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Abstract: The discrimination of water–land waveforms is a critical step in the processing of air-
borne topobathy LiDAR data. Waveform features, such as the amplitudes of the infrared (IR) laser
waveforms of airborne LiDAR, have been used in identifying water–land interfaces in coastal wa-
ters through waveform clustering. However, water–land discrimination using other IR waveform
features, such as full width at half maximum, area, width, and combinations of different features,
has not been evaluated and compared with other methods. Furthermore, false alarms often occur
when water–land discrimination in coastal areas is conducted using IR laser waveforms because
of environmental factors. This study provides an optimal feature for water–land discrimination
using an IR laser by comparing the performance of different waveform features and proposes a
dual-clustering method integrating K-means and density-based spatial clustering applications with
noise algorithms to improve the accuracy of water–land discrimination through the clustering of
waveform features and positions of IR laser spot centers. The proposed method is used for practical
measurement with Optech Coastal Zone Mapping and Imaging LiDAR. Results show that waveform
amplitude is the optimal feature for water–land discrimination using IR laser waveforms among the
researched features. The proposed dual-clustering method can correct mislabeled water or land wave-
forms and reduce the number of mislabeled waveforms by 48% with respect to the number obtained
through traditional K-means clustering. Water–land discrimination using IR waveform amplitude
and the proposed dual-clustering method can reach an overall accuracy of 99.730%. The amplitudes
of IR laser waveform and the proposed dual-clustering method are recommended for water–land
discrimination in coastal and inland waters because of the high accuracy, resolution, and automation
of the methods.

Keywords: airborne LiDAR bathymetry; water–land discrimination; infrared laser; waveform feature;
density-based spatial clustering

1. Introduction

Airborne LiDAR bathymetry (ALB) uses scanning and pulsed laser beams from air
to detect shallow waters, showing high efficiency, accuracy, and resolution and economy,
safety, and flexibility [1,2]. Apart from water depth measurement [3–8], ALB has been
applied to water–land discrimination [9–12], suspended sediment concentration mon-
itoring [13,14], ocean wave pattern analysis [15–18], and seabed classification [19–21].
Integrated infrared (IR) and green ALB systems use green laser with a wavelength of
532 nm to detect water bottom and IR laser with a wavelength of 1064 nm to detect water
surface. Green-only ALB systems use green laser to detect water surface and bottom [8].
ALB systems can integrate water and land measurements and receive laser pulse returns
reflected from water and land [11]. The entire sequence of the interactions of the laser pulse
with water or land is recorded at the receiver as a full waveform [9]. The discrimination
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of water–land waveforms is a critical step in ALB laser waveform processing and can be
performed for the determination of water–land interfaces [9,12], which play an important
role in the management and scientific research of water and land resources in estuaries and
coastal zones.

Waveform saturation judgement [1,10], red waveform analysis [22,23], waveform
classification [24–26], and point cloud threshold or clustering [11,12] methods are primar-
ily used in water–land discrimination. Guenther [1] proposed the waveform saturation
judgement method for Optech SHOALS series to identify an IR laser waveform as land if
the amplitude of the waveform is in saturation for more than 5 ns or as water if otherwise.
Collin et al. [10] distinguished land waveforms from water waveforms with Guenther’s
waveform saturation judgement method. The development of ALB devices has enabled
analog-to-digital converters in ALB systems to record full laser waveforms [27]. Thus,
the amplitudes of land signals may be unsaturated. Another problem with waveform
saturation is that the IR laser waveform can also be saturated due to scattering from bubbles
that occur in rolling surfs and whitecaps [9,28].

A wavelength is generated by the Raman scattering of the green pulse generated
by water and produces a detectable signal in the red at 645 nm [22]. Based on this phe-
nomenon, some ALB systems, such as the Optech SHOALS series, identify water and land
by adding red channels to collect red laser pulses. Pe’eri and Philpot [23] summarized
water–land discrimination methods using ALB waveforms, including IR waveform satura-
tion, green–red–IR ratio (Cornell algorithm), red-IR peak ratio, and red standard deviation
algorithms. However, red channels are not adopted in modern mainstream ALB systems,
such as Optech Coastal Zone Mapping and Imaging LiDAR (CZMIL), AHAB Hawkeye III,
RIEGL VQ-880-G, and Fugro LADS-MK3 [11].

The amplitude of an IR laser land waveform is much larger than that of a water
waveform. Accordingly, the amplitude of an IR waveform can be used as a feature for
distinguishing water from land. Supervised classification models, such as support vector
machines (SVMs) [24–26], and unsupervised classification models, such as K-means and
Fuzzy C-means clustering [12], that are based on the amplitude of IR waveforms are
used in discriminating water and land waveforms. Unsupervised classification does not
need sample data and is more applicable for water–land discrimination compared with
supervised classification. An IR laser has a strong reflection because bubble-entrained
water enables special IR laser waveforms to achieve amplitudes close to those of the typical
IR laser waveforms of land [9]. These special IR laser waveforms of bubble-entrained
water are incorrectly labeled as land when the amplitude of an IR waveform is applied.
Furthermore, land topography causes the amplitudes of some IR/green laser waveforms
of land to be similar to those of water [12]. These special IR/green laser waveforms of land
are incorrectly labeled as water when the amplitude of an IR waveform is applied. The
shape of the green laser waveform of water is different from that of land. The amplitudes
of green laser waveforms can be used in discriminating water and land [11]. However,
green laser waveforms are significantly influenced by the merge effect in very shallow
waters [23], and the accuracy of water–land discrimination using green laser waveforms is
low [12].

An elevation threshold method using 3D point clouds obtained with IR laser is
proposed to realize rapid water–land identification [11]. This method can distinguish
ocean from land but cannot effectively identify inland waters. Zhao et al. [12] proposed
an improved water–land discriminator, which discriminates between ocean and land by
using a 3D point cloud and further identifies inland water by using the amplitudes of IR
laser waveforms. This method needs waveform and point cloud data.

In summary, red waveform can be used in discriminating water and land effectively
but is not always available in ALB systems. Green laser waveforms are highly influenced by
the merge effect in very shallow waters, and the accuracy of water–land discrimination us-
ing green waveforms is lower than that of water–land discrimination using IR waveforms.
Point cloud elevations can be used in discriminating between ocean and land but cannot
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effectively identify inland waters. The amplitude of an IR waveform is a reliable feature for
distinguishing water and land; however, other IR waveform features have not been verified
and compared through experimental analysis, and false alarms often occur in coastal areas
because of complex environments. The accuracy of water–land waveform discrimination
can be improved if mislabeled waveforms can be corrected. Thus, this study determines
an optimal feature for water–land discrimination using IR laser waveforms through ex-
perimental verification and comparison and proposes a dual-clustering method based on
K-means and density-based spatial clustering of applications with noise (DBSCAN) to
correct the mislabeled waveforms and improve water–land discrimination accuracy.

2. Materials and Methods
2.1. Research Area and Data Acquisition

The effectiveness of the proposed method is verified by conducting a practical ALB
measurement using Optech CZMIL in the coastal waters of Qinshan Island, Jiangsu
Province, China on 27 December 2014. Qinshan Island is a non-resident island in the
Yellow Sea of China. A wide intertidal zone with white sand or dark mud exists around
the island. Bared earth, low vegetation, and tall vegetation exist in the interior of the island.
Table 1 shows the primary technical parameters of CZMIL, which uses a circular scanner
with a fixed incidence angle of 20◦ and adopts a collinear and synchronous method to emit
IR (1064 nm) and green (532 nm) lasers [29–31]. The recommended laser pulse repetition
rate and scanner frequency for CZMIL are 10 kHz and 27 Hz, respectively [31]. A total of
1,011,132 IR laser waveforms collected in the IR channel of CZMIL and the corresponding
1,011,132 points obtained with IR laser are extracted from raw CZMIL binary files within
the research area. Figure 1 shows the position and hill-shaded relief figures of Qinshan
Island, which are constructed using 3D point clouds derived with CZMIL. The track lines
and flight directions of the three strips (C14, C15, and C16) are represented by black lines
with arrows.

Table 1. Primary technical parameters of CZMIL.

Parameter Value

Flight altitude 400 m (nominal)
Flight velocity 140 kts (nominal)

Laser pulse repetition rate 10 kHz
Scanner frequency 27 Hz
Laser wavelength IR: 1064 nm; green: 532 nm

Maximum measurable depth 4.2/Kd (bottom power reflectivity > 15%)
Minimum measurable depth 0.15 m

Depth accuracy (0.32 + (0.013 d)2)
1
2 m, 2σ

Horizontal accuracy (3.5 + 0.05 d) m, 2σ
Scan angle 20◦ (circular scan)

Cross-track swath width 294 m (nominal)

The optical properties of water and land are different. Different optical reactions occur
when an IR laser arrives at the surface of water and land and result in significant differences
in laser pulse waveforms. Figure 2a,b show the typical IR waveforms of water and land
collected with Optech CZMIL from with 192 samples, respectively. The amplitude of a
land waveform is much larger than that of a water waveform; thus, the amplitude of an
IR waveform can be used in identifying water and land waveforms. However, other IR
waveform features have not been verified through experimental analysis. Furthermore,
special laser waveforms occur in coastal areas with complex environments and result
in mislabeled water and land waveforms. Therefore, an optimal feature for water–land
discrimination using IR laser should be determined by comparing different features, and
mislabeled water–land waveforms should be corrected.
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Figure 1. Location and hill-shaded relief figures of the research area.

Figure 2. Typical IR waveforms of (a) water and (b) land.

2.2. Feature Selection

The performance of a water–land discrimination method using a single waveform
feature and a combination of different features are evaluated and compared.

2.2.1. Single Waveform Feature

Apart from waveform amplitudes, other waveform features can be extracted from
raw IR laser waveforms. Verifying the effectiveness of water–land discrimination methods
using other waveform features is necessary. In Figure 3, features such as amplitude, full
width at half maximum (FWHM), area, and width are separately extracted from raw IR
laser waveforms and used in verifying their effectiveness in water–land discrimination.
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Figure 3. Features of IR laser waveform.

Waveform amplitudes are extracted from an IR laser waveform as follows: let m IR
laser full-waveforms be Y = {y1, y2, . . . , yi, . . . , ym}, where yi is the ith IR full waveform and
i ranges from 1 to m. Each full waveform has n samples, that is, yi = {x1, x2, . . . , xj, . . . , xn},
where xj is the amplitude of the jth sample in the ith IR full waveform and j ranges from 1
to n. The maximum amplitude of the ith IR full waveform Ai can be extracted according to
the following formula:

Ai = max
(

x1
i , x2

i , . . . , xj
i , . . . , xn

i

)
(1)

where xj
i is the amplitude of the jth sample in the ith IR full waveform.

FWHM is the width of waveform at half of amplitude, that is, the time interval
between two points on the y-axis, which are half the maximum amplitude, as shown in
Figure 3. The FWHM can be calculated with the following formula:

FWHM = T2 − T1 (2)

where T1 and T2 are the times of the leading and trailing points with half of the maximum
amplitude, respectively.

Waveform area is the integral of the pulse return amplitude with respect to time.
However, noise inevitably exists in raw IR full waveforms because of the influence of ALB
electronics and the environment [32]. A raw full waveform is the sum of pulse-return signal
and noise, and noise affects the accuracy of area extraction. Therefore, waveform separation
is necessary before feature extraction. Waveform separation can be performed according to
Zhao’s separation method [32] for the separation of the pulse-return waveform from a raw
full waveform. After waveform separation, the area of the pulse-return waveform can be
calculated as follows:

S =
∫ t2

t1

y(t) dt (3)

where t1 and t2 are the times of the leading and trailing edge points of the pulse-return
waveform, respectively, and y(t) is the waveform intensity at time t.

Waveform width is the time interval between the leading and the trailing edge points
of a pulse-return waveform separated by waveform separation. Width can be calculated by
subtracting the leading-edge time from the trailing-edge time of the pulse-return waveform.

2.2.2. Combination of Waveform Features

Whether the performance of water–land discrimination can be improved by using a
combination of waveform features with respect to single features needs to be verified. Sin-
gle waveform features are combined to form different combinations of waveform features.
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A reference water–land interface derived from 3D point clouds [11] is used in forming
a confusion matrix and calculating the overall accuracy of water–land discrimination using
different waveform features. In Table 2, the confusion matrix is derived by comparing
discriminated labels (column) against reference ones (row). Diagonal elements in the
confusion matrix represent the number of laser measurements in which the discriminated
label is the same as the reference label, whereas off-diagonal elements are those that are
mislabeled. The overall accuracy OA can be calculated by the following formula:

OA =
TP + TN

TP + FP + TN + FN
(4)

where a true positive (TP) decision is such that a land waveform is assigned to land, a false
positive (FP) decision is such that a water waveform is assigned to land, a true negative
(TN) decision is such that a water waveform is assigned to water, and a false negative
(FN) decision is such that land waveform is assigned to water. OA is used to evaluate the
performance of water–land discrimination using different features. The larger OA is, the
better the water–land discrimination will be. Thus, the optimal feature for water–land
discrimination using IR laser can be determined by OA comparison.

Table 2. Confusion matrix for water–land discrimination.

Water (Reference Label) Land (Reference Label)

Water (discriminated label) TN FN
Land (discriminated label) FP TP

2.3. Dual-Clustering Method for Mislabeled Waveform Correction

Zhao et al. [12] summarized special IR waveforms as follows. First, the IR laser
waveforms of bubble-entrained water are mislabeled as land. The strong reflection of an
IR laser is due to bubble-entrained water, which enables special IR laser waveforms to
achieve amplitudes close to those of the typical IR laser waveforms of land [9]. These
special IR laser waveforms of bubble-entrained water are incorrectly labeled as land when
the amplitude of an IR waveform is applied. Second, the IR laser waveforms of special
land topography are mislabeled as water. Land topography causes the amplitudes of some
IR laser waveforms of land to be similar to those of water [12]. These special IR laser
waveforms of land are incorrectly labeled as water.

The accuracy of water–land discrimination can be improved by correcting misla-
beled waveforms. In reality, water–land interface is obvious and shows spatial continuity.
Correctly labeled waveforms appear as aggregated point clouds with high densities in
spatial distribution. By contrast, mislabeled waveforms may be single or sparse points and
with low densities in spatial distribution, and special mislabeled waveforms induced by
complex environments are typical isolated and discrete points with respect to correctly
labeled waveforms. Thus, mislabeled waveforms can be corrected if the spatial information
of corresponding laser spot centers are considered. K-means clustering is first used to
discriminate water/land waveforms through waveform feature clustering. Then, DBSCAN
clustering is used to correct mislabeled waveforms by clustering the positions of laser
spot centers.

2.3.1. K-Means Clustering

K-means is a classic clustering algorithm based on distance and has low complexity
and a good clustering effect. This algorithm can hold better scalability and high efficiency
when dealing with large datasets [33,34]. Thus, this study uses the K-means clustering
algorithm to cluster water and land waveforms on the basis of waveform amplitudes. In
K-means clustering, given a dataset X = {x1, x2, . . . , xi, . . . , xn}, K-means divides the dataset
X into k clusters C = {C1, C2, . . . , Cj, . . . , Ck} by minimizing the squared distance between
discrete points and their nearest centroids [35].
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k

∑
j=1

∑
i∈Cj

‖ Xi − µj ‖2 (5)

where ‖*‖ denotes the Euclidian distance between each discrete point Xi and centroid of
the cluster µj calculated by the average of Cj. The number of clusters k for water–land
waveform clustering is set to two, namely, water and land. The specific steps of the K-means
algorithm for water–land waveform clustering are presented as follows:

Step 1: Randomly select two points from X as the initial centroids of C1 and C2.
Step 2: Calculate the Euclidean distance dj = ‖xi − µj‖ between point xi and centroids µ1

and µ2 and assign point xi to the nearest cluster.
Step 3: Recalculate the centroids of all clusters using the reassigned points.
Step 4: Repeat Steps 2 and 3 until µ1 and µ2 are stable.

2.3.2. DBSCAN Clustering

DBSCAN is significantly effective in discovering clusters of arbitrary shapes based on
the density of data and divides the spatial database into clusters with different densities [36].
Given that DBSCAN can effectively identify outliers with low densities, this study uses
DBSCAN algorithm to identify isolated and discrete mislabeled waveforms.

Given a dataset D = {x1, x2, . . . , xi, . . . , xm}, several important definitions are used
in DBSCAN. In p ∈ D, the epsilon (Eps)-neighborhood of point p includes the subsample
set whose distance from p is less than Eps, namely, NEps(p) = {q ∈ D|dist(p, q) ≤ Eps).
The number of this subsample set is denoted as |NEps(p)|. If the Eps-neighborhood of p
contains at least a minimum number (MinPts) of points, that is, |NEps(p)| ≥MinPts, then p
would be a core point. In terms of p, q ∈ D, if point q is in the Eps-neighborhood of the core
point p, then q is directly density-reachable from p. In dataset D, given a chain of points
p1, p2, . . . , pn, where p = p1, q = pn, if pi is directly density-reachable from pi−1, then q is
density-reachable from p. In terms of p and q, if there is a core point o, and p and q are
density-reachable from o, then p is density-connected to q. Given D, Eps, and MinPts, the
specific algorithm steps of DBSCAN are presented as follows [37–39]:

Step 1 Initialize the core point set Ω = φ, the number of clusters k = 0, the sample set
unvisited Γ = D, and the cluster division C = φ.

Step 2 All core points can be found for i = 1, 2, . . . , m by following the steps:

(1) The Eps-neighborhood subsample set NEps(xi) of the sample xi should be
determined through distance measurement;

(2) If the number of samples in the subsample set satisfies |NEps(xi)| ≥MinPts,
sample xi will be added to the core point set, that is, Ω = Ω ∪ {xi}.

Step 3 If the core point set Ω is equal to φ, then the algorithm would end. Subsequently,
the cluster division C = {C1, C2, . . . , Ck}. Otherwise go to step 4.

Step 4 A core point o needs to be randomly selected from the core point set Ω. Then, the
current core point queue Ωcur = {o}, the serial number k = k + 1, and the current
cluster sample set Ck = {o}. The data set unvisited Γ is updated to Γ− {o}.

Step 5 If the current core point queue Ωcur is φ, cluster C would be {C1, C2, . . . , Ck} and
the core point set Ω would be Ω − Ck. Then, go to Step 3. Otherwise, the core
point set Ω would be Ω − Ck.

Step 6 A core point o’ is taken from the current core point queue Ωcur. Then, all Eps-
neighborhood subsample sets NEps(o’) can be found through the Eps-neighborhood
distance threshold Eps. Let ∆ equal to NEps (o’) ∩ Γ. Ck updates to Ck ∪ ∆, Γ
updates to Γ− ∆, and Ωcur updates to Ωcur ∪ (∆ ∩ Ω) − o’. Then, go to step 5.

2.4. Reference Water–Land Interface

A reference water–land interface is used in evaluating the effectiveness of different
waveform features and the clustering method. In situ measurements (such as GNSS-
RTK measurements) or satellite imagery [40] can be used as references. Simultaneous
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GNSS-RTK measurements during ALB measurements can generate accurate water–land
interfaces but is costly, time consuming, and dangerous in certain cases. The acquisition
time of a satellite image and ALB data may not be entirely synchronized. Water–land
interfaces are changing because of the effects of ocean tides and waves. Furthermore,
water–land interfaces in satellite images are fuzzy in areas with muddy and sand beaches.
Therefore, water–land interfaces derived from satellite images may be inconsistent with
the real ones when ALB measurement is carried out. Land elevations are higher than water
surface elevations; thus, 3D point clouds can be used in discriminating between water
and land [11,12]. Furthermore, water–land interfaces derived using 3D point clouds are
theoretically consistent with those derived with IR laser waveforms because both interfaces
reflect the water–land interface when ALB measurement is carried out. Precise water–land
interfaces derived from 3D point clouds [11] are used as reference for the evaluation of
different waveform features and clustering methods.

2.5. Flowchart of the Proposed Water–Land Discrimination Procedure

The flowchart of a water–land discrimination method using IR laser waveforms is
shown in Figure 4. First, the IR laser waveforms of airborne LiDAR are extracted from raw
ALB data files, and waveform separation is performed for the division of laser waveform
into pulse-return and non-pulse-return waveforms. Second, the waveform feature selection
method described in Section 2.2 is carried out for the selection of the optimal waveform
feature. Finally, the dual-clustering method is performed for discrimination between water
and land waveforms. Specifically, K-means clustering is used in clustering waveform
amplitude for the generation of rough water and land waveforms. Then, DBSCAN is
utilized for the identification and correction of mislabeled waveforms.

Figure 4. Flow chart of the proposed dual-clustering method.
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3. Results
3.1. Optimal Feature Selection
3.1.1. Single Waveform Feature

A raw IR waveform comprises pulse-return and non-pulse-return waveforms. Wave-
form separation needs to be conducted to reduce the influence of non-pulse-return wave-
forms on the extraction of the waveform features of pulse-return waveforms. Therefore,
waveform separation is necessary before feature extraction. A total of 1,011,132 IR wave-
forms in the research area are separated into pulse-return and non-pulse-return waveforms
according to Zhao’s waveform separation algorithm [32]. Figure 5a,b show the pulse-return
and non-pulse-return waveforms separated from a typical IR full waveform, respectively.
Then, waveform features such as amplitude, FWHM, area, and width are separately ex-
tracted from the pulse-return waveforms according to the method described in Section 2.2.1.
Figure 6a–d show the spatial distributions of amplitude, FWHM, area, and width of IR
laser waveforms, respectively.

Figure 5. (a) Pulse-return and (b) non-pulse-return waveforms of a typical IR full waveform.

Figure 6. Spatial distributions of (a) amplitude, (b) FWHM, (c) area, and (d) width of IR laser waveforms.
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Figure 7a–d show the probability density functions (PDFs) of water/land waveform
features (i.e., amplitude, FWHM, area, and width). As shown in Figure 7, the waveform
features of water and land are remarkably different, thus further verifying the feasibility
of water–land discrimination using IR waveforms. Amplitude, FWHM, area, and width
are used to conduct water–land discrimination based on K-means clustering. With the
water–land interface derived by 3D point clouds as reference, the confusion matrices similar
to those in Table 2 and the overall accuracy of water–land discrimination using different
features are shown in Table 3. The confusion matrix and overall accuracy indicate the
performance of different features for water–land discrimination. The greater the number of
samples correctly identified, the higher the overall accuracy, and the higher the consistence
of the discriminated water–land categories with the reference categories.

Figure 7. PDFs of (a) amplitude, (b) FWHM, (c) area, and (d) width of water–land waveforms.

Table 3. Results of water–land discrimination using single features.

Feature Confusion Matrix Overall
Accuracy

Reference Water Reference Land

Amplitude Discriminated water 839,274 1826
99.48%Discriminated land 3416 166,616

FWHM
Discriminated water 840,597 136,299

86.31%Discriminated land 2093 32,143

Area
Discriminated water 841,276 5139

99.35%Discriminated land 1414 163,303

Width Discriminated water 802,969 9769
95.11%Discriminated land 39,721 158,673

The spatial distributions of the mislabeled waveforms using amplitude, FWHM, area,
and width based on K-means clustering are shown in Figure 8a–d, respectively. In terms
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of amplitude, 3416 water waveforms are mislabeled as land waveforms, and 1826 land
waveforms are mislabeled as water waveforms. The mislabeled water waveforms are
induced by the special land topography [12]. The mislabeled land waveforms are induced
by bubble-entrained water [9], aquaculture rafts, and a mix of land and water in the laser
spot located at the water–land interface. In terms of the FWHM, 136,299 land waveforms
are mislabeled as water waveforms, and 2093 water waveforms are mislabeled as land
waveforms. The FWHM centroids of the water and land waveforms are 11.4 and 43.2,
respectively. FWHM is not influenced by the strong reflection of bubble-entrained water
because it reflects the differences in water and land waveforms in the time dimension and
not in terms of amplitude. However, many land waveforms are mislabeled as water wave-
forms, and waveforms reflected from aquaculture rafts are mislabeled as land waveforms
because the FWHM values of water and land waveforms are close. With regard to the
area, 5139 land waveforms are mislabeled as water waveforms, and 1414 water waveforms
are mislabeled as land waveforms. The area centroids of the water and land waveforms
are 3800 and 20,000, respectively. The area can reflect the differences in water and land
waveforms not only in the time dimension, but also in amplitude. Similar to FWHM, area
is rarely influenced by the strong reflection of bubble-entrained water. Nevertheless, many
aquaculture raft waveforms are mislabeled as land, and land waveforms are mislabeled
as water. In terms of width, 9769 land waveforms are mislabeled as water waveforms,
and 39,721 water waveforms are mislabeled as land waveforms. The centroids of the
waveform width of water and land waveforms are 23.1 and 49.1, respectively. Similar to
FWHM, waveform width reflects the difference in water and land waveforms in the time
dimension. Width can better reflect the differences in water and land waveforms than
FWHM. However, width is significantly influenced by aquaculture rafts.

Figure 8. Spatial distributions of mislabeled waveforms derived by (a) amplitude, (b) FWHM, (c) area, and (d) width based
on K-means clustering.
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Figure 9 shows the typical IR waveforms reflected from aquaculture rafts, water, and
land collected by CZMIL. The orange, green, and blue curves represent the waveforms
reflected from aquaculture rafts, water, and land, respectively. In Figure 10, the feature
values (amplitude, FWHM, area, and width) of typical land waveforms are greater than
those of typical water waveforms. Typical ALB systems use a Gaussian temporal and
spatial energy distribution [41]. Along the emission direction of the laser, the laser energy
presents a Gaussian distribution. The energy distribution across the emission direction is
also Gaussian because of the divergence of the laser beam [42]. The closer the position to
the central laser ray is, the stronger the laser energy is. Pulse spot size on the water surface
is typically 2–3 m [41]. The width and amplitude of waveforms reflected from water are
smaller than those reflected from land because of the strong absorption of laser energy by
the water surface. No light photon is reflected from the verge of the laser spot on the water
surface. The waveforms reflected from aquaculture rafts floating above the water surface
have a larger width than those reflected from water, representing the superposition of the
waveforms of aquaculture rafts and water. Aquaculture rafts are easily mislabeled as land,
and they exert a significant influence on water–land discrimination using FWHM, area, or
width. Aquaculture rafts also affect water–land discrimination based on amplitude, but
the effect is not as great as that based on FWHM, area, or width.

Figure 9. Typical IR waveforms reflected from aquaculture raft (orange), water (green), and land
(blue) collected by CZMIL.

Figure 10. Illustration of IR waveforms reflected from (a) aquaculture rafts, (b) water, and (c) land.

In summary, water–land discrimination using FWHM, area, or width is rarely influ-
enced by the strong reflection from bubble-entrained water, but it is highly influenced by
aquaculture rafts. The results in Table 3 indicate that waveform amplitude has the best
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performance among the researched features for water–land discrimination in waters with
aquaculture rafts.

3.1.2. Combination of Waveform Features

An experimental analysis was conducted to verify whether the performance of water–
land discrimination can be improved by using the combination of waveform features.
Waveform amplitude is combined with other waveform features to form five new com-
bined features, namely, a combination of amplitude and FWHM; a combination of am-
plitude and area; a combination of amplitude and width; a combination of amplitude,
FWHM, area, and width; and a combination of amplitude, FWHM, area, and width after
PCA reduction. Then, these combined features are evaluated by comparing the overall
accuracy of water–land discrimination. Water–land discrimination is carried out using
amplitude and five combined features through K-means clustering. The overall accuracy
of water–land discrimination using different combined features is calculated and shown
in Table 4. In Table 4, the overall accuracy of water–land discrimination using combined
features does not improve, but reduces, compared with that using waveform amplitude.
Therefore, waveform amplitude is the optimal feature for water–land classification using
IR laser waveforms among the researched features in this study.

Table 4. Results of water–land discrimination using combined features.

Feature Confusion Matrix Overall
Accuracy

Reference
Water

Reference
Land

Amplitude and FWHM
Discriminated water 839,274 1826

99.48%
Discriminated land 3416 166,616

Amplitude and area
Discriminated water 841,275 5130

99.35%
Discriminated land 1415 163,312

Amplitude and width
Discriminated water 839,219 1826

99.48%
Discriminated land 3471 166,616

Combination of amplitude,
FWHM, area, and width

Discriminated water 841,275 5130
99.35%

Discriminated land 1415 163,312

Combination of amplitude,
FWHM, area, and width

after PCA reduction

Discriminated water 841,276 5129
99.35%

Discriminated land 1414 163,313

3.2. Dual-Clustering Method

Waveform amplitudes are used as features for dual clustering. Figure 11 shows
the amplitude distribution of 1,011,132 IR laser waveforms, and the pulse number is the
abscissa. The laser pulses in the green, red, and yellow regions represent typical land,
aquaculture rafts, and water, respectively. The aquaculture rafts are striped wooden
structures floating on the water surface. The amplitude distribution of the laser waveforms
reflects the environmental changes along the strip, namely, water, land, and aquaculture
rafts. The laser waveforms of aquaculture rafts are the mixed waveforms reflected from
aquaculture rafts and water because of the large laser spot. The waveform amplitude of
the aquaculture raft is between the amplitudes of water and land.
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Figure 11. Distribution of waveform amplitudes of water (yellow), aquaculture rafts (red), and land (green) with pulse
number as abscissa.

3.2.1. K-Means Clustering

The amplitudes of the 1,011,132 IR waveforms are clustered through K-means clus-
tering according to Section 2.3.1. The amplitude centroids of water and land waveforms
are 331 and 851.2, respectively. These values indicate that the difference between the
amplitudes of water and land is significant. Figure 12a,b show the spot center positions
of land and water IR waveforms labeled through K-means clustering, respectively. Land
and water waveforms are effectively discriminated with a clear water–land interface. How-
ever, numerous mislabeled waveforms exist in the water and land areas. In Figure 12a,
numerous scattered waveforms exist in the island areas. These IR waveforms can be
divided into two types. The first type includes mislabeled water waveforms induced by
complex land topography. The other one includes the correctly identified water waveforms
of ponds or reservoirs in islands. The waveforms of ponds or reservoirs can be verified
using IR laser amplitudes and elevations, given that they are aggregation points with low
waveform amplitudes and small elevation fluctuations. In Figure 12b, numerous laser
points exist in an ocean area. These points are mislabeled as land waveforms because
of the presence of bubble-entrained water and wooden aquaculture rafts floating on the
ocean surface. IR waveform amplitudes reflected from bubble-entrained water or wooden
aquaculture rafts are as large as those reflected from land. These mislabeled waveforms
reduce the accuracy of water–land discrimination. The results further indicate the necessity
of mislabeled waveform correction. The spatial densities of mislabeled waveforms that
can be regarded as noise are lower compared with the densities of correctly labeled water
and land waveforms. The spatial distance between the correctly labeled and mislabeled
waveforms is significant. Therefore, the spatial distribution information can be used in
correcting the mislabeled waveforms.
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Figure 12. Spot center positions of (a) water and (b) land IR waveforms labeled by K-means clustering.

3.2.2. DBSCAN Clustering

DBSCAN clustering is used in identifying and correcting mislabeled water and land
waveforms by clustering the positions of laser spots. The water and land waveforms
derived through K-Means clustering are clustered again through DBSCAN according to
the positions of laser spots. The criteria of DBSCAN clustering for this study are the
premises that the integrity of water and land areas can be ensured, mislabeled waveforms
can be identified, and inland water bodies, such as ponds or reservoirs, can be retained.
The parameter settings of Eps and MinPts in DBSCAN are 0.0001 and 4, respectively,
on the basis of experimental analysis. Figure 13 shows the DBSCAN results of water
and land waveforms. Mislabeled water and land waveforms are successfully identified
with DBSCAN. As shown in the island area in Figure 13a, mislabeled water waveforms
induced by complex land topography are identified and represented by the red color. Water
waveforms reflected from ponds in islands are maintained. In Figure 13b, the mislabeled
land waveforms in ocean areas are successfully identified with DBSCAN. The mislabeled
water and land waveforms identified with DBSCAN are corrected into land and water
waveforms, respectively. The laser spot positions of the final water and land waveforms are
shown in Figure 14. The results show that DBSCAN effectively identifies the mislabeled
waveforms (noise), and water–land interfaces are clear and smooth.

Figure 13. DBSCAN results of (a) water and (b) land waveforms derived through K-means clustering.
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Figure 14. Laser spot positions of final (a) water and (b) land waveforms.

The water and land waveforms determined through K-means clustering and dual
clustering and by using the pulse number as the abscissa are shown in Figure 15a,b, re-
spectively. Traditional water–land discrimination using K-means clustering only considers
waveform features, and a clear dividing line exists between the amplitudes of water and
land waveforms, resulting in numerous mislabeled waveforms. By contrast, dual clus-
tering not only considers the waveform amplitude but also the position of the laser spot.
K-means clustering is used in clustering waveform amplitudes for the generation of rough
water and land waveforms, and DBSCAN is utilized for the identification and correction
of mislabeled waveforms through the clustering of spot positions. The dual-clustering
method proposed in this study uses IR waveform amplitudes to distinguish land from
water and the positions of laser spots to correct mislabeled waveforms. Hence, misla-
beled water waveforms with amplitudes close to those of land waveforms are corrected to
land waveforms, and mislabeled land waveforms with amplitudes close to those of land
waveforms are corrected to water waveforms. The influence of environmental factors on
the water–land discrimination is reduced, and the accuracy of water–land discrimination
is improved.

Figure 15. Water/land waveforms derived by (a) K-means and (b) dual clustering.

3.2.3. Accuracy Analysis

The water–land interface derived by 3D point cloud is used as a reference for the
evaluation and comparison of the performance of K-means clustering and dual-clustering
methods. Table 5 shows the confusion matrices of K-means clustering and dual cluster-
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ing using IR waveform amplitude, which are used in calculating their respective overall
accuracy rates. The overall accuracy rates of K-means clustering and dual clustering are
99.482% and 99.730%, respectively. The dual clustering corrects a total of 2508 misla-
beled IR waveforms, including 167 mislabeled water waveforms and 2341 mislabeled land
waveforms, compared with K-means clustering. The proposed dual-clustering method
can correct mislabeled water or land waveforms and reduce the number of mislabeled
waveforms by 48% with respect to the number obtained through traditional K-means clus-
tering. The mislabeled waveform correction improves the overall accuracy of water–land
discrimination.

Table 5. Results of water–land discrimination using two clustering methods.

Method Confusion Matrix Overall
Accuracy

Reference Water Reference Land

K-means Discriminated water 839,274 1826
99.48%Discriminated land 3416 166,616

Dual clustering Discriminated water 841,615 1659
99.73%Discriminated land 1075 166,783

4. Discussion
4.1. Influencing Factors for Water–Land Discrimination

Feature extraction, feature selection, and clustering method are the three main factors
that influence the performance of water–land discrimination using laser waveforms. The
quality of waveform features can be controlled by improving the accuracy of feature
extraction. Waveform separation can reduce the influence of non-pulse-return waveform
on the feature extraction of pulse-return waveform. The performance of water–land
discrimination is highly influenced by the waveform feature. Feature selection should be
conducted in the selection of optimal features, and the performance of different waveform
features is compared. Waveform amplitude is suggested to be the optimal feature for
water–land discrimination using IR laser waveforms by experimental analysis in this study.
The clustering method is the third influencing factor. The proposed dual-clustering method
can correct the mislabeled water and land waveforms and improve the overall accuracy of
water–land discrimination.

4.2. Detection of Aquaculture Rafts Using Waveform Width

Research suggests that aquaculture rafts provide favorable substrates for the micro-
scopic propagules of Ulva prolifera. Aquaculture rafts play an important role in offer-
ing attachment conditions for the early formation of green tides [43]. The monitoring
of aquaculture rafts using satellite imagery is highly limited by environmental factors,
such as haze, clouds, illumination conditions, and image resolution. Moreover, it can-
not provide structural information in vertical directions. As analyzed in Section 3.1.1,
water–land discrimination using waveform width is not influenced by the strong reflection
of bubble-entrained water, but it is highly influenced by aquaculture rafts. The sensitivity
of waveform width to aquaculture rafts is not beneficial for water–land discrimination,
but it provides a possible approach to the detection and extraction of aquaculture rafts.
Figure 16a shows the spatial distributions of aquaculture rafts detected using waveform
width. Figure 16b displays the structural information of an aquaculture raft in the vertical
direction. The spatial distributions and structural information in the vertical direction of
aquaculture rafts can be detected with high accuracy and resolution by using waveform
width and the point clouds of airborne infrared laser.
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Figure 16. Structural information in the (a) horizontal and (b) vertical directions.

4.3. Applications

The proposed method using IR laser waveforms is suitable for airborne LiDAR systems
with IR lasers, that is, airborne topographic LiDAR systems or integrated IR and green
ALB systems, and is not applicable to green-only ALB systems, which have no additional
IR lasers. Water–land discrimination using green laser waveforms is low because the
green laser waveform is highly influenced by the merge effect in very shallow waters [12].
More studies should be carried out to improve the accuracy of water–land discrimination
using green laser waveforms. The results of water–land discrimination using IR laser
waveforms in this study can be used as an exact external reference for the evaluation of the
performance of water–land discrimination using green laser waveforms.

5. Conclusions

This study verifies the performance of the different features of IR waveforms and
proposes a dual-clustering method to correct mislabeled waveforms for water–land dis-
crimination using airborne infrared LiDAR.

(1) The performance of water–land discrimination using single waveform features and
combinations of waveform features are evaluated and compared through experimen-
tal analysis. The overall accuracy rates of water–land discrimination using amplitude;
FWHM; area; width; a combination of amplitude and FWHM; a combination of am-
plitude and area; a combination of amplitude and width; a combination of amplitude,
FWHM, area, and width; and a combination of amplitude, FWHM, area, and width
after PCA reduction based on K-means clustering are 99.482%, 86.313%, 99.352%,
95.105%, 99.482%, 99.353%, 99.476%, 99.353%, and 99.353%, respectively. The results
show that waveform amplitude is the optimal feature for water–land discrimination
using IR laser waveforms.

(2) Dual-clustering has two levels. The first level removes outliers in the waveform
amplitudes. The second level removes geographic outliers to correct the mislabeled
waveforms derived by the first level. The proposed dual-clustering method can correct
mislabeled water or land waveforms and reduce the number of mislabeled waveforms
by 48% with respect to the number obtained through traditional K-means clustering.
Water–land discrimination using IR waveform amplitude and the proposed dual-
clustering method can reach an overall accuracy of 99.730%. The proposed dual-
clustering method can correct and reduce mislabeled waveforms with respect to the
traditional feature clustering methods.

Water–land discrimination using IR laser waveform amplitudes and the proposed
dual-clustering method is robust and highly accurate, has a high resolution, and is capable
of automation. Hence, its use in coastal and inland waters is recommended.
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