum recall rates at 100% precision of DBoW2, OpenFABMAP, SRLCD and BoWT-LCD
are 30.36%, 23.00%, 30.06% and 24.23%, respectively, in loop 1.

Compared with the indoor dataset, the viewpoint of outdoor data is stable, but
uncontrollable factors increase. Figure 16 shows some correct loop scenes detected by
SVG-Loop in different environments. Loop scenes in Figure 16a,b contain diverse dynamic
objects such as pedestrians, electric vehicles, and cars. Furthermore, Figure 16c shows light
and weather changes. Experimental results shown in Figure 16 indicate that the SVG-Loop
algorithm is robust for loop closure detection in complex environments that include light
changes, weather changes, and dynamic object interference.
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5. Discussion
5.1. Experiments Analysis

To verify the SVG-Loop method in different environments, extensive experiments
were implemented to quantitatively and qualitatively analyze the results of loop closure
detection. Experiments were divided into the following four parts:

â The indoor dataset (TUM RGB-D dataset) consists of images taken in stable circum-
stances. There are no light changes and only a few dynamic objects in sequences,
which are selected to complete experiments. Results in Figures 6 and 7 show that
the SVG-Loop model is sensitive to loop closure. Figures 8 and 9 indicate that SVG-
Loop can combine the SLAM system to achieve higher localization accuracy in an
environment where loop closures exist.

â The outdoor dataset (KITTI odometry dataset) contains various dynamic objects
but no dramatic light changes. Experiments in this part were leveraged to test
the robustness of the SVG-Loop method in an outdoor environment with dynamic
interference. According to Figure 11, the SVG-Loop algorithm can overcome some of
the dynamic interference and complete loop closure detection.

â The practical indoor experiments included light changes but no dynamic objects. The
SVG-Loop method is robust to light changes of different levels and angles, such as in
Figure 13. Compared with other visual-based methods, Table 2 shows that SVG-Loop
is sensitive to loops and can capture loops quickly and effectively. However, the
simultaneous appearance of light changes and lack of semantic landmarks will cause
a serious decline in the recall rate of the SVG-Loop algorithm.

â The practical outdoor dataset constructs the most complex situation of the four parts.
Drastic light changes, different weather changes, and high-frequency dynamic objects
are included in the dataset. According to Table 3, SVG-Loop is robust to outdoor light
alters, weather changes, and the movement of dynamic objects. Figures 15 and 16
illustrate that the SVG-Loop model has the potential to detect loop closure for a SLAM
system in complex environments.

5.2. Experiment Implementation and Optimization Possibilities

Considering different application scenarios, experimental implementation can be
divided into two types: off-line and on-line. In off-line mode, images in datasets are
processed sequentially. Table 4 shows the processing time of the SVG-Loop algorithm
in different datasets. Panoptic segmentation is the most time-consuming module. If
the algorithm is running on-line, the sliding step must be adjusted to match the input
speed. When the SVG-Loop is loaded into the SLAM system, the key frames output by the
front-end odometer can be used as the detection input to avoid the setting of sliding steps.

Table 4. Processing time per image of SVG-Loop method in KITTI, TUM, and Practical datasets.

Average Time (ms)

KITTI TUM Practical
Datasets

Panoptic segmentation 231.5 187.3 251.8

Semantic Bag of Words Feature extraction 13.2 11.4 14.3
Vocabulary generation 3.6 3.5 3.4

Semantic landmark Vector
Graph construction 16.9 15.6 18.0
Vector generation 1.9 1.7 1.8

Loop closure detection 36.5 33.1 38.6

Total 303.6 252.6 327.9

In addition to the above experiment implementation, two optimization possibilities
have to be emphasized. Firstly, extended experiments in practical indoor dataset show that
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the proposed algorithm still cannot solve the problem of viewpoint jitter and tilt very well.
In the face of viewpoint jitter and tilt, the recall rate can be improved by decreasing Dth, but
at the same time, there is a risk of reducing precision. In future work, two directions will
be considered as solutions. Relative spatial distance information of semantic nodes will
be added to the descriptors, and the rotation invariant of the semantic descriptor will be
explored. Secondly, the results of panoptic segmentation impact this approach substantially.
To achieve more robust and accurate results, different targeted pre-training models can be
employed according to different environments.

6. Conclusions

In this paper, a loop closure detection method named SVG-Loop is proposed. The SVG-
Loop algorithm combines semantic–visual–geometric information to complete loop closure
detection in complex environments. SVG-Loop mainly consists of two parts: a semantic
bag-of-words model and a semantic landmark vector model. The former determines the
visual loop closure candidates by combining visual words and semantic information. The
latter provides semantic loop closure candidates through comparing semantic descriptors.
Experiments using the TUM RGB-D dataset, KITTI dataset, and practical environments
indicate that the SVG-Loop algorithm can effectively complete loop detection and has an
advantage in complex environments.

However, there are two limitations to the proposed method. On the one hand, SVG-
Loop cannot easily adapt to dramatic viewpoint jitter. On the other hand, the proposed
algorithm is highly dependent on the results of panoptic segmentation. In future work,
relative spatial distance information and the rotation invariant of the semantic descriptor
will be explored. In addition, extensive experiments for each component of SVG-Loop will
be designed for a more detailed study.
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