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Abstract: The evolution of dryland pasture quality is closely related to the seasonal and inter-
annual variability characteristic of the Mediterranean climate. This variability introduces great
unpredictability in the dynamic management of animal grazing. The aim of this study is to evaluate
the potential of two complementary tools (satellite images, Sentinel-2 and proximal optical sensor,
OptRx) for the calculation of the normalized difference vegetation index (NDVI), to monitor in a
timely manner indicators of pasture quality (moisture content, crude protein, and neutral detergent
fiber). In two consecutive years (2018/2019 and 2019/2020) these tools were evaluated in six fields
representative of dryland pastures in the Alentejo region, in Portugal. The results show a significant
correlation between pasture quality degradation index (PQDI) and NDVI measured by remote
sensing (R2 = 0.82) and measured by proximal optical sensor (R2 = 0.83). These technological
tools can potentially make an important contribution to decision making and to the management of
livestock production. The complementarity of these two approaches makes it possible to overcome the
limitations of satellite images that result (i) from the interference of clouds (which occurs frequently
throughout the pasture vegetative cycle) and (ii) from the interference of tree canopy, an important
layer of the Montado ecosystem. This work opens perspectives to explore new solutions in the field
of Precision Agriculture technologies based on spectral reflectance to respond to the challenges of
economic and environmental sustainability of extensive livestock production systems.

Keywords: pasture quality degradation; Montado; remote sensing; proximal sensing; cloud effect

1. Introduction

About one-third of the earth’s terrestrial surface and 70% of the global agricultural
area is covered by grassland ecosystems [1], making them one of the most common land
use types worldwide [2,3]. Apart from providing forage for livestock production [2,4],
grasslands fulfil several functions and ecosystem services related to soil quality (carbon
sequestration and controlling erosion and wildfires), hydrological balance, and climate
change [4,5], which make them essential [1]. In addition to preserving biodiversity and
supporting ecological processes (such as carbon storage, water purification, or erosion
control) grasslands are vital for global food security [2], since they provide an important
setting for agricultural activities such as livestock production [3].

In Southern Portugal Montado agroforestry landscapes predominate. These are of
high biodiversity value and include different strata of vegetation, where sparsely dis-
tributed trees coexist with dryland pastures and different animal species in various grazing
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regimes [6]. The evolution of the quality of these pastures is closely related to the seasonal
and inter-annual variability that is characteristic of the Mediterranean climate [7]. This
variability introduces great unpredictability in the livestock grazing dynamics and man-
agement [7]. The estimation of stocking rates depends not only on the assessment of the
available pasture biomass but also on its quality [2,8]. According to Lugassi et al. [8], the
quality of the plants consumed by livestock in pastures is an important factor for their
productivity. The timely knowledge of pasture quality is, therefore, vital for correct evalua-
tion of the animal feed demand [9] and, consequently, for the establishment of sustainable
agriculture [5].

The potential nutritive value of pastures is assessed by indicators such as crude protein
(CP) or cell-wall components, for example the neutral detergent fiber (NDF) [8,9]. Accord-
ing to Barnetson et al. [10], adequate presence of CP and NDF in livestock’s diet is essential
for its maintenance, growth, lactation, and reproduction. Timely and accurate information
about pasture quality indicators can contribute to sustainable livestock grazing through
improved matching of stocking rates (animals’ demand) to pasture resources (available
feed) [8,10]. The most widely accepted method for assessing these indicators is chemical
analysis which, although accurate, is both time-consuming and expensive [8,11,12]. The
reference measurement method for CP and NDF determinations consists of the cutting
and drying of pasture samples to get the actual dry biomass per area unit, followed by
specific laboratory analysis [12]. This procedure, carried out at a fine scale and based on
field measurements [13], was developed for researchers and although these data are very
informative, the whole process of collecting samples and processing them is laborious,
destructive, expensive, and not routinely used by farmers [3]. Moreover, the limited num-
ber of samples that can be effectively processed in reference methods, based on sampling
design distributions and intensity, reduces the possibility of assessing the spatial variabil-
ity of pastoral resources [12,13]. Therefore, an alternative approach for detailed spatial
and temporal pasture monitoring is proposed based on innovative tools, such as remote
sensing (data from satellite and airborne platforms) and proximal sensing (field-specific
sensors) [2,3], contributing to establish sustainable grassland management systems [5].

While the potential of remote sensing (RS) based classification and mapping of grass-
land quality has been long recognized, only a limited number of studies have been done
using this approach [2]. In the last decade interest in data-intensive monitoring of croplands
and forests has been spiking due to the availability of free RS data from various satellite
missions, such as Landsat, Sentinel, and others. RS provides large scale spatio-temporal
grassland detection, monitoring, and prediction [2], enabling rapid assessment of biomass
over vast areas at a low cost [14]. This is a promising tool for estimating field-scale forage
quality, when compared with traditional methods, which usually do not provide equally
detailed information [9].

Recent advances and development of new sensors with higher spatial and temporal
resolutions have provided unprecedented opportunities to map biomass in livestock farms.
RS platforms are increasingly recognized as essential tools for planners and decision
makers [2]. Green vegetation can be monitored continuously using its spectral reflectance
properties acquired by remote optical sensors [1]. For satellite-based precision agriculture,
the spatial resolution, revisit frequency, and number of spectral bands are the key factors
to the acquisition of a dense time series for consistent monitoring at a farm or paddock
scale [2]. The Sentinel-2A and 2B satellites (S2) launched by European Space Agency in
2015 and 2017, respectively, provide a freely downloadable global coverage of the Earth’s
land surface every 5 days with two satellites, with four visible to near-infrared bands at a
10 m spatial resolution and six bands at 20 m covering the red edge and shortwave infrared
wavelengths [14]. According to Chen et al. [14], the great potential of S2 imagery for
improving pasture assessment and monitoring is due to its good combination of temporal
frequency (sufficient to monitor the continuously changing landscape resulting from animal
rotations) and spatial resolution (adequate for capturing the variations between typical-
sized paddocks). Several studies identify the Normalized Difference Vegetation Index
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(NDVI), obtained through optical sensors, as the best predictor of grassland ecosystem
attributes [1,3,14,15], providing spatial and temporal grassland patterns [1]. It is calculated
as a normalized difference between near infrared (NIR; 0.7–1.1 µm) and red (0.6–0.7 µm)
spectral wavelengths [3].

The specific characteristics of the Montado ecosystem, where sparsely distributed
trees prevent the satellite images from capturing the vegetation that is close to the soil
(pasture) under tree canopy, associated with the high incidence of cloudy days during
the autumn, winter, and spring seasons, justify the interest in complementary systems
based, for example, on proximal sensors, PS [16]. Active optical sensors (AOS), such as
“OptRx” and others, combined with a global navigation satellite system receiver (GNSS)
provide spatialized data. However, the data collection process is time consuming and
the sampling pattern requires some planning in order to capture the spatial variability
of pasture parameters [12]. The combination of the advantages of each of RS and PS for
monitoring the quality of pasture was studied by this research team [16]; however, it was
restricted to a small area (of about 2.3 ha). The purpose of the current work is to extend the
study to several fields that are representative of the size, biodiversity, and geodiversity of
pastures in the Alentejo region of Portugal.

The aim of the present study is to evaluate the potential of two complementary tools
(satellite images, Sentinel-2, and proximal optical sensor, OptRx) to monitor in a timely
manner indicators of pasture quality (pasture moisture content, crude protein, and neutral
detergent fiber) using NDVI.

2. Materials and Methods

Figure 1 shows a schematic representation of the methodology used in this study.
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Figure 1. Schematic representation of the methodology used in this work to monitor pasture quality through remote and
proximal sensing.

2.1. Study Area

This study was performed throughout the vegetative cycles (autumn, winter, and
spring) of 2018/2019 and 2019/2020, at six dryland Mediterranean permanent pastures,
located in Alentejo, in the southern region of Portugal (Figure 2). These bio-diverse pastures
(composed of grasses, legumes, and other species) are integrated in a Montado ecosystem
(Figure 3), with variable tree density, predominantly Holm oak and Cork oak, and grazed
by sheep or cow in a rotational or permanent system [7].
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Figure 2. Location of the six dryland permanent pastures in the southern Alentejo region of Portugal.
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Figure 3. Montado ecosystem: evolution of the phenological state of the pasture during the vegetative
cycles (2018/2019 and 2019/2020).

Two of these parcels are located in the district of Beja (“AZI” and “GRO”), three in
the district of Évora (“MIT”, “MUR” and “PAD”) and one in the district of Portalegre
(“TAP”). The average thermo-pluviometric data of these three districts for the two years of
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the experiment (2018/2019 and 2019/2020) are presented in Figures 4 and 5, respectively.
A temperature and precipitation gradient is evident: the areas located to the north have
a lower monthly temperature and a higher accumulated rainfall than the areas located
further south.

Figure 4. Thermo-pluviometric data of Beja, Évora, and Portalegre 
districts of the southern Alentejo region of Portugal between October 
2018 and September 2019 (source: Portuguese Institute of Sea and 
Atmosphere).  
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Figure 4. Thermo-pluviometric data of Beja, Évora, and Portalegre districts of the southern Alentejo
region of Portugal between October 2018 and September 2019 (source: Portuguese Institute of Sea
and Atmosphere).

2.2. Data

The data used in this study were collected from satellite remote sensing images, optical
proximal sensing, and pasture field samples.
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Figure 5. Thermo-pluviometric data of Beja, Évora, and Portalegre 
districts of the southern Alentejo region of Portugal between October 
2019 and September 2020 (source: Portuguese Institute of Sea and 
Atmosphere). 
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Figure 5. Thermo-pluviometric data of Beja, Évora, and Portalegre districts of the southern Alentejo
region of Portugal between October 2019 and September 2020 (source: Portuguese Institute of Sea
and Atmosphere).

2.2.1. Satellite Remote Sensing Data

Sentinel-2 optical images (freely available from the European Space Agency, ESA),
were used. In each farm, multi-temporal satellite data (time-series surface reflectance
data) from 21 September 2018 to 20 June 2019 and from 21 September 2019 to 20 June
2020 (Figure 1) were extracted in eight “10 m × 10 m” pixels without trees in each farm
(Figure 6). This basic unit area is the minimum grid, the spatial resolution in the ground of
each image pixel, consequence of spatial resolution of Sentinel-2 bands.

For this work, Sentinel-2 atmospherically corrected imagery was downloaded from
Copernicus data hub. Band 8 (B8; NIR; 10 m spatial resolution; 842 nm) and band 4 (B4;
RED; 10 m spatial resolution; 665 nm), were used to calculate the NDVI satellite vegetation
index (NDVIRS; Equation (1)) and to rebuild historical NDVI trends (NDVI time-series).
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The two aforementioned bands can sense through different depths of vegetation canopies:
band 8 can “see” through roughly eight leaf layers, while the band 4 sees only one leaf
layer or less because of the strong chlorophyll absorption. A preliminary processing was
carried out on these records to remove outliers due to the presence of clouds. Only the
images without clouds were used in the analysis.

NDVIRS =
B8 − B4
B8 + B4

(1)
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2.2.2. Proximal Sensing Data

The sampling with the proximal active optical sensor (AOS, OptRx, Ag Leader, Ames,
IA, USA) was performed at three different times through the growth cycle 2018/2019, i.e.,
between January (day of the year, DOY 24) and May 2019 (DOY 140), and in four different
times through the growth cycle 2019/2020, i.e., between January (DOY 20) and June 2020
(DOY 152). The sensor (equipped with a small portable battery as the power source) was
placed 0.5 m above the pasture, and provided simultaneous measurement of three visible
and infrared bands. With two of these spectral bands, red (670 nm) and near infrared (NIR,
775 nm), NDVIPS was calculated. The AOS operator walked each sampling area (sampling
pixel “10 m × 10 m”; Figure 7) for a five-minute period, which allows the collection of
approximately 300 records of NDVI.
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2.2.3. Pasture Samples

After taking measurement with the proximal sensor at each date, location, and sam-
pling area (“10 m × 10 m”), electric shears were used to collect five pasture subsamples in
a “0.5 m × 0.5 m” area (defined with a metal quadrat), one in the central point of the pixel
area, and one in each of its four quadrants (Figure 7). These five subsamples were inserted
into a numbered plastic bag to constitute a composite sample and subjected to reference
laboratory analysis.
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Figure 7. Sampling area: remote sensing, proximal sensing, and pasture samples.

Once in the laboratory, the pasture samples were weighed to obtain the fresh mass,
then dried in an oven (72 h at 65 ◦C) and weighed again to establish the dry matter
and pasture moisture content (PMC wet basis, in %). Next, these samples were ground
using a Perten instrument mill equipped with a 1 mm sieve. The dehydrated samples
were analyzed in order to determine the reference values of crude protein (CP, in %
on a dry weight basis) and neutral detergent fiber (NDF, in % on a dry weight basis)
using conventional methods of wet chemistry according to the Association of Official
Analytical Chemists [17]: (i) nitrogen content was analyzed using the Kjeldhal method, i.e.,
a colorimetric determination in an autoanalyzer (Bran + Luebbe) with a factor of conversion
to CP of 6.25 (method no. G-188-97 Rev 2, Bran + Luebbe, Analyser Division, Norderstedt,
Germany); (ii) the NDF content was analyzed according to the Goering and Van Soest [18]
method in a Fiberted digester (Foss Tecator AB, Hoganas, Sweden).

A pasture quality degradation index (PQDI, in %) was then calculated based on the
above mentioned three parameters (PMC, CP, and NDF; Equation (2)).

PQDI =
NDF

PMC × CP
× 100 (2)

2.3. Statistical Analysis

The statistical analysis of the results included a descriptive analysis with a calculation
of the mean and standard deviation (SD) of each dataset (NDVIRS, NDVIPS, PMC, CP, and
NDF). Means of NDVIRS time-series data in each field were organized graphically to show
the temporal evolution in the pasture vegetative cycles of 2018/2019 and 2019/2020. As
mentioned above, only the images without clouds were used. Mean of CP, NDF, NDVIRS,
NDVIPS, and PQDI in each sampling area of all fields over the pasture vegetative cycles
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(depending on the day of the year, DOY) were also organized graphically to show the
temporal patterns. PQDI and NDVI spatial variability was organized in map format with
four classes: PQDI < 7.5, 7.5–10.0, 10.0–12.5 and > 12.5%; NDVI < 0.4; 0.4–0.5, 0.5–0.6,
and >0.6.

The inferential treatment of these results was performed using MSTAT-C software
(MSTAT-C, Michigan State University, MI, USA) with a significance level of 95% (p < 0.05)
and consisted of a regression analysis between NDVIRS and NDVIPS, between NDVIRS and
PQDI and between NDVIPS and PQDI. A flowchart of the methodological steps used in
this study is shown in Figure 8.
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Figure 8. Flowchart of the various data collection and processing steps.

3. Results

NDVI time-series records obtained in cloudless days in two consecutive years (2018/
2019 and 2019/2020) at the six experimental fields are presented (Figures 9–14). Each graph
shows the coefficient of determination (R2) of the second-degree polynomial equation that
best fits each NDVI time-series pattern. Between September of a year and June of the
following year, NDVI and, consequently, pasture vegetative vigor tend to increase during
early autumnal phase as the pasture emerges and increases in density, stabilizes in an
intermediate winter phase, then reaches a peak in the spring when the plants are flowering,
and then decreases as the plants reach the end of their annual cycle.
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Figure 9. NDVI time-series records obtained in 2018/2019 and 2019/2020 in “AZI” field.
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Figure 10. NDVI time-series records obtained in 2018/2019 and 2019/2020 in “GRO” field.
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Figure 11. NDVI time-series records obtained in 2018/2019 and 2019/2020 in “MIT” field.
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Figure 12. NDVI time-series records obtained in 2018/2019 and 2019/2020 in “MUR” field.
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Figure 13. NDVI time-series records obtained in 2018/2019 and 2019/2020 in “PAD” field.
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Figure 14. NDVI time-series records obtained in 2018/2019 and 2019/2020 in “TAP” field.

The number of Sentinel-2 images of the six experimental fields during autumn, winter,
and spring of 2018/2019 and 2019/2020 without cloud effect (cloudless days) amount to
approximately only half (51.0 ± 6.2%) of the total number of satellite images available
in the same period (Table 1). These cloudless days are distributed evenly over the three
seasons under consideration (autumn, winter, and spring).
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Table 1. Number of Sentinel-2 images without cloud effect in relation to the total number of satellite images available
during the dryland pastures vegetative cycles of 2018/2019 and 2019/2020, by season (autumn: 21 September–20 December;
winter: 21 December–20 March; and spring: 21 March–20 June) and throughout the vegetative cycle (21 September–20 June).

Field
Code Year Autumn

(21 Sep–20 Dec)
Winter

(21 Dec–20 Mar)
Spring

(21 Mar–20 Jun)
Vegetative Cycle
(21 Sep–20 Jun)

AZI
2018/2019 11/18 12/18 8/18 31/54 (57%)
2019/2020 7/18 9/19 9/18 25/55 (45%)

GRO
2018/2019 10/18 13/18 5/18 28/54 (52%)
2019/2020 9/18 9/19 7/18 25/55 (45%)

MIT
2018/2019 11/18 11/18 7/18 29/54 (54%)
2019/2020 9/18 9/19 8/18 26/55 (47%)

MUR
2018/2019 12/18 11/18 7/18 30/54 (56%)
2019/2020 10/18 9/19 8/18 27/55 (49%)

PAD
2018/2019 10/18 12/18 13/18 35/54 (65%)
2019/2020 6/18 9/19 9/18 24/55 (44%)

TAP
2018/2019 8/18 11/18 6/18 25/54 (46%)
2019/2020 8/18 11/19 9/18 28/55 (51%)

Date of pasture sampling, mean ± standard deviation of pasture parameters (PMC,
CP and NDF), and NDVI obtained by proximal sensing, date of remote sensing reading,
NDVI obtained by remote sensing, and the temporal gap between proximal measurements
and remote NDVI reading are presented in Tables 2 and 3, for 2019 and 2020, respectively.
When the temporal gap between proximal sensing and Sentinel-2 image records without
cloud interference exceeded ten days (two dates of 2019, one on 2 April—“AZI” field,
another on 15 April—“GRO” field), the data were discarded in the subsequent regression
analysis between NDVIRS and NDVIPS and between NDVIRS and PQDI.

In the set of forty-two sampling moments (6 experimental fields × 7 dates), mean
PMC ranged between 53.7 and 87.6%, with an average CV of 6.4% (variation between
1.7 and 17.5%); mean CP ranged between 6.9 and 19.0%, with an average CV of 18.9%
(variation between 4.0 and 39.8%); mean NDF ranged between 38.4 and 66.2%, with an
average CV of 9.5% (variation between 3.3 and 20.7%); mean NDVI measured by RS ranged
between 0.287 and 0.788, with an average CV of 8.3% (variation between 2.3 and 26.9%);
and mean NDVI measured by PS ranged between 0.288 and 0.820, with an average CV of
8.9% (variation between 2.1 and 18.8%).

There is an important spatial (within each experimental field and between fields),
seasonal (throughout the cycle), and inter-annual variability in the different parameters
analyzed. Figure 15 shows an example of this PQDI and NDVI (PS and RS) spatial
variability, within each experimental field (in the 8 pixels of each experimental field) in
April 2020. In the set of three hundred and thirty-six samples (6 experimental fields ×
8 pixels × 7 dates), PS presented a similarity of 76.2% (256 pixels in 336) with PQDI, RS
presented a similarity of 74.1% (249 pixels in 336) with PQDI, and PS presented a similarity
of 86.9% (292 pixels in 336) with RS. Figure 16 shows the evolution of the same parameters
(PQDI and NDVI) over time (on the 7 sampling dates, 3 in 2019 and 4 in 2020), taking as an
example two experimental fields: “MIT” (Figure 16a) and “GRO” (Figure 16b).
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Table 2. Mean ± standard deviation of pasture parameters (PMC, CP, and NDF) and NDVI obtained by proximal and
remote sensing in 2019.

Field
Code

Sampling
Date

DOY
(2019) PMC CP NDF NDVIPS

Date of RS
Capture *

DOY
(2019)

Gap PS-RS
(Days) NDVIRS

24/Jan 24 71.0 ± 7.0 13.0 ± 2.5 53.0 ± 6.0 0.629 ± 0.035 25/Jan 25 1 0.566 ± 0.029
AZI 02/Apr 92 70.2 ± 4.8 9.2 ± 1.0 56.8 ± 4.3 0.605 ± 0.055 16/Mar 75 −17 0.611 ± 0.038

30/Apr 120 67.5 ± 5.5 7.9 ± 1.1 59.3 ± 5.6 0.451 ± 0.047 05/May 125 5 0.392 ± 0.038

24/Jan 24 62.5 ± 6.2 11.9 ± 1.1 59.9 ± 3.0 0.641 ± 0.057 25/Jan 25 1 0.609 ± 0.041
GRO 15/Apr 105 69.2 ± 8.7 11.4 ± 2.6 54.9 ± 6.1 0.463 ± 0.064 05/May 125 20 0.450 ± 0.033

09/May 129 54.9 ± 9.6 10.2 ± 2.3 62.0 ± 6.4 0.351 ± 0.030 15/May 135 6 0.342 ± 0.018

13/Feb 44 82.4 ± 2.6 17.0 ± 3.8 39.6 ± 5.6 0.742 ± 0.049 14/Feb 45 1 0.697 ± 0.032
MIT 29/Mar 88 78.5 ± 8.5 15.9 ± 4.1 38.4 ± 7.5 0.709 ± 0.089 31/Mar 90 2 0.656 ± 0.062

03/May 123 80.5 ± 2.3 11.1 ± 1.6 51.1 ± 4.7 0.637 ± 0.089 05/May 125 2 0.622 ± 0.039

12/Feb 43 79.7 ± 3.1 11.9 ± 2.3 44.3 ± 4.3 0.695 ± 0.081 04/Feb 35 −8 0.683 ± 0.058
MUR 29/Mar 88 76.3 ± 5.3 11.6 ± 2.5 43.7 ± 6.1 0.685 ± 0.057 21/Mar 80 −8 0.735 ± 0.036

06/May 126 73.3 ± 6.6 10.1 ± 2.4 56.4 ± 5.2 0.566 ± 0.075 30/Apr 120 −6 0.643 ± 0.051

15/Feb 46 72.8 ± 4.6 13.9 ± 5.5 52.1 ± 8.8 0.719 ± 0.015 24/Feb 55 9 0.685 ± 0.023
PAD 29/Mar 88 73.7 ± 3.4 13.2 ± 2.5 39.4 ± 4.3 0.686 ± 0.034 26/Mar 85 −3 0.666 ± 0.028

06/May 126 78.5 ± 3.2 14.6 ± 2.6 50.6 ± 4.0 0.700 ± 0.057 05/May 125 −1 0.668 ± 0.040

20/Feb 51 75.7 ± 4.9 10.7 ± 2.0 52.2 ± 5.1 0.617 ± 0.041 14/Feb 45 −6 0.572 ± 0.044
TAP 12/Apr 102 79.2 ± 4.1 11.3 ± 3.9 44.3 ± 7.6 0.652 ± 0.093 20/Apr 110 8 0.582 ± 0.069

20/May 140 70.9 ± 3.6 6.9 ± 0.9 55.4 ± 5.4 0.435 ± 0.075 25/May 145 5 0.365 ± 0.056

DOY: day of the year; PMC: pasture moisture content; CP: crude protein; NDF: neutral detergent fiber; NDVI: normalized difference
vegetation index; PS: proximal sensing; RS: remote sensing; * cloudless days.

Table 3. Mean ± standard deviation of pasture parameters (PMC, CP, and NDF) and NDVI obtained by proximal and
remote sensing in 2020.

Field
Code

Sampling
Date

DOY
(2020) PMC CP NDF NDVIPS

Date of RS
Capture *

DOY
(2020)

Gap PS-RS
(Days) NDVIRS

21/Jan 21 72.1 ± 4.7 11.5 ± 1.8 58.7 ± 5.3 0.636 ± 0.055 20/Jan 20 −1 0.596 ± 0.063
AZI 02/Mar 61 78.2 ± 3.7 15.8 ± 1.1 53.2 ± 3.7 0.698 ± 0.045 10/Mar 69 8 0.674 ± 0.065

21/Apr 111 83.1 ± 1.9 12.4 ± 1.8 56.5 ± 3.5 0.724 ± 0.035 19/Apr 109 −2 0.702 ± 0.072
28/May 148 55.7 ± 6.9 7.3 ± 1.9 62.5 ± 2.3 0.310 ± 0.026 29/May 149 1 0.296 ± 0.022

21/Jan 21 75.9 ± 4.6 17.6 ± 2.3 48.9 ± 4.2 0.651 ± 0.072 20/Jan 20 1 0.671 ± 0.065
GRO 02/Mar 61 78.2 ± 3.7 15.0 ± 0.6 45.0 ± 3.3 0.738 ± 0.042 10/Mar 69 8 0.749 ± 0.053

21/Apr 111 72.2 ± 2.9 7.8 ± 0.9 66.2 ± 3.6 0.561 ± 0.051 19/Apr 109 −2 0.551 ± 0.096
28/May 148 53.7 ± 6.9 7.0 ± 1.2 65.9 ± 3.1 0.288 ± 0.019 29/May 149 1 0.287 ± 0.030

20/Jan 20 79.5 ± 5.8 17.1 ± 3.1 43.9 ± 9.1 0.734 ± 0.092 20/Jan 20 0 0.691 ± 0.094
MIT 03/Mar 62 87.6 ± 1.8 17.6 ± 2.4 45.4 ± 3.3 0.793 ± 0.020 10/Mar 69 7 0.772 ± 0.018

14/Apr 104 87.1 ± 2.2 15.2 ± 3.5 44.7 ± 6.3 0.814 ± 0.046 19/Apr 109 5 0.749 ± 0.078
26/May 146 67.4 ± 7.4 9.5 ± 2.1 59.9 ± 5.7 0.457 ± 0.086 24/May 144 −2 0.480 ± 0.129

22/Jan 22 76.8 ± 3.4 11.0 ± 3.1 63.9 ± 3.2 0.530 ± 0.062 20/Jan 20 −2 0.517 ± 0.040
MUR 09/Mar 68 79.9 ± 2.8 15.7 ± 5.8 51.3 ± 3.8 0.600 ± 0.046 10/Mar 69 1 0.560 ± 0.034

20/Apr 110 83.2 ± 1.4 15.2 ± 3.1 54.2 ± 3.7 0.649 ± 0.049 24/Apr 114 4 0.622 ± 0.043
29/May 149 75.1 ± 4.3 8.6 ± 1.2 61.8 ± 3.3 0.446 ± 0.057 29/May 149 0 0.447 ± 0.058

20/Jan 20 77.7 ± 3.7 16.1 ± 2.0 50.6 ± 3.7 0.690 ± 0.028 20/Jan 20 0 0.690 ± 0.027
PAD 09/Mar 68 78.1 ± 2.0 16.6 ± 2.2 45.2 ± 2.5 0.739 ± 0.020 10/Mar 69 1 0.711 ± 0.023

20/Apr 110 86.8 ± 1.5 19.0 ± 2.6 47.4 ± 1.9 0.820 ± 0.029 19/Apr 109 −1 0.788 ± 0.031
29/May 149 67.6 ± 3.1 9.7 ± 1.1 60.6 ± 2.0 0.488 ± 0.042 29/May 149 0 0.481 ± 0.035

22/Jan 22 74.5 ± 7.5 10.8 ± 4.3 56.2 ± 9.4 0.620 ± 0.058 20/Jan 20 −2 0.569 ± 0.085
TAP 10/Mar 69 76.1 ± 4.6 15.0 ± 3.3 45.8 ± 4.0 0.640 ± 0.053 10/Mar 69 0 0.649 ± 0.042

24/Apr 114 79.4 ± 2.2 9.0 ± 1.1 56.7 ± 5.5 0.656 ± 0.055 24/Apr 114 0 0.641 ± 0.038
01/Jun 152 70.0 ± 6.5 8.0 ± 1.4 58.7 ± 7.0 0.431 ± 0.051 29/May 149 −3 0.496 ± 0.021

DOY: day of the year; PMC: pasture moisture content; CP: crude protein; NDF: neutral detergent fiber; NDVI: normalized difference
vegetation index; PS: proximal sensing; RS: remote sensing; * cloudless days.
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The general trend of average values shows an inverse pattern in the evolution of
CP in comparison with NDF (Figure 17) and of NDVI (obtained by proximal or remote
sensing) in comparison with PQDI (Figure 18). In both years under review, around DOY
90 (end of March), there is a sharp drop in CP and NDVI and an inverse behavior (also
sharp rise) in NDF and PQDI. The regression analysis between NDVI obtained by proximal
sensing (NDVIPS) and NDVI obtained by remote sensing (NDVIRS) showed a coefficient of
determination very close to the unit (R2 = 0.93; Figure 19). The regression analysis between
NDVIPS and PQDI and between NDVIRS and PQDI showed that both parameters (NDVIPS
and NDVIRS) are excellent indicators of the evolution of the pasture quality degradation
(with R2 of, respectively, 0.83, Figure 20, and 0.82, Figure 21).
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Figure 15. Example of spatial variability of pasture quality degradation index (PQDI) and nor-
malized difference vegetation index (NDVI) obtained by proximal and remote sensing (PS and RS,
respectively) within each experimental field in April 2020.
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Figure 16. Evolution of pasture quality degradation index (PQDI) and normalized difference vegetation index (NDVI)
obtained by proximal and remote sensing (PS and RS, respectively) over time, in “MIT” (a) and “GRO” (b) experimental
fields.
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Figure 17. General pattern of mean pasture CP and NDF in function of DOY, for the set of experimental fields and pasture
sampling dates (2019 and 2020).
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set of experimental fields and pasture sampling dates (2019 and 2020).
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Figure 19. Regression analysis between NDVI obtained by proximal sensing (NDVIPS) and NDVI
obtained by remote sensing (NDVIRS).
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Figure 20. Regression analysis between NDVI obtained by proximal sensing (NDVIPS) and Pasture
Quality Degradation Index (PQDI).
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Figure 21. Regression analysis between NDVI obtained by remote sensing (NDVIRS) and Pasture
Quality Degradation Index (PQDI).

4. Discussion
4.1. Evolution of Pasture Quality Parameter Patterns throughout the Vegetative Cycle

Dryland pastures in the Mediterranean region have a vegetative cycle with marked
seasonal and inter-annual variability, depending on the influence of air temperature and
precipitation distribution [1,4,19]. Variability occurs not only in terms of available biomass,
but also in terms of the quality of that biomass [4], which consequently affects the availabil-
ity and quality of food for animals under extensive grazing. The pasture cycle begins with
the emergence of plants, usually between October and November, after the first autumn
rains. In years when the autumn is dry, emergence can only happen in the beginning of
winter, when the drop in air temperature to 0–10 ◦C range tends to induce a period of
vegetative dormancy, resulting in a shortage of grass for the animals, forcing the continued
supplementation with concentrated feed [7]. In the spring period (March–June), rising
temperatures and the presence of moisture in the soil tend to lead to high pasture yields,
which justifies the dynamic grazing management at the level, for example, of the number
of days of grazing and/or the number of animals per unit of area [7].

In our study, the accumulated rainfall increased 24% in Beja district, 49% in Évora
district, and 51% in Portalegre district from 2018/2019 (relatively dry year) to 2019/2020 (a
year that can be considered normal based on the historical record). On the other hand, there
was a significantly higher accumulated rainfall in the most northern district of this study
(Portalegre) compared to the southern and central districts (Beja and Évora, respectively),
on average +72% of accumulated rainfall in 2018/2019 and +91% in 2019/2020. Neverthe-
less, the distribution of rainfall was relatively balanced across the three productive seasons
(autumn, winter, and spring), in both agricultural years and in the three districts of the
region.

The pasture quality reference indicators (PMC and CP; Table 2) displayed a decreasing
trend in the set of three evaluation moments carried out in 2019 (January or February,
March or April, and April or May) while the indicator of pasture quality degradation
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(NDF) tended to increase, which is in agreement with other works [4,19]. These trends
were particularly evident in the fields located further south (“AZI” and “GRO”).

In 2020 (January, March, April, and May or June), the quality reference indicators (PMC
and CP, Table 3) both showed a tendency to decrease from the third to the fourth evaluation
moment (between April and May or June), presenting the NDF a symmetrical behavior.
The highest amount of rainfall accumulated in spring 2020, compared to spring 2019, may
have contributed to the maintenance of the pasture quality over time [16]. For example,
accumulated spring 674 rainfall increased 49% between the two periods in Portalegre, the
northern district of 675 Alentejo region, 86% in Évora, the central district, and 118% in
Beja, the southern district. These results show that the influences of precipitation and
temperature on grassland is relatively complex as they can change through the growing
season, vary among different grasslands, and interact with each other [1].

Our results (Tables 2 and 3) also highlight an aspect observed in other studies related to
biodiverse pastures [16,20]: the important spatial variability of pasture quality parameters,
especially CP (average CV of 18.9%). This behavior reflects the variability resulting from
the heterogeneous development of the different plant species that are part of the biodiverse
pasture [4,16,20].

If, on the one hand, this spatial variability is the starting point for a precision agricul-
ture strategy [21], on the other hand, the variability that our results reveal, both spatially
and temporally, contextualizes the difficulty that agricultural managers have in terms of
management decisions, for example, regarding grazing, fertilization, and soil correction, or
animal feed supplementation [4]. It is, therefore, essential to evaluate quick tools for moni-
toring spatial and temporal vegetation changes over several growing seasons, combined
with in situ field validation [19].

4.2. Correlation between Pasture Quality Parameters and NDVI Obtained from Proximal and
Remote Sensing

Despite the high percentage of days with cloud influence that occurred throughout
the pasture vegetative cycle (51.0 ± 6.2%, between autumn and spring), NDVI time-series
obtained from satellite in each of the six experimental fields between September of a year
(2018 and 2019) and June of the following year (2019 and 2020, respectively) systematically
and consistently displayed the following pattern (Figures 9–14): NDVI tends to increase
during the early autumn phase (growth of pasture), stabilizes in an intermediate winter
stage, and, after reaching a peak in early spring, decreases as plants reach the end of their
annual cycle [6]. This general pattern was represented in simplified form by a polynomial
equation in Figures 9–14 with excellent coefficients of determination in the two years of
study and in the six experimental fields (0.80–0.95). Since most nitrogen in plant tissue is
contained in chlorophyll-protein complexes [22], the well established relationship between
leaf chlorophyll pigments and nitrogen (and, therefore, crude protein) helps to explain
the behavior of NDVI as robust predictor for spatial distribution of pasture vegetative
vigor [23].

Cloud influence can lead to relatively long periods without information availability. In
this specific study, there were several gaps of 3–4 weeks without cloud-free information due
to highly frequent cloud cover. The most extreme case occurred in the experimental field
“GRO” between March and April 2019, with about a month and a half without cloud-free
information. These results highlight the interest in complementary monitoring systems, for
example, by drones [10,24]. Another constraint for RS (by satellite or drone) of permanent
grasslands in open woodlands such as Dehesa (in Spain) and Montado (in Portugal) is
the presence of scattered trees [4]. Cork oak and Holm oak canopies, with variable spatial
density, prevent remote access to pasture in the under-covered areas. Several studies have
shown that these are also important areas of pasture quality and animal welfare [7]. The
spatial resolution of Sentinel-2 requires open pasture areas where there is no influence of
trees on the pixel reflectance [4] or, alternatively, justifies the interest in fusion of multi-
sensor data at a medium-to-high spatio-temporal resolution to address this issue [14]. Some
studies have been published based on expeditious proximal sensors [16,22].



Remote Sens. 2021, 13, 3820 21 of 24

In this study, the optical sensor “OptRx” was used in the sampling areas (“10 m × 10 m”
of Sentinel-2 pixel) of all experimental fields, immediately before cutting the composite
pasture sample for laboratory reference determinations. This is therefore a real-time NDVI
(and therefore vegetative vigor) reading, based on around 300 measurements per sampling
area, which is an excellent representation of the pasture status. The significant and strong
coefficient of determination (R2 = 0.93) of the regression analysis between NDVIPS and
NDVIRS shows the close relationship between these indexes, surpassing the R2 obtained
in an earlier paper on this topic referring only to an experimental field (R2 = 0.81; [16]). In
comparison to this previous work, not only was the experiment expanded to six experi-
mental fields with different biodiverse pastures, but also the method now contemplates PS
monitoring of the entire Sentinel-2 pixel sampling area and not just the small areas where,
later, the cutting of the pasture was carried out. In this way, the so-called “scale effect”
between RS and PS due to the strong spatial and temporal heterogeneity characteristics of
biodiverse pastures [8], reported in others works [16,25], was avoided.

The main purpose of this study was to evaluate the potential of two complementary
tools (satellite images, Sentinel-2 and proximal optical sensor, OptRx) for the calculation
of the NDVI, to monitor in a timely manner indicators of pasture quality (PMC, CP, and
NDF). To simplify and, simultaneously, to search for a more integrative indicator, in this
work, a pasture quality degradation index (PQDI, in %) was calculated based on the
above mentioned three parameters (Equation (2)). Higher values of this index reveal
higher levels of fiber (NDF) and lower levels of PMC and CP, which tend to occur as the
vegetative cycle of the pasture advances [4,6]. The regression analysis between NDVIPS
and PQDI and between NDVIRS and PQDI showed that both parameters (NDVIPS and
NDVIRS) are equivalent indicators of the evolution of the pasture quality degradation
(with R2 of, respectively, 0.83, Figure 20, and 0.82, Figure 21). The difference between both
tools (with a slight advantage of PS over RS) can be explained by the fact that there is
a temporal gap between the date of RS capture and the date of field biomass collection.
These determination coefficients are similar to those obtained for pasture quality indicators
(CP and NDF) by Pullanagari et al. [26] from proximal sensors (R2 of 0.80) and higher than
those recorded from satellite images for example by Lugassi et al. [19] or Raab et al. [23] (R2

about 0.70), Fernández-Habas et al. [4] (R2 about 0.65), or Zhao et al. [27] (R2 about 0.60).
According to Fava et al. [28] and Fernández-Habas et al. [4] heterogeneous pastures with
multiple functional groups and different phenological stages might have contradictory
effects on the relationship between pasture quality variables and reflectance, leading to a
wide variability of spectral responses.

Nonetheless, these results are more consistent and representative than those obtained
by Serrano et al. [16] in a preliminary study, gaining particular robustness not only because
of the similarity between PS and RS, but also because they include the spatial variabil-
ity characteristic of this ecosystem (six experimental fields of biodiverse pastures) and
seasonality and inter-annual variability (seven moments of field validation, distributed
over two vegetative cycles of the pasture). The above application of a wide range of
predictive tools and forecasting models for support to decision making are of particular
interest, since farmers in every region may follow different management strategies in terms
of soil management, pasture intensification, or precision grazing. This diversification of
management practices is a challenge that needs to be addressed in the coming years and
largely determine the availability of ecosystem services [5]. Such information assists the
efficient utilization of pastures by avoiding overgrazing, providing guidance with regards
to food supplement decisions, or alerting farmers to wastage during periods of surplus
pasture availability [29].

Given the small-scale coverage of traditional ground-based methods of grassland
monitoring, satellite remote sensing approaches are likely to be a significant contributor
to future operational studies [2]. This research may involve not only other indices (for
example, the Normalized Difference Water Index, NDWI [11]), but also other parameters
considered relevant in assessing the quality of the pasture (for example, its floristic com-
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position). These pastures and grasslands are rich in biodiversity [7], which is recognized
as the foundation for ecosystem functioning [5]. In the context of global food security
and to avoid food shortages, given the limited number of studies that have been done on
grassland and pasture quality assessment using RS approach [2], it will also be interesting
to extend this study to longer periods of time, since the models can capture the pasture
response to climate change [25], evaluate their capacity to sustain livestock production and
their associated ecosystem services [4], and help agricultural managers to respond to the
challenges of economic and environmental sustainability.

Grazed pastures are recognized as complex and very spatio-temporal dynamic sys-
tems [30], composed of a mosaic of different landscape features [23] in close interaction with
animals which graze them selectively in time and space [31]. This complexity also demands
further research in development of model-data fusion tools [29,32] and present particular
challenges for sensor applications [30], preferably integrating the potential complemen-
tarity of remote and proximal sensing. The development of systems with complementary
sensors is seen as a very promising research area, and one that will help to overcome the
limitations of single sensors and provide better information about grassland composition,
yield and quality [30].

Although the application of NDVI as an indicator of crop health monitoring is be-
coming very common, there are very few published studies on its application in the
management of extensive animal grazing. In summary, it is important to highlight in this
study that dryland pastures of the Mediterranean Montado ecosystem are the basis of
extensive livestock production. Soil limitations (shallow, acidic, and of low fertility) asso-
ciated with seasonality and climatic irregularity lead to low pasture productivity, which
requires animal feed supplementation over several months (in some years more than 6
months) [7]. Therefore, concentrate feed represents a very important percentage of the cost
of animal production in the region.

The spatial and temporal variability maps (Figures 15 and 16) of the evaluation
parameters (PQDI and NDVI, obtained by PS and RS), show, in April 2020 (Figure 15), a
reduced variability within each experimental field and between sites, with NDVI in general
(except in “GRO” and “TAP” fields) above 0.6 (blue on maps), which reflect CP contents
above the maintenance needs of the animals [16]. Additionally, there is a large degree of
similarity between sensor measurements (NDVI) and laboratory determinations (PQDI).
This high similarity index is also visible in Figure 16. Monitoring of these parameters during
winter and spring 2019 and 2020 reveals the expected pattern of temporal evolution of
pasture quality degradation during Spring. This pattern occurred earlier in the “GRO” field
(usually in April; Figure 16b); field subject to higher temperatures and less precipitation;
Figures 4 and 5) than in the “MIT” field (usually late May; Figure 16a). These results show
that, in addition to the climatic effect of temperature and precipitation [33–35], grazing
can have a significant effect on the evolution of pasture quality [35]. The possibility of
small service providers using practically free satellite images, that can go from the plot
level (preferably above 0.5 ha) to the farm level (several hundred hectares), or, even, to
the global level, associated with a relatively low-cost proximal optical sensor, to support
farmers’ management decisions (for example, for each differentiated area, to understand
the critical moment at which animal feed supplementation should be introduced) could
be very interesting in terms of resource optimization, with economic and environmental
impact on this ecosystem [16].

5. Conclusions

This study contributes to increasing the body of knowledge related to the potential
application of Sentinel-2 imagery to monitor and predict the quality of permanent grass-
lands across large areas in Mediterranean open woodlands. The results show a significant
correlation between pasture quality degradation index (PQDI) and NDVI measured by
satellite (R2 = 0.82) and measured by proximal optical sensor (R2 = 0.83). The optical
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proximal sensor “OptRx” proved great complementarity and the capacity to solve the
constraints of RS resulting from persistent cloud cover and the presence of tree canopy.

Grasslands play a vital role in regulating the global carbon cycle, as well as supporting
plant biodiversity and livestock production in Montado ecosystem. The real-time decision
making that is made possible by the assessment of pasture quality ensures the resilience of
these extensive systems, the estimation and adjustment of stocking rates, establishment of
a sound scheduling of grazing or mowing, and the supplementary feeding or grassland
improvements with legumes mixes, soil fertilization, or pH correction.

Despite the complexity of grassland ecosystems, characterized by mixed species
composition and strong spatial and temporal variability, this work opens perspectives to
explore new solutions in the field of Precision Agriculture technologies based on spectral
reflectance to respond to the challenges of economic and environmental sustainability of
extensive livestock production systems.
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