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Abstract: Change detection is an important task in identifying land cover change in different periods.
In synthetic aperture radar (SAR) images, the inherent speckle noise leads to false changed points, and
this affects the performance of change detection. To improve the accuracy of change detection, a novel
automatic SAR image change detection algorithm based on saliency detection and convolutional-
wavelet neural networks is proposed. The log-ratio operator is adopted to generate the difference
image, and the speckle reducing anisotropic diffusion is used to enhance the original multitemporal
SAR images and the difference image. To reduce the influence of speckle noise, the salient area that
probably belongs to the changed object is obtained from the difference image. The saliency analysis
step can remove small noise regions by thresholding the saliency map, and interest regions can be
preserved. Then an enhanced difference image is generated by combing the binarized saliency map
and two input images. A hierarchical fuzzy c-means model is applied to the enhanced difference
image to classify pixels into the changed, unchanged, and intermediate regions. The convolutional-
wavelet neural networks are used to generate the final change map. Experimental results on five
SAR data sets indicated the proposed approach provided good performance in change detection
compared to state-of-the-art relative techniques, and the values of the metrics computed by the
proposed method caused significant improvement.

Keywords: synthetic aperture radar image; change detection; saliency detection; convolutional-
wavelet neural networks; hierarchical fuzzy c-means

1. Introduction

The synthetic aperture radar (SAR) imaging process is not affected by sunlight, clouds,
or the atmosphere because of the microwave imaging principle. In the field of SAR image
processing, change detection is a very important topic. SAR images are an important
information resource for change detection when studying disaster relief, agricultural de-
tection, and urban planning, especially when evaluating the damage caused by natural
disasters [1–4]. Because of the interference of scattering echo, speckle noise will inevitably
be generated; it has the nature of multiplicative noise, and it seriously affects the interpre-
tation of SAR images [5]. Therefore, noise suppression is an important task in the process
of change detection. In recent decades, many change detection methods utilizing SAR
imagery have been introduced, and these approaches can be divided into two categories:
coherent and incoherent change detection methods, depending on whether interferometric
phase information is used. In this paper, we mainly discuss incoherent change detection
methods [6].

In terms of incoherent SAR image change detection algorithms, supervised and un-
supervised methods are the most used. The main problem associated with supervised
methods is the lack of ground reference data, which often involves manual marking pro-
cesses that are labor-intensive and time-consuming. Unsupervised SAR change detection
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generally includes three basic steps: speckle noise reduction, difference map generation,
and classification [7].

There are problems that influence the effect of SAR image change detection. First, the
inherent speckle noise in the SAR images may cause false positives. If we use the denoising
method directly, we can also remove useful information in the denoising process. Second,
the difference image (DI) influences the detection results, and the changed information
may be lost when obtaining the DI. Finally, because the prior information is used in the su-
pervised models to train the classifier, the supervised models may generate a performance
superior to the unsupervised models. Nevertheless, prior information is usually achieved
by manual annotation, which requires much work and affects the generalization of the
model. Hence, in terms of the SAR image change detection, effective denoising, feature
extraction, and prior information acquisition ought to be considered.

As the result of these findings, for the sake of suppressing the speckle noise and
preserving interest information, one saliency detection method is used to extract the
interesting regions that probably pertain to the changed objects. To extract the changed
information, the convolutional-wavelet neural networks (CWNNs) model is utilized to
learn features from the denoised images and the difference image. The speckle reducing
anisotropic diffusion (SRAD) is used to enhance the input images and the difference image.
The saliency detection is performed on the enhanced difference image, and the interest
regions are extracted. The hierarchical fuzzy c-means clustering (HFCM) model is used
for pre-classification. Finally, the CWNN model is used to generate the final change map.
Experiments on qualitative and quantitative comparisons demonstrate the advantages
and innovations of the proposed SAR image change detection algorithm. The major
contributions of the proposed method are concluded as follows.

(1) A saliency detection model is used in the proposed method, which aims to generate
the salient regions that probably belong to the changed objects. The saliency detection
model can extract attractive and compact salient areas from the difference image with
a simple operation. It can remove background pixels and suppress noise.

(2) A hierarchical fuzzy c-means clustering (HFCM) model is introduced in the proposed
method and is used to select pixels with high probability of becoming changed or
unchanged. The samples from the changed and unchanged parts are selected as the
training set for the convolutional neural network.

(3) A convolutional neural network based on dual-tree complex wavelet transform is
constructed that aims to enhance the accuracy of change detection.

2. Related Works
2.1. SAR Image Preprocessing

To cope with the speckle noise in SAR images, many noise reduction algorithms
have been proposed in the past few years. The classical methods are probabilistic-patch-
based (PPB) filter [8], speckle reducing anisotropic diffusion (SRAD) [9], non-local means
filter [10,11], total variation model [12], block-matching 3D filtering [13], deep multi-scale
recurrent network [14], multilook and refined Lee filtering [15], etc. Zheng et al. [16]
introduced a SAR change detection method based on PPB filter and k-means clustering
model where the PPB filter is used to suppress the speckle noise, and the two difference
images are generated by subtraction and log-ratio operators, respectively; then the k-means
clustering model is performed on the combined difference image to obtain the final change
map. Because of the high computational complexity of the PPB algorithm, the whole
change detection algorithm is relatively time-consuming. Su et al. [17] proposed a SAR
change detection technique via non-local means with ratio similarity measurement; the
enhanced non-local means model plays a role in suppressing speckle noise. Some other
denoising algorithms have also generated good results in remote sensing image change
detection. Lou et al. [18] introduced the ROF model semi-implicit denoising method for
speckle reduction into the SAR change detection process, and this denoising algorithm
played an important role in improving the accuracy of change detection. Wang et al. [19]
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proposed a new change detection technique based on logarithmic transformation and a
total variation denoising approach. Liu et al. [20] introduced a change detection method
based on mathematical morphology and a k-means clustering model, and the accuracy
of the change detection improved. The nonsubsampled contourlet transform (NSCT)
and nonsubsampled shearlet transform (NSST) are widely used in image fusion and
denoising [21–27]. Chen et al. [28] introduced the NSCT-hidden Markov tree (NSCT-HMT)
model to the remote sensing image change detection; Li et al. [29] proposed a multitemporal
remote sensing image change detection algorithm based on the NSCT denoising model.
Zhou et al. [30] introduced the image denoising model via NSST for SAR change detection;
Shen et al. [31] proposed an image change detection approach using a Kalman filter and
nonlocal means filter in the NSST domain. Because the different decomposition layers
of NSCT and NSST have a certain impact on the image denoising effect, finding the
appropriate decomposition layer is also an important problem. As an important part of
SAR image processing, the denoising model is very important in the pre-processing of
change detection.

2.2. DI Generation

The commonly used methods for generating the difference image (DI) are the sub-
traction operator and the ratio operator. Because the model of speckle noise inherent in
SAR images is multiplicative random noise [5], the subtraction operator cannot suppress
speckle-noise effectively. Compared with the subtraction operator, the ratio operator is
the division between two SAR images. It can overcome the disadvantage of sensitivity
to multiplicative noise. Based on the ratio operator, some improved models such as the
log-ratio operator, mean-ratio operator, and neighborhood-based ratio operator are utilized.
The log-ratio operator is robust to calibration and radiometric errors [32], it can reduce the
influence of speckle noise, and it is widely used to generate the difference image, but the
noisy regions can still be seen in the difference image. To create a different image with rich
information, a combination of different operators has been widely used in recently pub-
lished articles. Hou et al. [32] introduced the Gauss-log ratio operator as an improvement
of the log-ratio operator, and this change detection method combines the difference images
obtained by Gauss-log ratio and log-ratio operators in the discrete wavelet transform
domain to generate a fused difference image. Zhang et al. [33] introduced the SAR change
detection approach via fusing the Gauss-log ratio and subtraction operation in the shearlet
transform domain. In the references [34,35], the difference images generated by mean-ratio
and log-ratio operators, respectively, are effectively fused in a wavelet domain.

In recent years, some scholars have been working to obtain a difference map with
more regions of interest and noise suppression, and the saliency detection was introduced.
The saliency detection model can extract attractive and compact salient regions from the
difference image with a simple operation [36]. It can remove the background pixels and
reduce the influence of speckle noise. Geng et al. [36] introduced saliency-guided deep
neural networks for SAR change detection. Zheng et al. [37] proposed an unsupervised
saliency-guided SAR image change detection method where the context-aware saliency
detection model is used to compute the difference image of the log-ratio operator. The
thresholding model then combines the original SAR images to generate the new difference
image; finally, the principal component analysis (PCA) and k-means clustering models
are used to create the change map. This method offers a better performance in remote
sensing image change detection compared to other state-of-the-art algorithms without
saliency detection. Wang et al. [38] used the pattern and intensity distinctive analysis
model to generate the saliency map of the difference image. Majidi et al. [39] proposed a
saliency-guided neighborhood ratio model for automatic change detection. Li et al. [40]
introduced an unsupervised SAR image change detection algorithm combining PCANet
with saliency detection, and the accuracy of change detection was significantly improved.
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2.3. Application of Classification to Change Detection

For the classification step of SAR image change detection, the pixels in the difference
image are usually classified into changed and unchanged areas. These classification meth-
ods can be divided into unsupervised and supervised models. In terms of unsupervised
change detection, the thresholding-, active contours-, and clustering-based methods are
widely utilized in the classical change detection algorithms, and the prior information of
the training set is not needed. Moser et al. [41] utilized generalized minimum-error thresh-
olding for unsupervised SAR image change detection. Celik et al. [42] used a region-based
active contour model for change detection. Hao et al. [43] used a superpixel-based active
contour model for SAR image change detection. Meanwhile, clustering-based algorithms
have been introduced for change detection. Jia et al. [44] introduced the multiple kernel
k-means clustering with local-neighborhood information for remote sensing image change
detection. In reference [45], the modified fuzzy c-means (FCM) algorithm was performed
on the difference image to generate the change map. The FCM-based models cannot gener-
ate accurate change detection results, mainly because of the use of overall optimization
objectives. Li et al. [46] introduced the fuzzy local-information c-means clustering model
(FLICM) into the field of SAR change detection.

The deep learning-based classification model has had a rapid development and ap-
plication in recent years, and these classification methods have generated an excellent
performance and higher classification accuracy rate than the abovementioned approaches.
Zhang et al. [47] proposed two-phase object-based deep learning for unsupervised SAR
change detection. Gao et al. [48] introduced the channel weighting-based deep cascade
network for unsupervised change detection. The PCANet was first proposed by Chan
et al. [49] in 2015, and the PCANet model was introduced into the change detection field
by Gao et al. [50] in 2016. This PCANet-based unsupervised change detection model
achieves good performance, but it is quite time-consuming. Liu et al. [51] presented the
convolutional neural network (CNN) model for unsupervised SAR change detection. Duan
et al. [52] introduced a SAR image segmentation algorithm using convolutional-wavelet
neural networks (CWNNs), and this technique achieves good segmentation results and
suppresses the speckle noise. Gao et al. [53] introduced the CWNN model for unsupervised
SAR image change detection, and it performs well in change detection.

Inspired by the SAR image change detection algorithms introduced previously, an
effective and practical SAR image change detection utilizing saliency-guided convolutional
neural networks is proposed in this paper.

3. Proposed SAR Image Change Detection Method

In this section, we elaborate on the proposed unsupervised SAR image change detec-
tion method. The proposed method can be divided into the following steps: difference
image, extraction of salient regions, pre-classification, and classification by CWNN model.
The log-ratio operator is used to generate the initial difference image, then the saliency
detection is utilized to obtain the salient regions. The HFCM model is used for pre-
classification. Finally, the CWNN model is used to generate the final change map. The flow
chart of the proposed automatic change detection algorithm is given in Figure 1.
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Figure 1. The flow chart of the proposed SAR image change detection model.

3.1. Difference Image Generated by Log-Ratio Operator

Given two co-registered multi-temporal SAR images I1 and I2, which are obtained
from the same region at different times, t1 and t2, respectively, the purpose of SAR image
change detection is to produce a difference image that reflects the change information
between t1 and t2.

The initial SAR images will be affected by noise, and the speckle reducing anisotropic
diffusion (SRAD) [9] is used to suppress the noise in multi-temporal SAR images I1 and I2,
generating the denoised images X1 and X2 corresponding to I1 and I2, respectively. Figure 2
shows the example of the Ottawa images denoised by SRAD, and the peak signal-to-noise
ratio (PSNR) index is used to measure the denoising effect; we can see that the noise is
suppressed effectively from the area with the red box.

In this section, the initial difference image (DI1) is generated by the log-ratio (LR)
operator, then SRAD is performed on the DI1, and the denoised difference image DI2 is
obtained. The corresponding equation is:

DI1 =

∣∣∣∣log
X2

X1

∣∣∣∣ = |log X2 − log X1| (1)
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Figure 2. The example of SRAD denoising for Ottawa images. (a) Time 1 of Ottawa; (b) denoised image of Time 1
(PSNR = 24.0372); (c) Time 2 of Ottawa; (d) denoised image of Time 2 (PSNR = 25.2647).

3.2. Extraction of Salient Regions

Visual saliency regions contain information for visual image processing. In this section,
the saliency detection theory is adopted to guide the change detection of SAR images. The
initial difference image has a strong contrast region, and this is the salient region. We utilize
the saliency detection model to locate the similar-change areas and optimize the proposed
change detection task.

Suppose the Xp denotes the intensity value of one pixel p in the image X. The saliency
value V(p) of the pixel p can be calculated by the following [54]:

V(p) =
∣∣Xp − X1

∣∣+ ∣∣Xp − X2
∣∣+ · · ·+ ∣∣Xp − XN

∣∣ (2)

where N is the total number of pixels in X. When two pixels have the same value of intensity,
their saliency values are equal. Equation (2) can be modified as follows:

V(p) =
L−1

∑
j=0

Mj
∣∣Xp − Xj

∣∣ (3)

where j depicts the pixel intensity, Mj shows the number of pixels with an intensity equal
to j, and L denotes the number of gray levels.

The saliency map of the denoised difference image DI2 is calculated by Equations (2)
and (3), and we define the saliency map as DS.

3.3. Preclassification

In this section, the automatic threshold Otsu model is used to generate the binarized
saliency map D′s, and it is calculated by the following [40]:

D′s(x, y) =
{

1 p(x, y) ≥ τ
0 p(x, y) ≤ τ

(4)

where p(x, y) denotes the gray value of the pixel in the salient area Ds. The parameter τ
shows the threshold computed by the Otsu model. In terms of D′s, the value 1 indicates the
salient pixels, and the value 0 indicates the non-salient pixels. The regions corresponding
to the multi-temporal SAR images are extracted with the D′s, and the following equation is
given:

dsi= Xi � D′s (5)

where Xi(i = 1, 2) shows the matrix generated by the denoised multi-temporal SAR im-
ages. � denotes the dot product operator.
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The new salient difference image D2 is generated by utilizing the log-ratio model, and
it is calculated by the following:

D2 =

∣∣∣∣log
ds1 + 1
ds2 + 1

∣∣∣∣ (6)

When the D2 is generated, the hierarchical FCM clustering (HFCM) model [55] is
used to classify the D2 into three components: the changed class Ωc, the unchanged class
Ωu, and the intermediate class Ωi. The Ωc and Ωu are selected as the training samples,
and Ωi is further classified by CWNN. More details of the hierarchical FCM clustering are
contained in reference [55].

3.4. Classification by CWNN

CWNN was developed from convolutional neural networks (CNNs); it consists of
convolutional layers, max-pooling layers, and fully connected layers [52,53]. In the CWNN
model, the dual-tree complex wavelet transform (DTCWT) is introduced into the CNN
model to reduce the effect of speckle noise in the SAR images. DTCWT has the advantages
of good direction selectivity, limited redundancy, and a good reconstruction effect. DTCWT
can decompose the layer preceding the pooling layer into eight components, including
two low-frequency sub-bands LL1 and LL2, and the high-frequency sub-bands in six
orientations, ±15◦, ±45◦, and ±75◦ (given by LH1, LH2, HL1, HL2, HH1, and HH2) [56].
We chose the average of the two low-frequency sub-bands as the output of the pooling layer.
Firstly, low-frequency components maintain the structures of the input layer according to
the specified rules to better represent the patch of the input image. Secondly, some noises
are suppressed by losing the high-frequency components.

In the CWNN method, the input of a wavelet pooling layer presents the output of the
previous convolutional layer. In terms of each input feature map x, the DTCWT is utilized
to generate the sub-bands:

{LL1, LL2, LH1, LH2, HL1, HL2, HH1, HH2} = f (xi) (7)

where f (·) denotes the DTCWT function. The average of the low-frequency components
is adopted as the output of the wavelet pooling layer, and the corresponding formula is
defined as follows:

LLmean =
1
2
(LL1 + LL2) (8)

where LLmean represents the output of the wavelet pooling layer.
Figure 3 shows an example of the wavelet pooling layer. xi denotes one feature map

after the convolutional layer. The eight sub-bands are generated by the DTCWT performed
on the feature map, including two low-frequency sub-bands and six high-frequency sub-
bands. The output feature map is achieved by averaging the two low-frequency sub-bands.

Figure 3. Wavelet pooling layer.
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The structure of CWNN is depicted in Figure 4. C2 and C4 denote the two convolu-
tional layers, W3 and W5 present the wavelet pooling layer. Hence, the network can be
depicted as {I1, C2, W3, C4, W5, F6, O7}. I1 shows the input layer, and all the input image
patches are resampled to 28 × 14. C2 presents the convolutional layer with six convolu-
tional kernels of 5 × 3. This layer generates six feature maps sized 24 × 12. W3 shows
the wavelet pooling layer. In this layer, all the input feature maps are decomposed with
one-level DTCWT. This wavelet pooling layer generates six feature maps with the size
of 12 × 6. C4 depicts the convolutional layer with 12 convolutional kernels of 5 × 3. This
layer produces 12 feature maps sized 8 × 4. W5 shows the wavelet pooling layer, gener-
ating 12 feature maps sized 4 × 2. F6 represents the fully connected layer with 96 units.
O7 presents the output layer with two units.

Figure 4. The structure of CWNN.

In this section, the real samples and virtual samples are used as the training samples.
When the CWNN training is finished, the image patches from Ωi are classified into changed
and unchanged components, and the final change map is generated by the results of pre-
classification and CWNN classification.

4. Experimental Results and Discussions
4.1. Data Set Descriptions

In this section, four real SAR image data sets and one simulated SAR image data set
were used to demonstrate the effectiveness of the proposed SAR image change detection
method. Figures 5–9 show the SAR image data sets. Figure 5 is the Ottawa data set of
two SAR images sized 290 × 350, captured by Radarsat-1, and they were acquired in
May and August 1997. Figure 6 is the Coastline data set of two SAR images in Dongying,
China, sized 450 × 280, captured by Radarsat-2; they were obtained in June 2008 and
June 2009. Figure 7 shows the De Gaulle Airport data set of two SAR images acquired
by ERS-1; they were taken in July 1997 and October 1998. The size of each SAR image is
240 × 370. Figure 8 is the Wenchuan data set of two SAR images sized 442 × 301, captured
by ESA/ASAR on 3 March 2008 and 16 June 2008. These data mainly reflect the change
caused by earthquake. The fifth data set in Figure 9 is the simulated data set of SAR images
of the size 335 × 470 related to the village of Feltwell in the U.K. An image captured by the
Daedalus 1268 Airborne Thematic Mapper (ATM) multispectral scanner was used as the
reference image, and this image was assumed to be the Time 1 image of the data set. The
Time 2 image was artificially generated from the reference one, and the land cover change
was simulated by inserting some changes into the Time 1 image. The ground-truth images
in Figures 5–9 were produced by artificial tagging with prior information. A description of
the five data sets used in the experiment is given in Table 1.
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Table 1. The five data sets used in the experiment.

Place Event Pre-Data Post-Data Size Satellite Sensor Type

Ottawa Flood May 1997 August 1997 290 × 350 Radarsat-1 SAR
Coastline Flood June 2008 June 2009 450 × 280 Radarsat-2 SAR

De Gaulle Airport Airstrip July 1997 October 1998 240 × 370 ERS-1 SAR
Wenchuan Earthquake 3 March 2008 16 June 2008 442 × 301 ESA/ASAR SAR

Village of Feltwell Land cover
variations None None 335 × 470 Daedalus

1268 ATM SAR

Figure 5. Ottawa data. (a) Image acquired in May 1997; (b) image acquired in August 1997; (c) ground-truth image.

Figure 6. Coastline data. (a) Image acquired in June 2008; (b) image acquired in June 2009; (c) ground-truth image.

Figure 7. De Gaulle Airport data. (a) Image acquired in July 1997; (b) image acquired in October 1998; (c) ground-truth image.
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Figure 8. Wenchuan data. (a) Image acquired 3 March 2008; (b) image acquired 16 June 2008; (c) ground-truth image.

Figure 9. Simulated data. (a) Image acquired at Time 1; (b) image acquired at Time 2; (c) ground-truth image.

4.2. Experimental Settings

In this section, 10 closely related algorithms are compared: PCAKM [57], change
detection using log-ratio and Otsu (LROtsu) [34], change detection using mean-ratio and
Otsu (MROtsu) [34], change detection using log-ratio and FCM (LRFCM) [58], change
detection utilizing Gabor wavelet and two-level clustering (GaborTLC) [59], LMT [60],
PCANet [50], NRELM [55], change detection using neighborhood-based ratio and collab-
orative representation (NRCR) [61], convolutional-wavelet neural networks for change
detection (CWNN) [53]. We used the relevant parameter values of the original articles pro-
posed by the authors. In the proposed method, the parameter’s value setting in the CWNN
model is consistent with that in reference [53]. A total of 10,000 pixels were randomly
selected from Ωu and Ωc as the real samples, and 10,000 virtual samples were generated
based upon these real samples. Table 2 shows the parameter settings of different methods.

Table 2. The parameter settings of different methods.

Name/Reference Parameter Settings

PCAKM [57] h = 4, S = 3
LROtsu [34] None
MROtsu [34] None
LRFCM [58] None

GaborTLC [59] U = 8, V = 5, kmax = 2π, f =
√

2
LMT [60] The size of median filter is 3 ∗ 3

PCANet [50] σ = 1.20, stage number : 2, k = 5
NRELM [55] σ = 1.20, neighborhood size : 3, k = 5
NRCR [61] neighborhood size: 3
CWNN [53] patch size ω = 7

Proposed patch size ω = 7
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To help judge the results of the change detection, five objective indicators were used
as measures, namely, false positives (FPs) [50,62], false negatives (FNs) [50,63], overall
errors (OEs) [50,64], percentage correct classification (PCC) [50,65], and kappa coefficient
(KC) [50,66]. In the binary ground-truth image, we calculated the actual number of pixels
belonging to the unchanged class (Nu) and the changed class (Nc). FP depicts the number
of pixels belonging to the unchanged class but are falsely classified as the changed class.
FN shows the number of pixels belonging to the changed class but are falsely classified as
the unchanged class. The OE is the sum of FP and FN, and it is defined as follows:

OE = FP + FN (9)

PCC is calculated by the following:

PCC =
Nu + Nc− FP− FN

Nu + Nc
× 100% (10)

KC is defined as follows:
KC =

PCC− PRE
1− PRE

(11)

where

PRE =
(Nc− FN + FP) · Nc + (Nu− FP + FN) · Nu

(Nc + Nu) · (Nc + Nu)
(12)

The quantitative evaluations of the change results computed by the proposed and
comparison algorithms are summarized in Tables 3–8.

4.3. Results and Discussions

The corresponding experimental results of the Ottawa data set are reported in Table 3
and Figure 10. In Figure 10, we notice that the change map obtained by the proposed
method outperformed other algorithms, and yielded better local consistency and fewer
isolated pixels. The change maps generated by LROtsu, MROtsu, and LRFCM had many
error pixels, and the three algorithms had the worst capacity to suppress the noise. There-
fore, the FP values of LROtsu, MROtsu, and LRFCM were relatively high, the values were
twice the FP value obtained by the proposed algorithm, as shown in Table 3. The change
maps computed by PCAKM, GaborTLC, and LMT missed some changed regions, but
the detection of the unchanged area was more accurate. Therefore, the FN values of the
corresponding three methods were higher, while the FP values were lower, which was
consistent with the data shown in Table 3. The PCANet, NRELM, NRCR, and CWNN
techniques missed some unchanged regions. The OE value of the proposed algorithm for
the Ottawa data set was reduced by 521, 229, 949, and 285 over PCANet, NRELM, NRCR,
and CWNN, respectively. The PCC value of the proposed technique was improved by 0.51,
0.22, 0.93, and 0.28% over PCANet, NRELM, NRCR, and CWNN, respectively. KC was a
comprehensive evaluation index; the KC value of the proposed algorithm was improved
by 1.97, 1.03, 3.36, and 1.10% over PCANet, NRELM, NRCR, and CWNN, respectively.

The simulation results for the Coastline data set are shown in Figure 11 and Table 4.
From Figure 11, we see that the PCAKM, LROtsu, MROtsu, LRFCM, GaborTLC, and NRCR
had many noise spots, and the visual effect of change detection was poor with large FP. The
change map generated by LMT was an improvement compared to the previous algorithms,
but it missed some changed regions with large FN. Compared to the PCANet, NRELM,
and CWNN methods, the OE value of the proposed method for the Coastline data set
was reduced by 13,920, 5819, and 13,330, respectively. The PCC value of the proposed
algorithm was improved by 11.04, 4.62, and 10.58% over PCANet, NRELM, and CWNN,
respectively. The KC value of the proposed method was improved by 69.53, 55.20, and
69.40% over PCANet, NRELM, and CWNN, respectively. From the analysis of the results
for the Coastline data set, the change map computed by the proposed method had a better
change detection effect.
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Table 3. Quantitative measures of different methods for the Ottawa data set.

FP FN OE PCC(%) KC(%)

PCAKM [57] 582 1901 2483 97.55 90.49
LROtsu [34] 2087 2741 4828 95.24 81.83
MROtsu [34] 2690 238 2928 97.12 89.80
LRFCM [58] 2106 2723 4829 95.24 81.85

GaborTLC [59] 253 2531 2784 97.26 89.07
LMT [60] 23 5266 5289 94.79 77.43

PCANet [50] 1087 985 2072 97.96 92.35
NRELM [55] 538 1242 1780 98.25 93.29
NRCR [61] 1723 777 2500 97.54 90.96
CWNN [53] 965 871 1836 98.19 93.22

Proposed 994 557 1551 98.47 94.32

Figure 10. Change detection results of the Ottawa data set. (a) PCAKM; (b) LROtsu; (c) MROtsu; (d) LRFCM; (e) GaborTLC;
(f) LMT; (g) PCANet; (h) NRELM; (i) NRCR; (j) CWNN; (k) Proposed; (l) Reference.



Remote Sens. 2021, 13, 3697 13 of 21

Figure 11. Change detection results of the Coastline dataset. (a) PCAKM; (b) LROtsu; (c) MROtsu; (d) LRFCM;
(e) GaborTLC; (f) LMT; (g) PCANet; (h) NRELM; (i) NRCR; (j) CWNN; (k) Proposed; (l) Reference.

Table 4. Quantitative measures of different methods for the Coastline data set.

FP FN OE PCC(%) KC(%)

PCAKM [57] 39,426 25 39,451 68.69 4.30
LROtsu [34] 30,059 280 30,339 75.92 4.62
MROtsu [34] 43,863 39 43,902 65.16 3.63
LRFCM [58] 32,488 254 32,742 74.01 4.30

GaborTLC [59] 36,359 6 36,365 71.14 4.91
LMT [60] 139 650 789 99.37 63.59

PCANet [50] 14,387 8 14,395 88.58 14.00
NRELM [55] 6271 23 6294 95.00 28.33
NRCR [61] 21,633 12 21,645 82.82 9.15
CWNN [53] 13,754 51 13,805 89.04 14.13

Proposed 348 127 475 99.62 83.53

The simulation results for the De Gaulle Airport data set are given in Figure 12 and
Table 5. From Figure 12, we see that the PCAKM, LROtsu, MROtsu, and LRFCM methods
yielded much noise with large FP. The change results computed by GaborTLC, PCANet,
NRELM, NRCR, and CWNN were poor. The LMT missed more changed regions with the
largest FN value. Compared with the change maps generated by other algorithms, our
method had a better performance in change detection on the De Gaulle Airport data set. In
Table 5, we can observe that the values of OE, PCC, and KC generated by the proposed
method were the best. The PCC value computed by the proposed method was improved
by 12.93, 7.36, 15.52, and 9.07% over PCANet, NRELM, NRCR, and CWNN, respectively.
The KC value computed by the proposed method was improved by 39.15, 31.52, 43.26,
and 33.52% over PCANet, NRELM, NRCR, and CWNN, respectively. This means that the
detection accuracy of our algorithm performed on the De Gaulle Airport data set was the
highest compared to other approaches.

The simulation results for the Wenchuan data set are given in Figure 13 and Table 6.
In Figure 13, we see that LROtsu, MROtsu, and LRFCM generated poor change detection
results with some noise points; these three methods detected more unchanged areas
as changed, so the corresponding FP values were large. The change detection results
computed by PCAKM, GaborTLC, LMT, and NRELM were similar, but the results were
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still not ideal. In Table 6, we see that the proposed method had the least number of overall
errors (OEs), and the values of PCC and KC were the best. The OE value of the proposed
method for the Wenchuan data set was reduced by 1406, 3341, and 4900 over PCANet,
NRCR, and CWNN, respectively. The PCC value of the proposed technique was improved
by 1.05, 2.51, and 3.68% over PCANet, NRCR, and CWNN, respectively. The KC value of
the proposed approach was improved by 4.82, 12.03, and 17.75% over PCANet, NRCR, and
CWNN, respectively. The display of these data was obviously consistent with the analysis
of the above image results. The change map generated by the proposed technique had
higher detection accuracy and was closer to the reference true value image.

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 23 
 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

Figure 12. Change detection results of the De Gaulle Airport data set. (a) PCAKM; (b) LROtsu; (c) MROtsu; (d) LRFCM; 
(e) GaborTLC; (f) LMT; (g) PCANet; (h) NRELM; (i) NRCR; (j) CWNN; (k) Proposed; (l) Reference. 

  

Figure 12. Change detection results of the De Gaulle Airport data set. (a) PCAKM; (b) LROtsu; (c) MROtsu; (d) LRFCM;
(e) GaborTLC; (f) LMT; (g) PCANet; (h) NRELM; (i) NRCR; (j) CWNN; (k) Proposed; (l) Reference.



Remote Sens. 2021, 13, 3697 15 of 21

Figure 13. Change detection results of the Wenchuan data set. (a) PCAKM; (b) LROtsu; (c) MROtsu; (d) LRFCM;
(e) GaborTLC; (f) LMT; (g) PCANet; (h) NRELM; (i) NRCR; (j) CWNN; (k) Proposed; (l) Reference.

Table 5. Quantitative measures of different methods for the De Gaulle Airport data set.

FP FN OE PCC(%) KC(%)

PCAKM [57] 20,199 581 20,780 76.60 15.27
LROtsu [34] 11,446 1856 13,302 85.02 12.75
MROtsu [34] 29,189 441 29,630 66.63 10.15
LRFCM [58] 14,529 1644 16,173 81.79 11.60

GaborTLC [59] 17,051 436 17,487 80.31 19.59
LMT [60] 45 3248 3293 96.29 3.29

PCANet [50] 13,378 387 13,765 84.50 25.16
NRELM [55] 8060 761 8821 90.07 32.79
NRCR [61] 15,584 480 16,064 81.91 21.05
CWNN [53] 9794 541 10,335 88.36 30.79

Proposed 1156 1127 2283 97.43 64.31

Table 6. Quantitative measures of different methods for the Wenchuan data set.

FP FN OE PCC(%) KC(%)

PCAKM [57] 939 7111 8050 93.95 76.27
LROtsu [34] 2574 6609 9183 93.10 74.00
MROtsu [34] 11,087 1723 12,810 90.37 70.95
LRFCM [58] 2527 6640 9167 93.11 74.01

GaborTLC [59] 689 8153 8842 93.35 73.27
LMT [60] 635 9333 9968 92.51 69.11

PCANet [50] 1366 5438 6804 94.89 80.73
NRELM [55] 988 6248 7236 94.56 79.04
NRCR [61] 582 8157 8739 93.43 73.52
CWNN [53] 578 9720 10,298 92.26 67.80

Proposed 2239 3159 5398 95.94 85.55

The simulation results for the simulated data set are shown in Table 7 and Figure 14.
Some isolated noise points were generated by the PCAKM, LROtsu, MROtsu, LRFCM, and
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LMT algorithms, and the FP values computed by the corresponding five methods were high.
GaborTLC performed better than the previously mentioned change detection approaches.
PCANet, NRELM, NRCR, and CWNN missed some changed regions with a large FN,
although the four methods were effective for noise suppression. The proposed method
effectively suppressed the noise and achieved a better detection effect that was closer to
the true value image. The PCC value computed by the proposed method was improved by
0.83, 1.45, 0.79, and 1.24% over PCANet, NRELM, NRCR, and CWNN, respectively. The
KC value generated by the proposed method was improved by 20.32, 41.38, 19.41, and
33.18% over PCANet, NRELM, NRCR, and CWNN, respectively.

To evaluate the superiority of the algorithm more accurately, we averaged the ex-
perimental data of five groups of SAR images, as shown in Table 8. Figure 15 shows the
objective performance of different change detection algorithms on five SAR data sets. For
each metric, the scores computed by an approach to different SAR data sets were connected
to obtain a curve, and the average score is given in the legend, so we can directly see the
fluctuation of data. In Table 8, we see that the values of OE, PCC, and KC computed by
the proposed method were the best. Although the MROtsu method had the smallest miss
detection rate, it had a higher false detection rate, and the values of FP and OE were the
highest. LMT had the lowest false detection rate, but it had the highest miss detection
rate, that is to say, the FN was the highest. In qualitative and quantitative analyses, our
algorithm had absolute advantages in detection efficiency for SAR images.

Table 7. Quantitative measures of different methods for the simulated data set.

FP FN OE PCC(%) KC(%)

PCAKM [57] 340 299 639 99.59 92.29
LROtsu [34] 857 244 1101 99.30 87.52
MROtsu [34] 4511 49 4560 97.10 63.42
LRFCM [58] 1327 184 1511 99.04 83.80

GaborTLC [59] 177 358 535 99.66 93.37
LMT [60] 1863 127 1990 98.74 79.87

PCANet [50] 27 1638 1665 98.94 75.22
NRELM [55] 25 2626 2651 98.32 54.16
NRCR [61] 10 1599 1609 98.98 76.13
CWNN [53] 45 2267 2312 98.53 62.36

Proposed 104 257 361 99.77 95.54

Table 8. The average quantitative measures of different methods for the five data sets.

FP FN OE PCC(%) KC(%)

PCAKM [57] 12,297 1983 14,281 87.28 55.72
LROtsu [34] 9405 2346 11,751 89.72 52.14
MROtsu [34] 18,268 498 18,766 83.28 47.59
LRFCM [58] 10,595 2289 12,884 88.64 51.11

GaborTLC [59] 10,906 2297 13,203 88.34 56.04
LMT [60] 541 3725 4266 96.34 58.66

PCANet [50] 6049 1691 7740 92.97 57.49
NRELM [55] 3176 2180 5356 95.24 57.52
NRCR [61] 7906 2205 10,111 90.94 54.16
CWNN [53] 5027 2690 7717 93.28 53.66

Proposed 968 1045 2014 98.25 84.65
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Figure 14. Change detection results of the simulated dataset. (a) PCAKM; (b) LROtsu; (c) MROtsu; (d) LRFCM; (e)
GaborTLC; (f) LMT; (g) PCANet; (h) NRELM; (i) NRCR; (j) CWNN; (k) Proposed; (l) Reference.
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Figure 15. Objective performance of different change detection algorithms on five SAR data sets. (a) FP; (b) FN; (c) OE;
(d) PCC; (e) KC.
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5. Conclusions

In this paper, an effective SAR image change detection algorithm based on saliency-
guided convolutional neural networks was proposed. The saliency map was adopted
to guide the search for the interest regions in the initial difference image computed by a
log-ratio operator, and the noise in the saliency map could be suppressed to some extent
with the Otsu method. Then an enhanced difference image was generated by using the
binarized saliency map and denoised input images. The hierarchical fuzzy c-means was
used for pre-classification, and the final change map was obtained by the CWNN model.
The experimental results demonstrated the effectiveness of the proposed change detection
technique. Because the traditional saliency detection and the clustering model methods
were used in the proposed algorithm, it was not an end-to-end deep learning model for
SAR image change detection, so in future work, an end-to-end CWNN model for image
change detection is what we need to construct.
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