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Abstract: Benchmarking deep learning algorithms before deploying them in hardware-constrained
execution environments, such as imaging satellites, is pivotal in real-life applications. Although a
thorough and consistent benchmarking procedure can allow us to estimate the expected operational
abilities of the underlying deep model, this topic remains under-researched. This paper tackles
this issue and presents an end-to-end benchmarking approach for quantifying the abilities of deep
learning algorithms in virtually any kind of on-board space applications. The experimental vali-
dation, performed over several state-of-the-art deep models and benchmark datasets, showed that
different deep learning techniques may be effectively benchmarked using the standardized approach,
which delivers quantifiable performance measures and is highly configurable. We believe that such
benchmarking is crucial in delivering ready-to-use on-board artificial intelligence in emerging space
applications and should become a standard tool in the deployment chain.

Keywords: on-board processing; deep learning; benchmarking; segmentation; classification; detection

1. Introduction

Computing hardware platforms are mainly used in space missions for data transfer
that involves sending raw data (e.g., imagery and video streams) to ground stations, while
data processing is done in centralized servers on Earth. Large data transfers cause network
bottlenecks and increases latency, thus increasing the system response time. For safety-
critical industry applications, such as aerospace and defense, latency is a major concern;
hence, optimizing it is an important research topic [1–4].

AI-dedicated computing hardware platforms have become increasingly important
in a variety of space applications as they provide a set of features to allow for efficient
computation tasks. Thanks to them, deep learning inference can be effectively executed
very close to the data sources (e.g., imaging sensors) at the edge device. This may improve
the spacecraft autonomy, mitigate a costly requirement of transmitting large volumes of
data to a remote processing site, accelerate decision-making, and increase reliability in
communication-denied environments (i.e., in space). Nevertheless, each piece of computing
hardware comes with inherent features and constraints that enable or disrupt performance
depending on the deep model and targeted applications. In addition, deep learning models
must be adopted to make “optimal” use of the underlying hardware infrastructure.

This paper presents the approach for benchmarking state-of-the-art AI models for a
range of space applications focused on computer vision tasks, such as image classification
or object detection. Such applications in which image and video data are processed reach
beyond the specific tasks tackled in this work and could include imaging support for
autonomous space vehicle docking, decision support for autonomous probes or landers,
autonomous robotic systems, satellite star trackers, Earth observation targeting decision
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support, and many more [5]. Although an unprecedented level of success of deep learning
in virtually all fields of science and industry has been witnessed, thorough verification
and validation of deep models before deploying them in the wild remain under-explored
in the literature. This issue is tackled in this work; in Section 1.2, the contributions are
discussed in more detail. Benchmarking AI models before final deployment can lead to a
better understanding of available resources and a more robust delivery of deep learning
solutions for on-orbit devices.

1.1. Related Work and Motivation

Benchmarking deep learning algorithms for on-board space applications is getting
research attention due to a number of emerging missions, e.g., in Earth observation, where
such techniques are to be deployed on-board the spacecraft. Moreover, there exists a set
of well-established tools for developing, verifying, and validating deep learning on Earth,
selecting an appropriate toolchain and utilizing it to benchmark on-board deep learning
remains an open question in the literature. In recent years, TensorFlow Lite has been
a popular choice for developing embedded AI applications. Agostini et al. proposes a
framework for designing software and hardware solutions with TensorFlow Lite and the
SystemC event-driven simulator [6]. Contrary to the work presented here, it features a
broader look at embedded AI devices with different technologies, while our efforts focus
on specific neural network models and hardware devices that will be exploited in orbit
on-board our Intuition-1 mission, being a 6U-class satellite with a data processing unit,
referred to as the Leopard Deep Learning Processing Unit (DPU), enabling on-board data
analysis acquired via a hyperspectral imagery.

MLPerf is a benchmarking system that creates a common denominator for comparing
software and hardware solutions for AI inference [7]. It allows us to introduce a software
suite of on-orbit specific benchmarks in order to get “closer” to deploying AI models in
space. However, MLPerf is not implemented in a strict sense, as the main goal is not to
directly compare the hardware performance. Instead, some well-established benchmarking
solutions from the industry-standard MLPerf are utilized, and they are applied to the
investigated use cases. The objective is to perform tests that investigate crucial aspects of
on-orbit AI devices while fully utilizing their capabilities. The publication by Boutros et al.
can be used as a detailed technical reference that explores the state of various hardware AI
solutions, comparing many aspects of GPU and FPGA solutions for AI inference [8]. While
it discusses many low-level hardware details, the study reported here aims to investigate
more real-world use-cases and problems with deploying existing neural networks on
remote-sensing devices. The Edge Performance Benchmarking Survey [9] covers a wide
variety of benchmarks related to general-purpose computing with a subset of solutions
specifically targeting AI inferences. Here, several of them can be compared to the research
reported in this work: Dinelli et al. [10] proposed a custom FPGA-based AI accelerator
that undergoes benchmarking. The authors discussed in detail some aspects of the FPGA
accelerator operation; however, their work revolves around testing the proposed custom
solution, whereas the work reported here demonstrates guidelines for benchmarking the
deployment on an existing piece of hardware that aims to ensure the overall quality of
the process.

The Edge AIBench [11] and LEAF frameworks [12] investigate on-the-edge federated
settings and capture many cloud-computing-related metrics that can be used for verifying
the algorithms. While some inspiration for benchmarking remote sensing applications
can be taken from these works, they put more emphasis on applications that range across
smart homes, mobile devices, and networking solutions. The study discussed here is
more focused on specific remote sensing applications, which will ultimately be deployed
on-board a satellite, being an “extreme” execution environment.

Contrary to the majority of existing benchmarking solutions, the goal of this work is
not to compare the general raw processing power of available hardware but to capture the
quality of the deployment process of specific networks on a fairly specific piece of hardware.
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While the general-purpose benchmarks can be used to select the most performant hardware
for a task at hand, the proposed approach can be applied to utilize a given piece of hardware
consciously through calculating the metrics that cover a range of real-life use cases in the
remote sensing field from optical data. Modern FPGA-based AI solutions have a variety
of parameters that can be adjusted during the development process. The benchmarking
approach introduced in the work reported here indicates how these parameters scale
and how a given system can be utilized with regard to the use case. Additionally, some
limitations and problems that may be encountered when porting custom remote-sensing
networks to the on-the-edge FPGA devices are indicated.

Overall, this paper aims to be a mid-step between general-purpose benchmarks of
hardware and deploying a working neural network on an on-orbit device. The possibilities,
limitations, and hardware configuration strategies to deploy existing remote-sensing neural
networks on satellite devices with hardware suitable for the task at hand are investigated.
Benchmarking the deployment process and investigating the impact of different parameters
on the results lead to the development of best practices in the emerging field of on-board
deep learning for space applications.

1.2. Contribution

Benchmarking artificial intelligence algorithms that are to be deployed on the edge
devices is critical to estimate and ensure their operational abilities when run in the wild,
e.g., on-board the spacecraft. In this paper, an end-to-end benchmarking pipeline that
allows for quantifying the functional and non-functional capabilities of the deep learning
techniques through the entire deployment chain is presented. Overall, the contributions
are centered around the following points:

• The benchmarking pipeline that benefits from the standard Xilinx tools and is coupled
with the deep learning deployment chain that is used to run such techniques on the
edge devices is introduced (Section 2).

• The proposed benchmarking approach is model-agnostic and can be easily utilized to
verify and validate a variety of deep learning algorithms (Section 2.1). Although the
emphasis has been put on selected computer vision tasks, the introduced technique
can be utilized to investigate any other on-board applications; hence, it can be of
practical interest in a variety of real-life missions that would ultimately benefit from
on-board artificial intelligence.

• The performance of three state-of-the-art deep learning algorithms for computer vision
tasks run over the Leopard DPU Evalboard, being a real-life DPU that will be deployed
on-board Intuition-1, is assessed (Section 3). The models are thoroughly evaluated,
and the analysis is focused on their latency, throughput, and performance. The pro-
posed approach follows the state-of-the-art deep learning inference benchmarking
guidelines [13–16].

• The introduced approach allows practitioners to quantify the performance of any deep
learning algorithm at every important step of the deployment chain (Section 3). Thus,
it is possible to fully trace the process of preparing the model for the target hardware
(before deploying it in orbit) and to thoroughly understand the impact of the pivotal
deployment steps, such as quantization or compilation, on its operational abilities.

2. Benchmarking Deep Learning for Selected On-Board Applications Related to
Image Analysis

This section thoroughly discusses the deep models considered in this work (Section 2.1),
the deployment toolchain (Section 2.2), and benchmarking scenarios (Section 2.3). (The
details of the target hardware utilized for the AI inference are presented in detail in
Appendix A.) In Section 2.3, the metrics used for quantifying the performance of the deep
learning algorithms in specific benchmark scenarios are presented.
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2.1. The Models

To experimentally show the flexibility of the proposed approach, various computer
vision tasks are being tackled using state-of-the-art deep learning algorithms: image
classification, object detection, and segmentation. These tasks are widely used in a range
of space mission applications [17–19]. Additionally, the variety of tasks also exposes the
full potential of the proposed benchmarking technique that is built in line with the MLPerf
suite [14], and allows us to thoroughly evaluate the system performance regardless of the
underlying deep model and its architectural characteristics.

The following subsections discuss three selected models—Deep Earth (for hyperspec-
tral image segmentation, Section 2.1.1), Deep Mars (for identifying various types of Martian
objects, Section 2.1.2), and Deep Moon (being the crater detection system, Section 2.1.3).
For each algorithm, the whole process of developing, quantizing, compiling, and deploying
the model to the edge device, i.e., Xilinx System on a Chip (SoC)-based Leopard DPU, is
presented. The first step involves developing and training a model in full floating-point
precision in one of the popular machine learning frameworks (TensorFlow 2.3) and keeping
track of essential model quality metrics as the process advances. Besides covering a wider
variety of real-life use cases, such an approach sheds some extra light on the deployment
process since each model (trained with an individual set of data) requires specific adjust-
ments for quantization and can behave slightly differently afterwards. At last, a thorough
examination of performance, considering both model and hardware (see Appendix A for
details on the target hardware) is performed.

2.1.1. Deep Earth

Hyperspectral imaging (HSI) provides very detailed information about the scanned
objects, capturing their spectral characteristics within hundreds of contiguous wavelength
bands. Classification of such data has become an active research topic due to its wide
applicability in a variety of fields ranging from biology, chemistry, forensics, straight to
remote sensing and Earth observation [20]. Deep learning is an ideal candidate to be
leveraged in this area and has been blooming in the field by delivering state-of-the-art
performance for HSI classification and segmentation. This study focuses on Deep Earth, a
novel convolutional neural network (CNN) model that extends current approaches while
providing precise hyperspectral classification in real-time [21].

In Table 1, the Deep Earth architecture, together with the corresponding hyperparam-
eters, is shown. The model is composed of four consecutive convolutional layers each of
them followed by a ReLU activation layer. This part of the architecture acts as a feature
extractor, and it is followed by three fully dense layers for classification. The baseline
(floating-point processing) accuracy of the Deep Earth model used in this paper is 87.2%
for the multi-class classification over the Pavia University (PU) scene [22], as visualized in
Figure 1. PU (340× 610 pixels) was captured over Pavia University, Italy, with the spatial
resolution of 1.3 m, 103 bands, utilizing the Reflective Optics System Imaging Spectrometer
sensor. It presents an urban scenery with nine classes (Table 2). One can observe that the
number of pixels belonging to each class is imbalanced, with Meadows being the majority
class (44% of all pixels).

2.1.2. Deep Mars

The Deep Mars [23] model uses deep learning to identify various types of objects, such
as craters, sand dunes, streaks, and edges, present on the surface of Mars (see examples
rendered in Figure 2). The dataset was annotated by crowdsourcing where the authors
developed a web application that allows people to manually tag the objects present in the
images. Such a model can be helpful in research concerning the evolution of the landscapes
of our solar system but could also be leveraged during the autonomous spacecraft landing,
provided the host-device throughput would be sufficient to run the model in real-time.
Deep Mars can be adapted to classify similar objects present on the surfaces of other
celestial objects, e.g., using transfer-learning techniques. Given that the model has to be
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deployed on satellites, it is important that one optimizes it to work on edge-like devices
that have constrained hardware and power requirements.

Table 1. The Deep Earth architecture utilized for hyperspectral image segmentation.

Model (Input Shape) Layer Activation Parameters Output

2D-CNN
(1× 1× 103)

Conv2D_1 ReLU kernels: 200 (1× 1× 5) 99× 1× 200
stride: 1× 1× 1

Conv2D_2 ReLU kernels: 200 (1× 1× 5) 33× 1× 200
stride: 1× 1× 3

Conv2D_3 ReLU kernels: 200 (1× 1× 5) 14× 1× 200
stride: 1× 1× 2

Conv2D_4 ReLU kernels: 200 (1× 1× 5) 5× 1× 200
stride: 1× 1× 2

FC_1 ReLU size: 200× (5× 1× 200) 200
FC_2 ReLU size: 128× (200) 128
FC_3 Softmax size: 9× (128) 9

Total trainable weights: 828,889.

Table 2. The number of samples (pixels) for each class in the Pavia University dataset.

Class ID Description No. of Pixels

1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Metal sheets 1345
6 Bare soil 5029
7 Bitumen 1330
8 Bricks 3682
9 Shadows 947

Total 42,776

Gravel

Trees

Bricks

Bitumen

Bare Soil

Metal

Asphalt

Meadows

Shadow

Pavia University (340×610 pixels, ROSIS, 1.3 m, 103 bands)

Figure 1. The Pavia University scene captures nine classes of various spectral characteristics.



Remote Sens. 2021, 13, 3981 6 of 24

Figure 2. Example input images of each category for Deep Mars model.

Table 3 shows the Deep Mars architecture. Being a classification task, it is a natural
choice to use a variation of CNNs. The authors have adapted the AlexNet image classi-
fier [24] by removing the final fully connected layer and re-defining the output classes
to classify images from Mars. The authors claim the model gives an accuracy of 94.5% over
the testing dataset. The model uses grayscale high-resolution images collected by a HiRISE
(High-Resolution Imaging Science Experiment) camera for the Mars Reconnaissance Or-
biter. The original stripe-shaped pictures of a spatial resolution of 30 cm per pixel were
manually reviewed seeking the objects of interest: craters, bright dunes, dark dunes, dark
slope streaks, others, and edges. These findings were then cropped out and rescaled to
create a sole image classification dataset, where each sample can be described by a single
label. The possible labels and image quantities belonging to each class are presented in
Table 4.

Table 3. The Deep Mars architecture utilized for classifying Mars images. The bolded layers have been added during the
model reshaping, as discussed in the following part of the manuscript (Section 3).

Model (Input Shape) Layer Activation Parameters Output

2D-CNN
(227× 227× 1)

Conv2D_1 ReLU kernels: 32 (3× 3× 1) 227× 227× 32
MaxPool2D_1 – shape: 2× 2, stride: 2 113× 113× 32
Conv2D_2 ReLU kernels: 64 (3× 3× 32) 113× 113× 64
MaxPool2D_2 – shape: 2× 2, stride: 2 56× 56× 64
Conv2D_3 ReLU kernels: 64 (3× 3× 64) 56× 56× 64
MaxPool2D_3 – shape: 2× 2, stride: 2 28× 28× 64
Conv2D_4 ReLU kernels: 64 (3× 3× 64) 28× 28× 64
MaxPool2D_4 – shape: 2× 2, stride: 2 14× 14× 64
FC_1 ReLU size: 128× (14× 14× 64) 128
FC_2 Softmax size: 6× (128) 6

Total trainable weights: 1,699,206.

Table 4. The number of samples (images) for each label in the Deep Mars dataset.

Class ID Description No. of Images

1 Other 2212
2 Crater 410
3 Dark dune 452
4 Streak 39
5 Bright dune 171
6 Edge 918

Total 4202

2.1.3. Deep Moon

Deep Moon leverages the previous work by Silburt [25]. It is a two-step crater de-
tection system, consisting of (i) a deep learning model for image segmentation and (ii) a
template matching algorithm (discussed further) to localize the craters in the segmentation
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mask. It can automatically process datasets collected from lunar exploration campaigns.
Therefore, it functions as a baseline for us to improve in terms of adapting the original
model to be more efficient and deployable in edge devices. More broadly, the results
will have applications for efficient data analytics onboard robotic probes for space explo-
ration missions.

A craters record and chronology are key for the exploration of the solar system.
Traditionally, crater detection has been done manually via visual inspection of images.
However, this approach is not practical for the vast numbers of small-sized craters on
the moon. This model introduces a novel method to determine the position and size of
craters from lunar digital elevations maps using CNNs. The dataset used to train the model
corresponds to a digital elevation map (DEM) and the craters catalog. The moon’s DEM
is a global raster with elevation data, generated by NASA and the Japanese Aerospace
Agency with the spatial resolution of 118 m per pixel. The craters dataset corresponds
to the combination of two human-generated craters catalogs: one contains craters with a
diameter between 5 and 20 km, and the other encompasses craters with a diameter greater
than 20 km. Finally, the images were generated by randomly cropping DEM mapping,
so the number of craters in each image may vary from just one to a few dozens. Figure 3
shows the example input image, the output mask generated by the deep learning model,
and the craters positions proposed by the template matching step.

Figure 3. Different stages of the Deep Moon detection system compared to the ground truth. Going
from left: (i) input DEM image, (ii) output of the CNN model, (iii) craters detected by the template-
matching-driven algorithm, (iv) ground truth.

Table 5 shows the Deep Moon architecture consisting of convolutional, pooling,
dropout, and concatenate layers. The model is adapted from U-Net [26], which was
originally designed for biomedical segmentation tasks. It is a fully-convolutional model
consisting of the contracting and expanding paths, ultimately forming a U-shape. In the
expanding path, each block receives the depth-matched feature maps from the contracting
path using the skip connection; hence, the features can propagate through the architecture.
The main differences between the vanilla U-Net and Deep Moon is the number of 3× 3
filters in the Conv2D layers and the addition of the dropout layers.
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Table 5. The Deep Moon architecture utilized for detecting Moon craters. All layers are connected sequentially with a few
exceptions of additional skip-connections, specified in the “Attached” column. The bolded layers have been added during
the model reshaping, as discussed in the following part of the manuscript (Section 3).

Model (Input) Layer Activation Parameters Output Attached

2D-CNN
(256× 256× 1)

Conv2D_1 ReLU kernels: 112 (3× 3× 1) 256× 256× 112
Conv2D_2 ReLU kernels: 112 (3× 3× 112) 256× 256× 112
MaxPool2D_1 – shape: 2× 2, stride: 2 128× 128× 112
Conv2D_3 ReLU kernels: 224 (3× 3× 112) 128× 128× 224
Conv2D_4 ReLU kernels: 224 (3× 3× 224) 128× 128× 224
MaxPool2D_2 – shape: 2× 2, stride: 2 64× 64× 224
Conv2D_5 ReLU kernels: 448 (3× 3× 224) 64× 64× 448
Conv2D_6 ReLU kernels: 448 (3× 3× 448) 64× 64× 448
MaxPool2D_3 – shape: 2× 2, stride: 2 32× 32× 448
Conv2D_7 ReLU kernels: 448 (3× 3× 448) 32× 32× 448
Conv2D_8 ReLU kernels: 448 (3× 3× 448) 32× 32× 448
UpSampling2D_1 – shape: 2× 2 64× 64× 448
Concatenate1 – – 64× 64× 896 Conv2D_6
Dropout1 – rate: 0.15 64× 64× 896
Conv2D_9 ReLU kernels: 224 (3× 3× 896) 64× 64× 224
Conv2D_10 ReLU kernels: 224 (3× 3× 224) 64× 64× 224
UpSampling2D_2 – shape: 2× 2 128× 128× 224
Concatenate2 – – 128× 128× 448 Conv2D_4
Dropout2 – rate: 0.15 128× 128× 448
Conv2D_11 ReLU kernels: 112 (3× 3× 448) 128× 128× 112
Conv2D_12 ReLU kernels: 112 (3× 3× 112) 128× 128× 112
UpSampling2D_3 – shape: 2× 2 256× 256× 112
Concatenate3 – – 256× 256× 224 Conv2D_2
Dropout3 – rate: 0.15 256× 256× 224
Conv2D_13 ReLU kernels: 112 (3× 3× 112) 256× 256× 112
Conv2D_14 ReLU kernels: 112 (3× 3× 112) 256× 256× 112
Conv2D_15 Sigmoid kernels: 1 (1× 1× 112) 256× 256× 1

Total trainable weights: 10,278,017.

2.2. Deployment Toolchain

Vitis AI is a development environment platform for deploying AI inference models on
hardware devices by Xilinx. It consists of optimized IP, tools, libraries, models, and example
designs and enables the on-the-edge utilization of FPGA devices in embedded appliances,
including satellite and aerospace devices [27]. Vitis AI can effectively deploy models created
with popular AI libraries/frameworks, such as Caffe, PyTorch, and TensorFlow. The models
undergo a series of steps, such as quantization and compilation, to be converted into a
form that is deployable on the target embedded device. The architecture of an embedded
device for AI acceleration according to the Xilinx model consists of:

• System-On-Chip (SoC) device, which has multi-core CPU and FPGA (as described in
Appendix A).

• Deep Learning DPU IP (as described in detail in Appendix A).
• Linux-based operating system.
• Software interface and drivers for DPU IP provided by Xilinx (described in more

details in the following Section 2.2.2).
• Software for loading, controlling, and running AI models (as described in the follow-

ing Section 2.2.2).

To deploy a deep learning algorithm on an embedded device, practitioners have to
support the inference process with data loading, pre- and post-processing, and storing the
results. In the embedded application, the Xilinx libraries and runtime environment for
establishing a connection with the DPU units are used. Both the application and the model
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are deployed on an embedded system containing an FPGA-based DPU and an ARM CPU
running a Linux distribution. The embedded Linux distribution is built with PetaLinux [28]
tools, provided by Xilinx, and based on the Yocto Project build system.

It is worth mentioning that both the hardware and software configurations can easily
impact the capabilities and performance of the inference process. Not only the model
parameters but also DPU and ARM-based systems can be configured and customized to
achieve the best results. To trace and understand the entire process, the accuracy metrics of
the model are measured, and this is done at each step of the deployment pipeline, which is
shown in Figure 4. The consecutive Sections 2.2.1 and 2.2.2 provide an in-depth description
of each step of the process.

Training data Test data

Training
procedure

Model (TensorFlow or
other)

Trained model
(TensorFlow or

other)

Evaluation on a
host PC

Model accuracy
metrics

VitisAI quantizer

Quantized
model

Evaluation on a
host PC

Quantized model
accuracy metrics

VitisAI compilerDeployment DPU
architecture

Compiled model

Model runner
binary

application
deployed on the

selected
hardware

Application
cross-

compilation
VitisAI libraries

Embedded application
(written in C++)

Inference
benchmarks on

on-the-edge
hardware

On-the-edge
model accuracy
and bechmarks

metrics

Standard ML model creation

and training with popular

frameworks/libraries

VitisAI model preparation

Deployment on-the-edge

Figure 4. Deployment pipeline of an AI model on an embedded device with Xilinx’s Vitis AI (nodes are color-coded: blue
for inputs, red for actions, gray for artifacts, and yellow for results; some connections are dashed for visual clarity).

2.2.1. Preparing Deep Models for Deployment

The Vitis AI development environment comes with the benefit of being able to deploy
deep models created with popular AI libraries/frameworks. As already mentioned, they
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include Caffee, PyTorch, and TensorFlow (both version 1 and 2). In this work, TensorFlow
is utilized, but the deployment process for other frameworks is analogous. The models
are created on standard PC machines using Python and trained (preferably) using GPUs.
This process is the same as the common procedure of training AI models in the industry
and does not require using any additional Xilinx tools.

To build a deployable deep model, one needs to exploit the compatible layers—the
list of such layers is included in the Vitis Ai documentation [27] (see the deployment
process visualized in Figure 4). These include but are not limited to convolutional layers,
fully connected layers, different pooling layers, batch normalization layers, upsampling
layers, and concatenation operations. Importantly, various layers may be subject to some
parameters constraints to keep the compatibility with the Xilinx toolchain. Additionally,
some layers (e.g., softmax and sigmoid) are compatible with the Xilinx toolchain but are
not utilized by the DPU and instead delegated to the CPU.

Once the model is trained, it can be evaluated on the test subset (elaborating appro-
priate training/validation/test splits is application-dependent and should be done with
care, as incorrectly determined subsets may lead to over-optimistic conclusions on the
performance of deep models [22]). To fully track the model’s abilities, the quality metrics
during the deployment are captured (for all intermediate models that are elaborated during
this process). The model is then saved in a representation that is specific to the used Python
AI library and can be deployed on an edge device.

Afterwards, the model trained in full precision is quantized and compiled—these
operations transform it into a model graph representation that describes operations per-
formed on the DPU to execute the inference process. Quantization and compilation are
performed by the Vitis Ai tools, provided as command-line programs or Python modules,
as previously, specific for a certain framework. The quantization process changes the
internal representation of the model’s parameters during the inference [29]. Usually, stan-
dard computational platforms perform AI-related calculations on floating point data types
(with varying precision depending on if the model is used on CPUs or GPUs). Since the
DPU operates with a fixed precision, the models are adjusted (i.e., quantized) to perform
operations on the DPU compatible 8-bit integer value types. The quantization task is run
iteratively using a calibration dataset (being approx. 10% of the available training data,
as suggested by Xilinx [27]), which is used to determine the range of input values and
internal representations of the corresponding parameters. It is worth mentioning that an
appropriate selection of the calibration set is pivotal, especially in the case of multi-source
training samples. The quantized model can still be executed on a standard PC; hence, one
can evaluate its performance using the unseen test samples, thus verifying the impact of
the quantization process on the abilities of the underlying model.

Finally, the model is compiled and thus translated into a DPU-specific description of
the operation flow. Because of that, this step is specific to the DPU architecture and requires
passing the DPU footprint to succeed. Here, the non-compatible layers of the model may
be disregarded—they have to be either delegated to the CPU or manually run on the DPU.
In the case of the deep learning algorithms investigated in this work, the disregarded
layers include softmax (Deep Earth and Deep Mars) and sigmoid (Deep Moon). The model
preparation process may include some additional optimization steps, such as pruning the
original deep architecture [30]. It may ultimately help us reduce the network’s size by
eliminating, e.g., redundant parameters and/or connections in the model, which have
minimal impact on the overall accuracy of the algorithm [29].

2.2.2. The Model Runner for Embedded Applications

The output of the compilation process is a deep model file containing the description
of GPU utilization to perform the inference. However, this is not enough to run an
inference on an embedded system. Therefore, an accompanying runner application is
required to communicate with the DPU—it has to use Linux libraries and runtime to
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establish a connection with the DPU. These are available for C++ and Python programming
languages [27,31].

For performance reasons, the C++ language was used to develop the embedded
application. This means that the application has to be cross-compiled for the ARM CPU-
based Linux running on the embedded system. Besides handling DPU communication
and data loading, the app may also perform the operations delegated to the CPU. In the
investigated case, the output softmax (Deep Earth, Deep Mars) and sigmoid (Deep Moon)
operations are executed on the CPU. Interestingly, Vitis AI offers a possibility of manual
softmax execution on DPU, which requires special hardware configurations—it might be
beneficial to explore this possibility for models that extensively utilize such operations
(here, softmax is calculated over small vectors; 9 values for Deep Earth, and 6 for Deep
Mars). The sigmoid operation, which is used by Deep Moon, is not supported by DPU at
this moment.

The implementation of data loading and DPU utilization is up to the developer of the
embedded application. In the investigated case, the data are loaded by a single thread—this
does not concern the MLPerf metrics since only the inference times are measured. However,
this may be further optimized for the sake of real-life scenarios performance. The inference
process and CPU-delegated layers calculations are, however, parallelized. Each MLPerf
inference query is divided equally between CPU workers, where each worker owns a
separate connection with the DPU. Furthermore, it is possible to create more CPU threads
than DPU cores—in this case, the DPU cores are shared between the CPUs. The scheme
enables the parallelization of CPU-delegated calculations; for example, some threads may
calculate softmax operations while the others wait on the DPU. Multithreaded execution
may additionally utilize heavier parallel read and write to the DPU, which is offered by
Xilinx. Since the CPU workers send and receive data to the DPU sample by sample, it is
pointless to run configurations with fewer CPU threads than DPU cores. (This fact has also
been confirmed experimentally.)

2.3. The Benchmarking Scenarios and Metrics

The proposed benchmarking scenarios are built upon the approach introduced in MLPerf,
and three test modes are utilized: Offline, Single-Stream, and Multi-Stream. Each mode
supplies the inference system with data queries, where a single portion of data is sent to
the inference system in various ways. A single query can contain an arbitrary number of
samples depending on a given benchmarking scenario. One specific constraint imposed by
MLPerf is that samples in each query must be in the contiguous memory layout, i.e., in the
flat contiguous buffer. The size and dimension of a sample are dependent on the specific
deep network architecture, e.g., it can be a 2D image or a single hyperspectral pixel. It is
worth mentioning that the proposed benchmarking modes allow us to effectively capture a
range of different real-life use cases in which the data are acquired using a single/multiple
sensors and in which various levels of parallelization are possible.

Therefore, the following test modes to benchmark deep learning models are considered:

• Offline mode. In this mode, the entire dataset over which the inference will be
performed is loaded into RAM at startup (thus, a single query is utilized). The total
inference time is measured (excluding the data loading and prepossessing time). The
performance metric becomes the sample throughput (samples per second). The offline
mode benchmarks full performance under heavy load in scenarios where a large
portion of data is gathered for the inference.

• Single-Stream mode. In this mode, one sample per query is sent to the inference
system. The next query is not fed until the previous response has been received.
The time of inference duration (or latency) is measured for each query, and the
performance metric is the 90th percentile of latency to filter out the outlying values of
this metric. The single-stream mode covers the streaming-like scenarios where the
parallelization possibilities are limited because the samples come one at a time.
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• Multi-Stream mode. In this scenario, a query of N samples is supplied in every time
interval of length T, where T is benchmark-specific and also acts as the latency bound.
If the inference system is available, it processes the incoming query. Otherwise, it
delays the remaining queries by one interval. Here, no more than pQoS% of the queries
may produce one or more skipped intervals to meet the Quality-of-Service (QoS)
requirement. The performance metric becomes the integer value quantifying the
number of streams that the system supports while meeting the QoS requirement. This
mode is heavily parameterized and can be tested on multiple settings (with varying
numbers of threads, querying interval, and more). The Multi-Stream mode measures
real-time processing capabilities in situations where data from N sensors or a series
of N images is to be processed in a single query per a given interval. The multi-
stream mode investigates the online streaming capabilities in parallel environments,
e.g., processing data captured using multiple sensors.

Each benchmarking scenario can be run per setup, being a combination of a specific
deep network model running on a specific piece of hardware; hence, one can refer to a
setup using a setup tuple, e.g., Deep Earth, PetaLinux 2020.1 distro, 1 Thread, 1 DPU core
(frequency Hz, architecture), on Leopard DPU EVALB ZU9 model.

3. Experiments

The study is divided into three experiments (related to three different use cases)
concerning HSI segmentation using Deep Earth (Section 3.1), classification of Mars im-
ages using Deep Mars (Section 3.2), and detection of craters on Moon using Deep Moon
(Section 3.3). Here, the experimental settings are presented, and the results are discussed
in detail. The models were coded in Python 3.8 with the TensorFlow 2.3 backend.

3.1. Use Case 1: Hyperspectral Image Segmentation Using Deep Earth

The training of the Deep Earth (using the ADAM optimizer [32] with the categorical
cross-entropy loss, and the learning rate of 0.001, β1 = 0.9, and β2 = 0.999) finished if after
15 consecutive epochs, the accuracy over the validation set V (10% of randomly picked
training pixels) does not increase.

To quantify the performance of Deep Earth, the overall and balanced accuracy (OA and
BA, respectively) for all classes, together with the values of the Cohen’s kappa κ = 1− 1−po

1−pe
,

where po and pe are the observed and expected agreement (assigned vs. correct label)
and −1 ≤ κ ≤ 1 [33], are reported. To train the model, a dataset consisting of 225 samples
per class was incorporated. All metrics are obtained for the remaining (unseen) test data.
Note that this approach can be used for quantifying the classification performance of
spectral CNNs without the training-test information leak that would have happened for
spectral-spatial models, which utilize the pixel’s neighborhood information during the
classification [22].

The initial approach consisted in exploiting 1-D convolutions within the spectral CNN.
However, the current implementation of the Vitis AI TensorFlow 2 quantizer does not
support any 1-D operations [30]; hence, all such layers were expressed in terms of 2-D
convolutions. The model was thus recreated to fit the framework requirements without any
significant impact on its abilities. In Table 6, the quality metrics captured for all versions of
Deep Earth that were generated within the deployment pipeline (i.e., the original model
trained and utilized in full precision, the model after quantization and compilation) are
gathered. One can appreciate that all metrics are consistently very high without any
significant performance deterioration across all versions of Deep Earth.
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Table 6. The change of metrics across different stages of Deep Earth deployment.

Deployment Stage Overall Accuracy Balanced Accuracy Cohen Kappa (κ)

Floating-point (original) 0.872 0.897 0.831
Quantized—PC 0.872 0.893 0.830
Compiled—edge device 0.867 0.889 0.824

3.2. Use Case 2: Classification of Mars Images Using Deep Mars

Deep Mars was trained using 80% of the dataset (10% was held out for each validation
and training sets). The data are available through the Jet Propulsion Laboratory webpage
at https://pds-imaging.jpl.nasa.gov/, accessed on 29 September 2021. It was trained using
an ADAM optimizer (categorical cross entropy loss), with a learning rate of 0.001 and
32 samples per batch. The training was stopped after five epochs.

While deploying the original Deep Mars model (presented in Table 3), we encountered
a compilation error that the maximum kernel size of a 2-D convolution was exceeded.
According to the documentation, the Vitis AI compiler tries to optimize the (Flatten→
Dense) connection by expressing the underlying operation as a 2-D convolution. Such an
optimization, being reasonable from the mathematical point of view (since any dense layer
can be expressed in terms of convolutions losslessly), introduces heavy restrictions on the
scale of the operands (specifically: the size of the input tensor). To succeed, the convolu-
tional kernel of the new artificial layer needs to fit the whole incoming tensor at once. Only
then can it efficiently convolve over the dense layer weights, each time producing a single
number (which, indeed, is a dot product between flattened input and the weights vector).
The current Xilinx implementation does not allow disabling this behavior, yet the authors
claim to remove the limitation of the kernel size in future releases.

For this experiment, the dimensionality of the tensor coming into the flattened layer
was reduced, so two more sets of (convolution+pooling) layers were added before the
flattened one (they are boldfaced on the architecture scheme, see Table 3). The weights of the
initial layers were preserved, needing to retrain only the newly added (or modified) ones.
Having the same training setup as for the original layer (except utilizing 9 epochs instead
of 5), the accuracy was improved by about 5%. As a side effect, the number of trainable
parameters of the model shrank by over 93%. The model could be compiled without any
disruptions afterward. Although there is a visible drop in BA for the compiled Deep Mars
model that is ready to be deployed on the edge device (Table 7), other classification metrics
reveal that the deployed model still offers high-quality performance.

Table 7. The change of metrics across the different stages of Deep Mars deployment.

Deployment Stage Overall Accuracy Balanced Accuracy Cohen Kappa

Floating-point (original) 0.906 0.798 0.856
Quantized—PC 0.903 0.792 0.852
Compiled—edge device 0.895 0.707 0.840

3.3. Use Case 3: Detection of Craters on Moon Using Deep Moon

The Deep Moon model was trained with the subset of 30,000 training images, whereas
the validation and test sets contained 5000 images each. The training process utilized the
Adam optimizer (with the binary cross-entropy acting as the loss function), four epochs
(with no early stopping), a learning rate of 0.0001, 0.15 dropout probability, and a batch
size of 32 images.

The output of the CNN model is a mask of candidate craters’ edge locations. To create
a list of detected craters with their spatial parameters (such as radius and coordinates),
the mask needs to be quantized to 0–1 values at a given threshold and then processed
by the template matching-based algorithm. The algorithm involves sliding rings of radii
r ∈ [rmin, rmax] through the image in an iterative manner, seeking the areas for which the

https://pds-imaging.jpl.nasa.gov/
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correlation with the ring is the highest. If the score exceeds a threshold (being a hyper-
parameter of the algorithm that could be fine-tuned over the validation images), a crater
of radius r in that location is registered. In case the neighboring pixels are also highly
correlated, the dominant one is selected, whereas others are rejected in order to prevent
registering multiple detections that all refer to the same crater. The process is depicted in
Figure 5.

Figure 5. The template matching algorithm utilized in the Deep Moon pipeline. The left image is
the input (output of the CNN model). The middle one shows the already quantized mask with the
ring sliding across the image (red). The right one shows locations of those craters, for which the
correlation between the ring and the image at that place exceeded the threshold and was dominant
in their neighborhood.

The very two-stage nature of the system (i.e., detection of crater candidates using a
deep model, and then pruning false positives through template matching) compels the
two-stage evaluation approach. Firstly, the quality of the segmentation masks generated
by the CNN model using binary cross-entropy between the predicted and ground truth
images is evaluated. It fulfills the role of being a loss function during training but does
not provide much insight into the quantitative assessment of the spotted craters. For this
purpose, the whole system after the template matching step using the Average Precision
(AP) metric is evaluated.

Since the Deep Moon detection system differs from the traditional bounding-box-
oriented approaches, the following way of calculating the metric in the Deep Moon case
is utilized:

1. Gather all predictions (correct and incorrect) over the whole test dataset and sort
them according to their confidence level in descending order. The confidence of the
detection is its correlation registered during the template matching. Note that only
detections that have surpassed the template matching threshold and were dominant
in their neighborhood are considered.

2. Count the number of all (n) and correct (c) detections.
3. Iteratively, for i ∈ [1, n]: calculate the current recall as: (correct detections in 1 . . . i)/c

and the current precision as: (correct detections in 1 . . . i)/i. Note that the recall will
slowly increase from 0 to 1 as correct detections increase.

4. Plot the precision-recall plot and calculate the area under the curve (AUC). Opposite
to recall, precision will act “chaotically” at first, (e.g., when the sequence of detections
starts with a correct detection followed by an incorrect one), but the impact on AUC
of such peaks is negligible.

To make the assessment exhaustive, the basic statistics, such as global recall (correct detections
all craters ),

global precision ( correct detections
all detections ), global F1-score (2 · precision·recall

precision+recall ), and loss (binary cross
entropy), are also attached. These, however, should be treated secondarily in the case
of the object detection task. In Table 8, the metrics obtained for all versions of the Deep
Moon model are gathered. As in the previous algorithms, the deployment process does
not adversely affect the abilities of the technique. These experiments show that quantizing
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and compiling the model for the target edge device allow us to maintain high-quality
operational capabilities of the algorithms in a variety of computer vision tasks.

Table 8. The change of metrics across different stages of Deep Moon deployment.

Deployment Stage AP Precision Recall F1 Loss

Floating-point (original) 0.827 0.812 0.638 0.693 0.0494
Quantized—PC 0.851 0.833 0.576 0.659 0.0505
Compiled—edge device 0.857 0.837 0.587 0.669 0.0504

In Figure 6, the examples of selected scenes (of varying complexity), together with
the corresponding detections elaborated using the original deep model, are rendered (the
false positives are annotated in green, whereas false negatives are in red; additionally,
the corresponding quality metrics are presented). Note that the number of craters in the
input images can significantly vary. However, the algorithm’s performance does not seem
to be impaired by numerous detections in a single frame. Such qualitative analysis can help
better understand the capabilities of the algorithms in image analysis tasks and should be
an important part of any experimental study [34].

Figure 6. Examples of correct and incorrect predictions made for scenes of varying complexity. Going
from the left: (i) input image, (ii) output of the model, (iii) craters detected by the template-matching
step (false positives are rendered in green), and (iv) the ground truth (false negatives are in red).

3.4. Benchmarking Hardware Architectures for On-Board Processing

As stated in Section 2.3, the MLPerf-inspired benchmarks (with different scenarios) are
performed for models deployed on the edge hardware (Section 2.2)—note that the device
can be configured in different ways, as discussed later in this section. However, running
the benchmarks on an on-the-edge device imposes additional memory constraints, as the
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memory capacities are much smaller than those of standard workstations. For this reason,
the test sets have to be limited in size in order to fit in RAM (this is especially important
for the Offline mode, where the entire dataset has to be loaded into a continuous memory
region). Since the Deep Mars test set contains only 382 samples, it is copied three times
in order to extend the benchmarking time. Overall, the test sets included 40,526 samples
for Deep Earth, 1146 samples for Deep Mars, and 500 for Deep Moon. Even though these
numbers are much smaller than recommended by MLPerf, they are specific to the hardware
constraints. Finally, the idle power consumption of Leopard is slightly over 12 W without
any energy-saving optimizations. The Multi-Stream scenario is parameterized by the time
interval value T. MLPerf suggests this parameter to be 50 ms, which was used for Deep
Mars and Deep Moon. However, Deep Earth, which is a fairly small CNN, can reach a very
high number of streams processed in 50 ms. Hence, the interval value of 5 ms for Deep
Earth was used to keep the benchmark execution time reasonable.

Given the available hardware resources, a subset of possible DPU configurations for
the benchmarks was selected. It includes the most parallelized versions of the simplest B512
architecture—4 × B512 (with 4 CPU threads) and 6 × B512 (with 6 CPU threads). For the
intermediate architecture B1024, the 2× B1024 (with 2 and 4 CPU threads), 4× B1024 (with
4 CPU threads), and 6 × B1024 (with 6 CPU threads) configurations are used. The most
powerful B4096 DPU setup is utilized in 1 × B4096 (1, 2, and 4 CPU threads), 2 × B4096 (2
and 4 CPU threads), and 3 × B4096 (3 and 6 CPU threads) parallelization variants. The
6 × B512, 6 × B1024, and 3 × B4096 architectures are the most complex configurations that
can be synthesized on the Leopard DPU.

The benchmarking results are gathered in Tables 9–11 (Offline mode), Tables 12–14
(Single-Stream mode), and in Tables 15–17 (Multi-Stream mode). The peak power con-
sumption values for each benchmark are summarized in Tables 18–20. The experimental
results are presented for each deep learning algorithm, DPU architecture, and the number
of CPU threads.

Table 9. Offline benchmark results (throughput in samples per second) for the B512 DPU architecture.
Here, OOM denotes out of memory.

Model
4 × B512 6 × B512

4 × CPU 6 × CPU

Deep Earth 5511.66 7188.76
Deep Mars 548.95 820.80
Deep Moon 3.96 OOM

Table 10. Offline benchmark results (throughput in samples per second) for B1024 DPU architecture.

Model
2 × B1024 4 × B1024 6 × B1024

2 × CPU 4 × CPU 4 × CPU 6 × CPU

Deep Earth 3854.33 4463.25 6380.91 7823.47
Deep Mars 426.47 489.62 831.63 1200.24
Deep Moon 3.84 3.93 7.60 OOM

Table 11. Offline benchmark results (throughput in samples per second) for B4096 DPU architecture.

Model
1 × B4096 2 × B4096 3 × B4096

1 × CPU 2 × CPU 4 × CPU 2 × CPU 4 × CPU 3 × CPU 6 × CPU

Deep Earth 2755.48 3682.80 3614.09 5362.05 6497.83 6465.50 6991.88
Deep Mars 493.23 729.94 707.38 959.15 1329.50 1361.47 1727.74
Deep Moon 6.75 7.41 7.35 13.43 14.60 19.35 OOM
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One can appreciate the fact that using more advanced DPU architectures results in
larger throughput values in the Offline mode. For example, see 6 × B1024 vs. 6 × B512
(both with 6 CPU threads) for Deep Mars—it results in 46% better throughput per second
(Tables 9 and 10). This is universal to all models; however, the increase may vary between
the models and DPUs. Here, when comparing 4× B1024 and 4× B512, one can observe the
16% improvement for Deep Earth, 51% for Deep Mars, and 92% for Deep Moon (all with 4
CPU threads; Tables 9 and 10). It indicates that larger models benefit more from the complex
hardware architectures. Additionally, exploiting the DPUs with more inference cores also
improves the throughput. One can notice that utilizing 4 × B1024 instead of 2 × B1024
improves the metric by 70% for Deep Mars (both configurations with 4 CPU threads;
Table 10). An increase in the number of cores may lead to a nearly directly proportional
increase in performance. For example, 3 × B4096 (3 CPU threads) vs. 2 × B4096 (2 CPU
threads) vs. 1 × B4096 (1 CPU thread) leads to gains of 187% and 99% of throughput for
Deep Moon (Table 11).

Increasing the number of CPU threads often leads to an improvement in throughput.
For the 2 × B4096 architecture, changing the number of threads from 2 to 4 increases
the throughput by 21% for Deep Earth, by 39% for Deep Mars, and 9% for Deep Moon
(Table 11). However, using too many CPU threads in regard to the available DPU cores can
lead to worse throughput, as many CPU threads can compete for DPU access at the same
time and various problems, such as starvation may occur. For example, for the 1 × B4096
architecture, using 4 threads instead of 2 leads to slight decrease in throughput for all
models (Table 11). The best throughput for Deep Earth was obtained for the 6 × B1024
architecture with 6 CPU threads (Table 10). In the case of Deep Mars and Deep Moon,
the best Offline results were achieved with 3 × B4096 (6 CPU threads for Deep Mars and
3 for Deep Moon) architecture (Table 11). Deep Moon, being the most complex network,
demands a lot of memory to establish connections with the DPU. For the configurations
with the largest number of threads, there was not enough space to allocate memory for the
DPU connections. This problem was marked as OOM (out-of-memory) in the tables.

Table 12. Single-Stream benchmark results (90-percentile latency bound) for B512 DPU architecture.

Model
4 × B512 6 × B512

4 × CPU 6 × CPU

Deep Earth 0.75 ms 0.75 ms
Deep Mars 7.52 ms 7.52 ms
Deep Moon 1009.80 ms OOM

Table 13. Single-Stream benchmark results (90-percentile latency bound) for B1024 DPU architecture.

Model
2 × B1024 4 × B1024 6 × B1024

2 × CPU 4 × CPU 4 × CPU 6 × CPU

Deep Earth 0.58 ms 0.60 ms 0.62 ms 0.63 ms
Deep Mars 4.98 ms 5.00 ms 5.85 ms 5.95 ms
Deep Moon 521.08 ms 521.06 ms 525.20 ms OOM

Table 14. Single-Stream benchmark results (90-percentile latency bound) for B4096 DPU architecture.

Model
1 × B4096 2 × B4096 3 × B4096

1 × CPU 2 × CPU 4 × CPU 2 × CPU 4 × CPU 3 × CPU 6 × CPU

Deep Earth 0.42 ms 0.42 ms 0.45 ms 0.42 ms 0.44 ms 0.46 ms 0.48 ms
Deep Mars 2.30 ms 2.32 ms 2.34 ms 2.31 ms 2.34 ms 2.40 ms 2.41 ms
Deep Moon 148.00 ms 148.24 ms 148.23 ms 148.25 ms 148.30 ms 152.27 ms OOM
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The Single-Stream metrics also benefit from more advanced architectures. Tables 12–14
show that the more complex architectures lead to smaller values of latency. Since this mode
processes sample by sample (one at a time), it does not benefit from parallelization. Thus,
increasing the number of DPU cores and CPU threads does not improve latency. Using
more CPU cores leads to a slight increase in the Single-Stream metrics, as the number
of parallel threads increases while they are of no use. The best Single-Stream results for
all networks were achieved by the single threaded configuration of the most complex
4 × B4096 architecture (with a single CPU thread; Table 14).

Table 15. Multi-Stream benchmark results (max number of streams) for B512 DPU architecture.

Model
4 × B512 6 × B512

4 × CPU 6 × CPU

Deep Earth 24 30
Deep Mars 24 36
Deep Moon 0 OOM

Table 16. Multi-Stream benchmark results (max number of streams) for B1024 DPU architecture.

Model
2 × B1024 4 × B1024 6 × B1024

2 × CPU 4 × CPU 4 × CPU 6 × CPU

Deep Earth 18 19 31 36
Deep Mars 20 20 40 54
Deep Moon 0 0 0 OOM

Table 17. Multi-Stream benchmark results (max number of streams) for B4096 DPU architecture.

Model
1 × B4096 2 × B4096 3 × B4096

1 × CPU 2 × CPU 4 × CPU 2 × CPU 4 × CPU 3 × CPU 6 × CPU

Deep Earth 14 18 16 26 28 32 30
Deep Mars 24 35 34 46 63 64 94
Deep Moon 0 0 0 0 0 0 OOM

The Multi-Stream scenario metrics scale similarly to the Offline ones. Utilizing better
DPU architectures, more DPU cores, and CPU threads increases the number of streams.
Going from the 1 × B1024 (1 CPU thread) to 2 × B1024 (2 CPU threads) architecture
yields a doubled stream number for Deep Mars and 72% increase for Deep Earth (Table 16).
The slight decrease in the metrics for 1 × B4096 with four CPU threads is visible (Table 17).
The best Multi-Stream score for Deep Earth was achieved with 6× B1024 and 6 CPU threads
configuration (Table 16). For Deep Mars, the largest stream number was obtained for the
3 × B4096 architecture with 6 CPU threads (Table 17). One can observe that Deep Moon is
not able to deliver real-time operation with the given time interval of 50 ms. Interestingly,
the number of streams for 6 × B512 and 3 × B4096 (both with 6 CPU threads) was the
same (Tables 15 and 17). When comparing these two results in the Offline mode, 6 × B512
achieves slightly better throughput (Tables 9 and 11). Both of these are the configurations
with the largest number of cores for the selected DPU architectures. However, 6 × B512
uses 16% less power in peak while performing better than 3 × B4096 (Tables 18 and 20).
With smaller network architectures, it may be more beneficial to use simpler DPU cores
than fewer intricate ones (when parallel processing is considered).
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Table 18. The peak power consumption during benchmarks for B512 DPU architecture.

Model
4 × B512 6 × B512

4 × CPU 6 × CPU

Deep Earth 13.34 W 15.85 W
Deep Mars 15.85 W 17.69 W
Deep Moon 14.64 W OOM

Table 19. The peak power consumption during benchmarks for B1024 DPU architecture.

Model
2 × B1024 4 × B1024 6 × B1024

2 × CPU 4 × CPU 4 × CPU 6 × CPU

Deep Earth 12.16 W 12.29 W 15.89 W 18.82 W
Deep Mars 13.26 W 13.30 W 18.90 W 25.52 W
Deep Moon 13.72 W 13.75 W 19.98 W OOM

Table 20. The peak power consumption during benchmarks for B4096 DPU architecture.

Model
1 × B4096 2 × B4096 3 × B4096

1 × CPU 2 × CPU 4 × CPU 2 × CPU 4 × CPU 3 × CPU 6 × CPU

Deep Earth 11.98 W 11.46 W 11.44 W 14.85 W 15.33 W 18.61 W 18.85 W
Deep Mars 14.00 W 14.30 W 14.15 W 21.77 W 21.84 W 31.83 W 32.47 W
Deep Moon 16.07 W 16.01 W 15.97 W 26.91 W 27.14 W 38.35 W OOM

The power consumption raises with the number of DPU cores and DPU architecture
complexity. More advanced models are also more power demanding—while the peak
power for Deep Earth with 6 × B1024 (6 CPU threads) and 3 × 4096 (6 CPU threads) is
nearly the same, it raises over 27% for Deep Mars (Tables 19 and 20). The peak power
consumption for all models was highest when using the most intricate 3 × B4096 DPU
architecture (Table 20). Additionally, measuring the operations per second on the DPU
was done using Xilinx tools—the maximum performance was achieved for Deep Moon
with 3 × b3096 architecture and 3 CPU threads. The DPU peaked at 1.094182 TOP/s
(tera-operations per second) per core (over 3 TOP/s total).

The benchmarks indicated that Deep Moon is not able to operate in real-time within
a 50 ms time interval. However, the U-Net architecture was not designed with real-
time operations in mind. Usually, real-time computer vision systems utilize specific
network architectures optimized for fast inference, such as YOLO [35], Fast R-CNN [36],
and RetinaNet [37]. Importantly, Vitis AI is able to exploit such networks for more efficient
real-time tasks (there is a YOLO-v3 example provided by Xilinx).

One can observe that using multiple CPU threads is beneficial to speed up the inference
process. However, some notes about possible CPU starvation in regard to fewer DPU cores
were made. The extra threads in the system may be exploited in different ways to utilize
DPU potential as best as possible. Finally, a more advanced parallelization scheme may be
used to achieve better inference.

4. Conclusions and Future Work

An unprecedented level of success of deep learning has triggered its fast adoption in
virtually all areas of science and various industries. The same route is followed in space ap-
plications, related to Earth observation, autonomy of satellites, or anomaly detection from
telemetry data captured once the spacecraft is operating in orbit. Since transferring large
amounts of data back to Earth, e.g., as in the case of the satellites equipped with hyperspec-
tral imagers, is time-consuming and costly, moving the processing on-board the spacecraft
has become an important research topic nowadays, especially given that there exists high-
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performance hardware, which can be used in orbit. Therefore, verifying and validating
artificial intelligence techniques before deploying them in such constrained execution envi-
ronments are critical to fully understand their functional and non-functional capabilities.

To tackle the problem of thorough verification and validation of deep learning algo-
rithms in space applications, an end-to-end benchmarking approach that allows practition-
ers to capture the most important quality metrics that relate to the performance abilities
of the underlying models, as well as to their inference characteristics was introduced.
The experiments showed that the introduced technique that benefits from the widely-used
Xilinx tools is model-agnostic and straight-forward to use for any deep learning model. We
believe that such benchmarking should become a standard tool for rigorously verifying
the algorithms before deploying them in the wild. It could make the adoption of state-of-
the-art deep learning faster in on-board satellite data analysis faster; thus, it could be an
important step towards exploiting deep learning at the edge in various applications, in both
critical and non-critical missions. Finally, when coupled with the data-level digital twins
that enable us to simulate on-board image acquisition [20], the proposed benchmarking
technique can become a comprehensive tool for assessing the robustness of on-board AI
through various simulations.

Although the deep learning deployment chain allows us to fit a deep model into
the target hardware, there exist several techniques that may be used to further optimize
such models for on-board processing. Our current research efforts are focused on utilizing
knowledge distillation approaches for making deep models more resource-frugal and
better fitted to the underlying hardware [38]. Furthermore, the existing deep learning
models could be further improved through pruning unnecessary (or redundant) parts of
the architecture— Xilinx claims up to 90% parameters reduction during the pruning process
in the built-in deep network pruning tool [27]. Finally, it will be interesting to analyze
not only inference time and efficiency but also the time required for the data loading and
pre/post-processing, as these steps are commonly used in the machine learning-powered
processing pipelines. Here, it may be beneficial to use the excess CPU power for parallel
data loading. Therefore, the problem of the “optimal” utilization of the CPU and DPU
resources remains an interesting research challenge that should be tackled by both machine
learning and embedded hardware communities.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AP Average Precission
ARM Advanced RISC Machines
AUC Area under the curve
BA Balanced Accuracy
CNN Convolutional Neural Network
CPU Central Processing Unit
DCDC Direct Current-Direct Current (converter)
DDR4 Double Data Rate 4
DEM Digital Elevation Map
DNN Deep Neural Network
DPU Deep Learning Processing Unit
FPGA Field Programmable Gate Array
GPU Graphics Processing Unit
HSI Hyperspectral Imaging
HiRISE High Resolution Imaging Science Experiment
JTAG Joint Test Action Group
ML Machine Learning
MPSSE Multi-Protocol Synchronous Serial Engine
OA Overall Accuracy
OOM Out Of Memory
PC Personal Computer
PMOD Peripherial module interface
PU Pavia University (dataset)
QSPI Quad Serial Peripherial Interface
QoS Quality of Service
R-CNN Recurrent Convolutional Neural Network
RAM Random Access Memory
RELU Rectified Linear Unit
SATA Serial AT Attachment
SoC System on a Chip
SoM System on Module
TF TensorFlow
UART Universal Asynchronous Receiver-Transmitter

Appendix A. The Hardware

The benchmarks were carried out on the Leopard DPU Evalboard Model (the block
diagram is shown in Figure A1, whereas a physical board is presented in Figure A2).
The evaluation board is the Leopard DPU flavor designed to support benchmarking and
software tests in laboratory conditions in contrast to the Flight configuration described
in [39]. The Evalboard Model uses a single Trenz TE0808 SoM (system on module) as
a central part. It exposes identical interfaces as Flight configuration of Leopard DPU
(interfaces are connected to the same FPGA banks and use the same voltages). The board
consists of:

• Trenz TE0808 module (XCZU09EG) with 4 GB of DDR4 and built-in QSPI boot
Flash memory.

• Exposed single 1 GbE Ethernet interface.
• XCZU09EG can boot from QSPI, microSD, Ethernet, NAND, or JTAG.
• Exposed 16-line LVDS interface; it is able to handle external image sensors or other

data providers.
• Up to two SATA-III Solid State Drives in M.2 factor.
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• Custom board controller that allows to fully control the board by PC (power control
and monitoring, Linux UART, high-speed data transmission)—it allows using the
board in fully automated Hardware-In-The-Loop tests.

• DCDC converters that convert single external power supply voltage in the range of
9–13 V.

• 4 GB of embedded NAND flash.
• Exposed one USB 2.0 interface (XCZU09EG as a host or on-the-go).
• 4 PMOD sockets routed to PL (one differentially routed).
• Exposed AURORA interface—it can be used to connect two boards together via high-

speed synchronous Gigabit Transceiver GTH interface directly connected to FPGA
GTH transceivers.

• Over temperature protections and a fan controller.
• Exposed Display Port.
• CAN full-speed interface.
• High-speed two-way synchronous series communication (e.g., to connect external

radio module).

Xilinx
Zynq Ultrascale+

ZU9EG

2x SATA3 SSD

1 Gb Ethernet

USB 2.0
host controller

4 GB DDR4Platform controller
+ PSU

Developer PC

Debug headers
PMOD

CAN Displayport

4 GB NAND

Quad GTH
transceivers

USB

Figure A1. The block diagram of the KP Labs Leopard DPU Evalboard used for laboratory benchmarks.

Figure A2. The physical KP Labs Leopard DPU Evalboard Model used for laboratory benchmarks.

The Xilinx Deep Learning Processing Unit is a configurable computation engine
optimized for convolutional neural networks. It can be implemented in the FPGA pro-
grammable logic (PL) portion of XCZU09EG SoM, which is present on the Leopard Eval-
board. The degree of parallelism utilized in the engine is a design parameter and can be
selected according to the target device and application. It is integrated in the FPGA portion
of SoC and connects to CPU and RAM memory by the AXI interfaces. The main principle of
DPU is to behave as a co-processor, having its instructions and scheduler. The DPU settings
and its parallelism (multiple IPs can be integrated in one design, if the size and timing
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constrains allow for doing that) are one of the main design and optimization decisions
that need to be undertaken. Here, the following settings during the models’ evaluation
are considered:

• The number of DPU IPs (1–6). One can incorporate multiple DPU IPs, allowing for
parallel processing of the input samples. Up to 6 DPUs were used (where FPGA
size and timing budget allowed). For the largest DPU (B4096), only 3 IP cores fitted
inside FPGA.

• The DPU Architectures: B512, B1024, B4096. There are multiple dimensions of paral-
lelism in the DPU convolution unit. The different DPU architectures require different
programmable logic resources. The larger architectures can achieve higher perfor-
mance with more resources and more parallelized calculations.

On the other hand, the following settings remain unchanged during the experimentation:

• Clocks: 300 and 600 MHz (clk and clk2x).
• UltraRAM: disabled.
• DRAM: disabled.
• RAM usage: low.
• Channel Augmentation: enabled.
• DepthwiseConv: enabled.
• AveragePool: enabled.
• RELU type: RELU+LeakyRelu+ReLU6.
• DSP48 usage: high.
• Low power: disabled.

For more detailed explanation of DPU architectures and parameters refer to [40].
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12. Caldas, S.; Wu, P.; Li, T.; Konečný, J.; McMahan, H.B.; Smith, V.; Talwalkar, A. LEAF: A Benchmark for Federated Settings. arXiv
2018, arXiv:1812.01097.

13. Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark Analysis of Representative Deep Neural Network Architectures.
IEEE Access 2018, 6, 64270–64277. [CrossRef]

http://doi.org/10.1109/LCA.2019.2907539
http://dx.doi.org/10.3390/s19204375
http://www.ncbi.nlm.nih.gov/pubmed/31658684
http://dx.doi.org/10.1016/j.cja.2019.02.005
http://dx.doi.org/10.1109/MM.2021.3066343
http://dx.doi.org/10.1145/3444692
http://dx.doi.org/10.1155/2019/7218758
http://dx.doi.org/10.1007/978-3-030-32813-9_3
http://dx.doi.org/10.1109/ACCESS.2018.2877890


Remote Sens. 2021, 13, 3981 24 of 24

14. Mattson, P.; Cheng, C.; Coleman, C.; Diamos, G.; Micikevicius, P.; Patterson, D.; Tang, H.; Wei, G.Y.; Bailis, P.; Bittorf, V.; et al.
MLPerf Training Benchmark. arXiv 2019, arXiv:1910.01500.

15. Reuther, A.; Michaleas, P.; Jones, M.; Gadepally, V.; Samsi, S.; Kepner, J. Survey and Benchmarking of Machine Learning
Accelerators. In Proceedings of the 2019 IEEE High Performance Extreme Computing Conference, HPEC 2019, Waltham, MA,
USA, 24–26 September 2019; pp. 1–9.

16. Wang, Y.; Wang, Q.; Shi, S.; He, X.; Tang, Z.; Zhao, K.; Chu, X. Benchmarking the Performance and Energy Efficiency of AI
Accelerators for AI Training. In Proceedings of the 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing, CCGRID 2020, Melbourne, VIC, Australia, 11–14 May 2020; pp. 744–751.

17. Furfaro, R.; Bloise, I.; Orlandelli, M.; Di Lizia, P.; Topputo, F.; Linares, R. Deep Learning for Autonomous Lunar Landing.
Adv. Astronaut. Sci. 2018, 167, 3285–3306.

18. Engineering, I.; Way, E.J.E.R.; Engineering, I.; Way, E.J.E.R. Lunar Landing. pp. 1–16. Available online: https://arc.aiaa.org/doi/
10.2514/6.2020-1910 (accessed on 30 September 2012).

19. Zhang, J.; Xia, Y.; Shen, G. A Novel Deep Neural Network Architecture for Mars Visual Navigation. arXiv 2018, arXiv:1808.08395.
20. Nalepa, J.; Myller, M.; Cwiek, M.; Zak, L.; Lakota, T.; Tulczyjew, L.; Kawulok, M. Towards On-Board Hyperspectral Satellite

Image Segmentation: Understanding Robustness of Deep Learning through Simulating Acquisition Conditions. Remote Sens.
2021, 13, 1532. [CrossRef]

21. Nalepa, J.; Myller, M.; Kawulok, M. Transfer Learning for Segmenting Dimensionally Reduced Hyperspectral Images. IEEE Geosci.
Remote Sens. Lett. 2020, 17, 1228–1232. [CrossRef]

22. Nalepa, J.; Myller, M.; Kawulok, M. Validating Hyperspectral Image Segmentation. IEEE Geosci. Remote Sens. Lett. 2019,
16, 1264–1268. [CrossRef]

23. Wagstaff, K.L.; Lu, Y.; Stanboli, A.; Grimes, K.; Gowda, T.; Padams, J. Deep Mars: CNN Classification of Mars Imagery for the
PDS Imaging Atlas. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, New Orleans, LA, USA,
2–7 February 2018; pp. 7867–7872.

24. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of
the Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012, Lake Tahoe, NV, USA, 3–6 December 2012; 2012; pp. 1106–1114.

25. Silburt, A.; Ali-Dib, M.; Zhu, C.; Jackson, A.; Valencia, D.; Kissin, Y.; Tamayo, D.; Menou, K. Lunar Crater Identification via Deep
Learning. Icarus 2019, 317, 27–38. [CrossRef]

26. Weng, W.; Zhu, X. INet: Convolutional Networks for Biomedical Image Segmentation. IEEE Access 2021, 9, 16591–16603.
[CrossRef]

27. Xilinx. Vitis AI User Guide; Technical Report UG1414 (v1.4); Xilinx: San Jose, CA, USA, 2021.
28. Xilinx. PetaLinux Tools Documentation, Reference Guide; Technical Report UG1144 (v2021.1); Xilinx: San Jose, CA, USA, 2021.
29. Liang, T.; Glossner, J.; Wang, L.; Shi, S.; Zhang, X. Pruning and Quantization for Deep Neural Network Acceleration: A Survey.

Neurocomputing 2021, 461, 370–403. [CrossRef]
30. Xilinx. Vitis AI Optimizer User Guide; Technical Report UG1333 (v1.4); Xilinx: San Jose, CA, USA, 2021.
31. Xilinx. Vitis AI Library User Guide; Technical Report UG1354 (v1.4); Xilinx: San Jose, CA, USA, 2021.
32. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
33. McHugh, M.L. Interrater Reliability: The Kappa Statistic. Biochem. Medica 2012, 22, 276–282. [CrossRef]
34. Wu, Y.; Wan, G.; Liu, L.; Wei, Z.; Wang, S. Intelligent Crater Detection on Planetary Surface Using Convolutional Neural Network.

In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC),
Chongqing, China, 12–14 March 2021; Volume 5, pp. 1229–1234.

35. Redmon, J.; Divvala, S.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings
of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26June–1 July 2016;
pp. 779–788.

36. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
11–18 December 2015; pp. 1440–1448.

37. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell.
2020, 42, 318–327. [CrossRef]

38. Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge Distillation: A Survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [CrossRef]
39. Nalepa, J.; Kuligowski, P.; Gumiela, M.; Drobik, M.; Nowak, M. Leopard: A New Chapter in On-Board Deep Learning-Powered

Analysis of Hyperspectral Imagery. In Proceedings of the 2020 IAC, IAF Earth Observation Symposium, Online, 12–14 October
2020; pp. 1–8.

40. Xilinx. DPUCZDX8G for Zynq UltraScale+ MPSoCs, Product Guide; Technical Report PG338 (v3.3); Xilinx: San Jose, CA, USA, 2021.

https://arc.aiaa.org/doi/10.2514/6.2020-1910
https://arc.aiaa.org/doi/10.2514/6.2020-1910
http://dx.doi.org/10.3390/rs13081532
http://dx.doi.org/10.1109/LGRS.2019.2942832
http://dx.doi.org/10.1109/LGRS.2019.2895697
http://dx.doi.org/10.1016/j.icarus.2018.06.022
http://dx.doi.org/10.1109/ACCESS.2021.3053408
http://dx.doi.org/10.1016/j.neucom.2021.07.045
http://dx.doi.org/10.11613/BM.2012.031
http://dx.doi.org/10.1109/TPAMI.2018.2858826
http://dx.doi.org/10.1007/s11263-021-01453-z

	Introduction
	Related Work and Motivation
	Contribution

	Benchmarking Deep Learning for Selected On-Board Applications Related to Image Analysis
	The Models
	Deep Earth
	Deep Mars
	Deep Moon

	Deployment Toolchain
	Preparing Deep Models for Deployment
	The Model Runner for Embedded Applications

	The Benchmarking Scenarios and Metrics

	Experiments
	Use Case 1: Hyperspectral Image Segmentation Using Deep Earth
	Use Case 2: Classification of Mars Images Using Deep Mars
	Use Case 3: Detection of Craters on Moon Using Deep Moon
	Benchmarking Hardware Architectures for On-Board Processing

	Conclusions and Future Work
	The Hardware
	References

