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Abstract: The available stereo matching algorithms produce large number of false positive matches
or only produce a few true-positives across oblique stereo images with large baseline. This undesired
result happens due to the complex perspective deformation and radiometric distortion across the
images. To address this problem, we propose a novel affine invariant feature matching algorithm
with subpixel accuracy based on an end-to-end convolutional neural network (CNN). In our method,
we adopt and modify a Hessian affine network, which we refer to as IHesAffNet, to obtain affine
invariant Hessian regions using deep learning framework. To improve the correlation between
corresponding features, we introduce an empirical weighted loss function (EWLF) based on the
negative samples using K nearest neighbors, and then generate deep learning-based descriptors
with high discrimination that is realized with our multiple hard network structure (MTHardNets).
Following this step, the conjugate features are produced by using the Euclidean distance ratio as the
matching metric, and the accuracy of matches are optimized through the deep learning transform
based least square matching (DLT-LSM). Finally, experiments on Large baseline oblique stereo images
acquired by ground close-range and unmanned aerial vehicle (UAV) verify the effectiveness of the
proposed approach, and comprehensive comparisons demonstrate that our matching algorithm
outperforms the state-of-art methods in terms of accuracy, distribution and correct ratio. The main
contributions of this article are: (i) our proposed MTHardNets can generate high quality descriptors;
and (ii) the IHesAffNet can produce substantial affine invariant corresponding features with reliable
transform parameters.

Keywords: large baseline; oblique stereo images; affine invariant features; convolutional neural
network; deep learning; least square matching

1. Introduction

Large baseline oblique stereo images play a crucial role in achieving realistic three-
dimensional (3D) reconstruction [1], topographic mapping [2] and object extraction [3],
owing to the advantages of stable image geometry, extensive coverage as well as abundant
textures across the images. However, practitioners significantly change the viewpoints by
increasing the baseline and oblique angle between the cameras, which lead to significant
geometric deformation, radiometric distortion and local surface discontinuity across ac-
quired images. Therefore, the large baseline oblique image matching still remains an open
problem for practical use in both photogrammetry [4] and computer vision [5].

In the past few decades, researchers have proposed numerous feature matching
algorithms invariant to certain transformations [6–9], most of which were targeting wide
baseline stereo images. The popular feature matching methods, including but not limited
to, scale invariant feature transform (SIFT) algorithm [6] and its modifications [7–9], mainly
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focus on extracting scale invariant features by constructing Gaussian pyramids while
discarding the effects of geometric distortions such as affine distortion [10]. For addressing
this shortcoming researchers have published affine invariant feature detectors [11–14],
such as Harris-affine and Hessian-affine [11]. These more advanced algorithms exploit
the auto-correlation matrix to iteratively estimate affine invariant regions. However, as
the feature matching is relatively independent of feature detection, it was inevitable that
the conjugate centers of affine invariant regions have more or less accidental errors. To
improve the precision of conjugate points, Yao et al. [15] proposed a multi-level coarse to
fine matching strategy where the errors of coordinates are compensated by least square
matching (LSM). This process removed numerous controversial matches which were not
beneficial to high quality 3D scene reconstruction. In [16], Mikolajczyk et al. designed a
comprehensive evaluation that showed the maximally stable extremal regions (MSERs) [12]
surpassed other algorithms in case of viewpoint changes, and further revealed that the SIFT
descriptor performed best in most cases [17]. Despite these attempts in the literature and
approaches to introduce affine invariant feature matching algorithms, the feature matching
problem still exists for large baseline oblique stereo images with complex perspective
distortions. Use of any aforementioned approaches on these images result in many false
positives and few true positives, even some optimal integration strategies are adopted [15].

Over the past several years, deep learning has been shown to be capable of feature
expression and generalization [18], which may provide novel references resulted in being
used for large baseline oblique stereo image matching [19–22]. The area of CNN based
detection learning is an active area of research. In [18], authors presented the first fully
general formulation for learning local covariant feature detectors via a Siamese neural
network. Based on this work, authors of [19] proposed to improve the detected features
by enforcing known discriminability of pre-defined features. This treatment, however,
has limited potency of the algorithm to these pre-defined features. In order to solve this
problem, Doiphode et al. [20] introduced a modified scheme by incorporating triple co-
variant constraints which can learn to extract robust features without the need to define
pre-defined features. A more effective feature detection approach is to detect the location
of feature points by using a handcrafted algorithm and learn the direction or affine trans-
formation of feature points by using a CNN [21]. Despite the fact that the estimated affine
transformation using this method surpasses many handcrafted methods, it is not precise
enough, compared to the MSERs [12]. Detone et al. [22] presented a SuperPoint network
for feature point detection based on a self-supervised framework of homographic adaption.
The final system performed well for geometric stereo correspondence.

Recently, CNN based descriptor learning has attracted great attention. By designing a
CNN using L2Net, Tian et al. [23] proposed an approach to learn compact descriptors in
the Euclidean space. This approach has shown performance improvements against existing
handcrafted descriptors. Inspired by SIFT matching criterion, Mishchuk et al. [24] intro-
duced HardNet based on L2Net to extract better descriptors with the same dimensionality
as the SIFT descriptors. The HardNet structure, which was characterized by a triplet margin
loss, was shown to maximize the distance between the closest positive and closest negative
patches, and thus generated distinctive set of descriptors. Mishkin et al. [25] presented the
AffNet architecture to learn affine invariant regions for wide baseline images. The AffNet
architecture is modified from HardNet by reducing the number of dimensions by one half
and final layer of 128 dimensions in HardNet was replaced with 3 dimensions representing
the affine transformation parameters. Wan et al. [26] proposed a pyramid patch descriptor
(PPD) based on a pyramid convolutional neural triplet network. This deep descriptor
improved the matching performance for image pairs with both illumination and viewpoint
variations. In a pioneering work, Han et al. [27] introduced a Siamese network architecture
for descriptor learning. Later, In order to consider the impact of negative samples on
network training, Hoffer et al. [28] proposed a triplet network architecture to generate the
deep learning descriptors. Following this work, both SOSNet [29] and LogPolarDesc [30]
focused on improving sampling schemes and loss functions. However, there are only a few
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algorithms that enhance descriptor performance via network improvements. Moreover,
some studies combine additional information, such as geometry or global context, such as
GeoDesc [31] and ContextDesc [32].

End-to-end matching approaches using CNN integrate the detector and descriptor
of standard pipelines into a monolithic network, such as the LIFT method [33] that treats
image matching as an end-to-end learning problem. To solve the multiple-view geometry
problem, a self-supervised framework with homographic adaptation was used in [22]
for training interest point detectors and descriptors. The more representative end-to-end
matching networks, such as LFNet [34] and R2D2 [35], achieved joint learning of detectors
and descriptors to improve the stability and repeatability of feature points in various cases.
The extensive tests provided in [36] revealed that, in spite of the improved performance of
end-to-end image matching networks, they cannot surpass handcrafted algorithms and
multistep solutions.

The aforementioned approaches have several shortcomings when attempting to auto-
matically produce accurate matches between large baseline oblique stereo images:

1. complex geometric and radiometric distortions inhibit these algorithms to extract
sufficient invariant features with a good repetition rate, and thus it would increase
the probability of outliers;

2. Universally repetitive textures in images may result in numerous non-matching
descriptors with very similar Euclidean distances, due to the fact that the minimized
loss functions only consider the matching descriptor and the closest non-matching
descriptor;

3. Because of the fact that feature detection and matching are carried out independently,
the feature points to be matched using above methods can only achieve pixel-level
accuracy.

In order to address these problems, this article first generates affine invariant regions
based on a modified version of the Hessian affine network (IHesAffNet). Following
this step, we construct the MTHardNets and generate robust deep learning descriptors in
128 dimensions. Afterwards, identical regions are found using the nearest neighbor distance
ratio (NNDR) metric. Furthermore, the positioning error of each match is effectively
compensated by deep learning transform based least square matching (DLT-LSM), where
the initial iterating parameters of DLT-LSM are provided based on the covariance matrix
of deep learning regions. We conducted a comprehensive set of experiments on real large
baseline oblique stereo image pairs to verify the effectiveness of our proposed end-to-end
strategy, which outperforms the available state-of–the–art methods.

Our main contributions are summarized as follows. First, the improved IHesAffNet
can obtain a sufficient number of affine regions with better repeatability and distribution.
Second, the proposed MTHardNets can generate feasible descriptors with high discrim-
inability. Third, the subpixel matching level can be achieved by DLT-LSM strategy for large
baseline oblique images.

The remainder of this article is organized as follows. In Section 2, we present our
approach in detail. In Section 3, we present the results. Discussion on the experimental
results is given in Section 4. Section 5 concludes this article and presents future work.

2. Methodology

The purpose of this article is to automatically obtain a sufficient number of precise
matches from large baseline oblique stereo images. Our proposed matching method is
illustrated in Figure 1 and involves two main stages. In the first stage, the objective
is to detect adequate affine invariant features with a uniform spatial distribution and
generate distinctive descriptors. This stage is the basis and key for matching large baseline
oblique images. In the second stage, the objective is to produce corresponding features and
compensate for the position errors of the matches. This stage further verifies the matches
achieved in first stage. We will detail the methodology in the following sections.
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Figure 1. Flow chart of the proposed approach.

2.1. IHesAffNet for Feature Extraction

The quantity and quality of matches can be directly determined by feature detection.
Many different deep learning structures for feature extraction were studied in [36] which
concludes that it is difficult to select a learned detector network that can adapt to all
images in all cases. However, the AffNet has shown to be more robust than other methods
especially in wide baseline matching. Therefore, the AffNet is exploited to detect local
invariant features in this article. There are seven convolutional layers in AffNet architecture,
which was inherited from HardNet [24], but the number of dimensions in six former layers
is reduced by one half and the final 128-D descriptor output layer is replaced by a 3-D
output layer. For more details, please refer to [25].

Based on our tests, we verified that the original AffNet can cope with viewpoint and
illumination variation across stereo images. Despite this, we also found that it invariably
did not generate well-distributed and consistent results when both the baseline and oblique
angle between the image pair are large. To overcome this problem, the optimization
strategy, namely IHesAffNet, is proposed as follows.

First, a moderate number of Hessian features are respectively extracted from each
image grid, and we only keep the Hessian points in each grid cell that satisfy the local
information entropy threshold. More specifically, the average information entropy for
arbitrary one grid cell is estimated by

Yi =
1
a

a

∑
u=1

(
−

b

∑
v=1

ψv log2 ψv

)
u

, (1)

where a is the number of Hessian features in the grid cell, b is the number of different pixel
value in feature region, and ψv is the proportion of different pixel in feature region to the
whole image pixels. Then, we set the threshold Ti to be Yi/2 for each grid and adaptively
remove the features with relatively low information entropy, thus we obtain local Hessians
with global uniform distribution.

Second, we improve AffNet by constructing the optimal number of dimensions and
obtain the affine invariant Hessian regions. Specifically, we search for best parameter set
using multiple versions of AffNet with variations of dimensions (see Table 1) using the
Graf1-6 stereo image dataset. The test results that represent these variations are plotted in
Figure 2 which reveals that the AffNet5, namely the original AffNet, can reliably obtain a
certain number of matches, but is slightly outperformed by AffNet6 in most epochs. Thus,
in the remainder of the paper, we use AffNet6 as the improved version to extract affine
invariant regions.

Third, the relatively stable region of each feature is selected by the following dual
criteria: (i) the scale criterion is defined as (W + H)/τ1 ≤ (ε + ϑ)/2 ≤ (W + H)/τ2, where
ε and ϑ respectively represent the major and minor axes of feature region, W and H are
the width and height of image, respectively; (ii) the ratio criterion is defined as ε/ϑ ≤ eT.
Based on a large number of tests, the coefficients of scale criterion τ1 and τ2 are respectively
set to be 160 and 20, and the ratio threshold eT is set to be 6 in the article. The IHesAffNet
for region extraction is concluded as Algorithm 1.



Remote Sens. 2021, 13, 274 5 of 21

Table 1. Multiple versions of AffNet with different number of dimensions.

AffNet
Version

Number of Dimensions in Each Layer

1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer 6th Layer 7th Layer

AffNet1 32 32 64 64 128 128 3
AffNet2 28 28 56 56 112 112 3
AffNet3 24 24 48 48 96 96 3
AffNet4 20 20 40 40 80 80 3
AffNet5 16 16 32 32 64 64 3
AffNet6 12 12 24 24 48 48 3
AffNet7 8 8 16 16 32 32 3
AffNet8 4 4 8 8 16 16 3
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Algorithm 1. IHesAffNet Region Extraction.

Begin
(1) Divide image into grids.
(2) For one grid, extract Hessian points. Compute the average information entropy Yi of the grid by Equation (1).
(3) Set the threshold Ti to be Yi/2, and remove all the Hessian points that lower than Ti .
(4) Go to Step (2) and (3), until all the grids are processed. Then, save the Hessian points.
(5) For one Hessian point, use AffNet6 to extract affine invariant region, until all the Hessian points are
processed. Then, save the Hessian affine invariant regions.
(6) Select the stable regions by dual criteria as (W + H)/τ1 ≤ (ε + ϑ)/2 ≤ (W + H)/τ2 and ε/ϑ ≤ eT.
End

In order to verify the superiority of the IHesAffNet compared to the original AffNet,
we have conducted comparison tests on numerous pairs of large baseline oblique stereo
images. The first aim of this section is to improve the distribution quality of features in
image space; and the second aim is to increase the repeatability score of the detection.
Therefore, the first criterion is the distribution quality, which is detailed in [37,38], and can
be calculated by

E = 1
m ∑m

i=1 Ei
Zi = 3max(θi)/π

MDQ =
√

∑m
i=1
[(

Ei/E
)
− 1
]
/(m− 1)×

√
∑m

i=1(Zi − 1)/(m− 1)
, (2)

where m denotes the total number of Delaunay triangles that are generated based on
feature points and recursive strategy, Ei and max(θi) respectively represent the area and
the maximum angle (radians) of ith triangle, and the lower MDQ value indicates the better
distribution of features. Normally, more matching features indicate higher repeatability
score, thus we use the number of matched features as the second criterion. For a fair
assessment, both AffNet and IHesAffNet employ SIFT descriptor and NNDR metric to
generate matched features. Due to the limited space, we merely present the comparison
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results on Graf1-6 dataset in Figure 3 and Table 2. The results show that our IHesAffNet can
produce more well-distributed features and higher repeatability than the original AffNet.
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to our approach is better.

Table 2. Comparison of the AffNet and IHesAffNet in terms of feature distribution and repeatability
on the Graf1-6 stereo image dataset.

Method Left MDQ Right MDQ Matched Features

The HesAffNet 1.19 1.32 93
Our IHesAffNet 0.84 0.89 136

2.2. Descriptor Generating by MTHardNets

In addition to the feature detection discussed above, the descriptor extraction is
another key factor for obtaining a sufficiently large number of correct matches from stereo
images. The experiments demonstrated in [24] have shown that the HardNet possesses
the most reasonable network architecture and outperforms existing deep learning-based
descriptors. However, the sampling strategy adopted in HardNet only pulls the descriptor
of one negative patch away from the reference or positive patches in the feature space, and
it thus results in descriptors of negative patches with very close distances when there are
extensive repetitive textures across stereo images. Therefore, to effectively avoid matching
ambiguities, we design a schematic of multiple hard networks (MTHardNets) with K
nearest negative samples using the empirical weighted loss function (EWLF), which is
illustrated in Figure 4.

In the proposed network architecture, a batch of matching local patches τ = (ri, pi)i=1...m
is generated, where m is the number of samples in the batch, ri and pi stand for the ref-
erence and positive patches, respectively. A sequence of closest non-matching patches(
n1st

i , n2nd
i , nKth

i
)

is selected for the current matching pair of (ri, pi), where the superscripts
for n 1st, 2nd and Kth respectively represent the first, second and Kth closest distances from
(ri, pi). The current (K + 2) image patches are passed through HardNet and transformed into
unit descriptors with 128-D. Moreover, the distance D1 between matching descriptors Ri and
Pi can be calculated by

DRi, Pi =
√

2− 2RiPi, (3)
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i

)
are respectively outputted. The Lu and wu represent the loss and weight, respectively, and the EWLF can be expressed by L
given in Equations (6) and (7).

Similarly, distances D2 and D3 between non-matching descriptors can also be com-
puted. The purpose of the multiple networks is to push the distance D1 as close as possible
and simultaneously pull the distances D2 and D3 as far as possible to emphasize in class
similarity and across class discrimination.

The proposed K nearest negative sampling strategy with EWLF proceeds by first
estimating a distance matrix D from m pairs of corresponding descriptors (Ri, Pi) based
on HardNet by using Equation (3):

D =



D(R1, P1) · · · D(R1, Pi) · · · D(R1, Pm)
...

. . .
...

...
...

D(Ri, P1) · · · D(Ri, Pi) · · · D(Ri, Pm)
...

...
...

. . .
...

D(Rm, P1) · · · D(Rm, Pi) · · · D(Rm, Pm)

 =



DR1P
...

DRiP
...

DRmP

 =



DRP1
...

DRPi
...

DRPm



T

. (4)

This matrix provides the structure to select the K nearest negative descriptors. For
one pair of corresponding descriptors (Ri, Pi), the respective distance arrays DRiP and
DRPi are computed. The computed distances provide the K nearest negative descrip-
tors

(
N1st

i , · · · , NKth
i

)
according to values of

(
DRiP, DT

RPi
)
. The selection is achieved by

considering all K nearest negative descriptors and generate S as:

S =



(
R1, P1,

(
N1st

1 , · · · , NKth
1

))
...(

Ri, Pi,
(

N1st
i , · · · , NKth

i

))
...(

Rm, Pm,
(

N1st
m , · · · , NKth

m

))


. (5)
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Based on K nearest negative descriptors, the empirical weighted loss function (EWLF)
is generated using:

L1 = 1
m ∑m

i=1 max
(
0, 1 + D(Ri, Pi)− D

(
(Ri, Pi), N1st

i
))

...
LK = 1

m ∑m
i=1 max

(
0, 1 + D(Ri, Pi)− D

(
(Ri, Pi), NKth

i

)) , (6)

where D
(
(Ri, Pi), NKth

i

)
is the distance between the non-matching and matching descrip-

tors and can be computed by D
(
(Ri, Pi), NKth

i

)
= min

((
Ri, NKth

i

)
,
(

Pi, NKth
i

))
. Finally,

the EWLF model is established as:

L =
K

∑
u=1

wuLu, (7)

where wu represents the empirical weight, and ∑K
u=1 wu = 1.

The key task of EWLF model is to enhance the discrimination of deep learning descrip-
tors among repetitive patterns. In the following, we will empirically determine acceptable
parameters for EWLF model based on the extensive tests. Both theory and experiments
demonstrate that an increase in K improves discriminability of the descriptor for a large
batch size. However, considering the limited GPU memory, we set K to 3 for EWLF calcu-
lations which simplifies the weight group set as W = {(w1, w2, w3)|w1 ≥ 0.50, w1 >w2 >
w3 > 0, w1 + w2 + w3 = 1}.

Applying spatially uniform sampling, we obtain 564 groups of (w1, w2, w3) and the
descriptor discrimination of each weight group can be computed using:

MDD =
1
m

m

∑
i=1

d
(
(Ri, Pi), N1st

i , N2nd
i , N3rd

i

)
, (8)

where d
(
(Ri, Pi), N1st

i , N2nd
i , N3rd

i

)
represents the average distance of matching and non-

matching descriptors. MDD is the metric of descriptor discrimination, such that the higher
MDD value, the better the discrimination of the descriptor is. For each weight group, we
train the MTHardNets based on the EWLF and compute the MDD. The statistical and
comparative result for total weight groups is presented in Figure 5.
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Figure 5. The MDD comparison among 564 groups of (w1, w2, w3) with uniform sampling.

According to Figure 5, the serial number 366 of (0.68, 0.22, 0.10) would achieve the
highest MDD. Therefore, the Equation (7) can be specifically written as

L = 0.68L1 + 0.22L2 + 0.10L3. (9)
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In this article, the EWLF is obtained based on extensive tests, which is also the reason
we refer to it as the empirical weighted loss function (EWLF). The pseudo-code of the
MTHardNets descriptor is outlined in Algorithm 2.

Algorithm 2. MTHardNets Descriptor.

Begin
(1) Given τ = (ri, pi), then select K closest non-matching patches

(
n1st

i , n2nd
i , nKth

i

)
for τ.

(2) Transform current K + 2 patches into unit descriptors with 128-D, and compute distance D1 by
Equation (3). Similarly, compute distances D2 and D3.
(3) Estimate a distance matrix D by Equation (4), then generate S by Equation (5).
(4) Generate EWLF by using S and Equation (6), and build EWLF model by Equation (7).
(5) For each weight group, train the MTHardNets and compute MDD by Equation (8).
(6) Use the highest MDD to simplify EWLF model as Equation (9).
End

To further verify the superiority of our MTHardNets descriptor, we compare our
approach with HardNet based on five pairs of matching points. The results of this experi-
ment are shown in Figure 6 which reveals that proposed MTHardNets estimate smaller
distance between the matching descriptors and larger distance between the non-matching
descriptors. In other words, proposed MTHardNets descriptor has better discrimination
when compared to HardNet.
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and NDD for negative descriptor distance.

In our pipeline, the IHesAffNet features are used as input to the MTHardNets which
returns 128 dimensional descriptors. Following this step, the corresponding features are
obtained using the NNDR metric and random sample consensus (RANSAC) is applied to
remove outliers that does not satisfy underlying geometric relation between the images.
Let τ = (x, A) and τ′ = (x′, A′) represent an arbitrary pair of matching features, where x
and x′ denote the centroids of two corresponding affine invariant regions E(x) and E′(x′);
A and A′ are the second moment affine matrices that can be learned by IHesAffNet, and
the A and A′ respectively confirm E(x) and E′(x′). Thus, the geometric transformation
between E(x) and E′(x′) can be expressed as:

E′
(
x′
)
= A′A−1E(x). (10)

2.3. Match Optimizing by DLT-LSM

The feature points to be matched across images by using the above deep learning
pipeline can only achieve pixel-level accuracy. The reason behind this is attributed to
the fact that feature detection and matching are carried out independently. In order
to mitigate this shortcoming, we employ a deep learning transform based least square
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matching (DLT-LSM) strategy. Let the neighborhood centered at a feature point x contain
(2λ + 1)× (2λ + 1) pixels, and suppose that the geometric deformation H between the
corresponding small neighborhoods of x and x′ can be well represented by:{

u′ = b1u + b2v + b3
v′ = b4u + b5v + b6

, (11)

Let H =
[

B T
]
, where B =

[
b1 b2
b4 b5

]
represents the affine deformation, T =

[
b3
b6

]
is the translation deformation. If we write a pair of correlation windows Ω and Ω′, respectively
centered at x and x′ as

Ω = I(x + u), Ω′ = I′
(
x′ + Hu

)
, (12)

where I and I′ are the intensity values respectively of the left and right images. Using these
definitions, the correlation coefficient ρ between Ω and Ω′ can be calculated by

ρ =
∑λ

i=−λ ∑λ
j=−λ

(
Ωij − µ(Ω)

)(
Ω′ij − µ(Ω′)

)
√

∑λ
i=−λ ∑λ

j=−λ

(
Ωij − µ(Ω)

)2
∑λ

i=−λ ∑λ
j=−λ

(
Ω′ij − µ(Ω′)

)2
, (13)

where µ(Ω) and µ(Ω′) are the mean pixel values of corresponding windows; the pixel
value Ωij is directly obtained from the left image, and the pixel value Ω′ij is produced based
on a local bilinear interpolation of right image, that is a good trade-off between efficiency
and accuracy.

According to Equation (12) and introducing linear radiometric distortion parameters
h0 and h1, we establish the affine transform model based LSM equation, which can be
further linearized to be a LSM error equation as

V = CX− L, (14)

where X =
[

dh0 dh1 db1 · · · db6
]T, C =

[
1 g′ g′u ug′u vg′u g′v ug′v vg′v

]
,

L = h0 + h1Ω−Ω′, g′ is the pixel value of x′, and g′u and g′v represent the gradients at
horizontal and vertical directions, respectively. This LSM error equations are applied for all
pixels within the neighborhoods of x and x′. By minimizing this cost, the error correction
matrix X that includes eight parameter correction values, can be iteratively estimated. Com-
pared with the affine distortion, the radiometric distortion and translation deformation
are small such that we may set their initial values to be: h0

0 = 0, h0
1 = 1 and b0

3 = b0
6 = 0.

Then, the initial parameters of affine deformation matrix B can be set according to the deep
learning transform (DLT) of Equation (10), namely B = A′A−1. The algorithm of DLT-LSM
is described as Algorithm 3.

Algorithm 3. DLT-LSM.

Begin
(1) For one correspondence x and x′, determine the initial affine transform B by Equation (10).
Initialize H using B. Set the threshold of maximum iterations to be NT.
(2) Build correlation windows Ω and Ω′ by Equations (11) and (12), and then compute ρ by
Equation (13).
(3) Build LSM error equation as Equation (14), then compute X and update H. If the number of
iterations N is less than NT, then go to Step (2); otherwise, correct x′ by Equation (15).
End

Using this formulation, the matching regions around the feature points can be opti-
mized by DLT-LSM, provided it is supplied with good initial values for distortion parame-
ters. In this section, given one pair of corresponding features, the affine transform matrix H
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is initialized by the DLT strategy and is then iteratively updated. Furthermore, the original
matching point x′ can be precisely compensated by

x̂′ = x′ + Hx. (15)

The parameter that specifies the neighborhood around x to set to λ = 25 pixels, and a
maximum of ten iterations are used in our DLT-LSM optimization. We randomly selected
two pairs of conjugate neighborhoods, whose affine parameters have been obtained by our
deep learning method, are presented in Table 3. The table lists the affine transform error ε
which is estimated based on the ground truth affine matrix H0 and following Equation

ε = ‖x̂′ −H0x‖. (16)

Table 3. Conjugate neighborhoods, affine transform error ε (pixels), and correlation coefficient ρ are corrected by
DLT-LSM iterations.

Left
Neighborhood

Initial Right
Neighborhood

First
Iteration

Second
Iteration

Third
Iteration

Fourth
Iteration

Window
border
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Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
ferent image patches with significant geometric and radiometric deformations. It further 
indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
accuracy. 

2.4. Training Dataset and Implementation Details 
We used the open dataset, UBC Phototour [39] for training. It includes six subsets: 

Liberty, Liberty_harris, Notredame, Notredame_harris, Yosemite, Yosemite_harris, and 
there are 2 × 400k normalized 64 × 64 patches in each dataset. All of the matching patches 
are verified by 3D reconstruction model. Both the IHesAffNet and the MTHardNets are 
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DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
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Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
ferent image patches with significant geometric and radiometric deformations. It further 
indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
accuracy. 
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there are 2 × 400k normalized 64 × 64 patches in each dataset. All of the matching patches 
are verified by 3D reconstruction model. Both the IHesAffNet and the MTHardNets are 

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

matrix ࡴ is initialized by the DLT strategy and is then iteratively updated. Furthermore, 
the original matching point ࢞ᇱ can be precisely compensated by ࢞ෝᇱ = ᇱ࢞ + (15)  .࢞ࡴ

The parameter that specifies the neighborhood around ࢞ to set to ߣ = 25 pixels, 
and a maximum of ten iterations are used in our DLT-LSM optimization. We randomly 
selected two pairs of conjugate neighborhoods, whose affine parameters have been ob-
tained by our deep learning method, are presented in Table 3. The table lists the affine 
transform error ߝ which is estimated based on the ground truth affine matrix ࡴ଴ and 
following Equation ߝ = ෝᇱ࢞‖ − (16)  .‖࢞଴ࡴ

Table 3. Conjugate neighborhoods, affine transform error ε  (pixels), and correlation coefficient ρ  are corrected by 
DLT-LSM iterations. 

 
Left 

Neighborhood Initial Right Neighborhood 
First 

Iteration 
Second 

Iteration 
Third 

Iteration 
Fourth 

Iteration 

Window 
border 

 

      

  ε = 2.635 ε = 2.244 ε = 1.290 ε = 0.837 ε = 0.516 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.569 ρ = 0.638 ρ = 0.805 ρ = 0.919 ρ = 0.957 

Window 
border 

 

 

 
 

    

  ε = 1.278 ε = 0.860 ε = 0.553 ε = 0.375 ε = 0.241 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.832 ρ = 0.915 ρ = 0.949 ρ = 0.957 ρ = 0.965 

Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
ferent image patches with significant geometric and radiometric deformations. It further 
indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
accuracy. 
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there are 2 × 400k normalized 64 × 64 patches in each dataset. All of the matching patches 
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Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
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indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
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Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
ferent image patches with significant geometric and radiometric deformations. It further 
indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
accuracy. 

2.4. Training Dataset and Implementation Details 
We used the open dataset, UBC Phototour [39] for training. It includes six subsets: 

Liberty, Liberty_harris, Notredame, Notredame_harris, Yosemite, Yosemite_harris, and 
there are 2 × 400k normalized 64 × 64 patches in each dataset. All of the matching patches 
are verified by 3D reconstruction model. Both the IHesAffNet and the MTHardNets are 

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

matrix ࡴ is initialized by the DLT strategy and is then iteratively updated. Furthermore, 
the original matching point ࢞ᇱ can be precisely compensated by ࢞ෝᇱ = ᇱ࢞ + (15)  .࢞ࡴ

The parameter that specifies the neighborhood around ࢞ to set to ߣ = 25 pixels, 
and a maximum of ten iterations are used in our DLT-LSM optimization. We randomly 
selected two pairs of conjugate neighborhoods, whose affine parameters have been ob-
tained by our deep learning method, are presented in Table 3. The table lists the affine 
transform error ߝ which is estimated based on the ground truth affine matrix ࡴ଴ and 
following Equation ߝ = ෝᇱ࢞‖ − (16)  .‖࢞଴ࡴ

Table 3. Conjugate neighborhoods, affine transform error ε  (pixels), and correlation coefficient ρ  are corrected by 
DLT-LSM iterations. 

 
Left 

Neighborhood Initial Right Neighborhood 
First 

Iteration 
Second 

Iteration 
Third 

Iteration 
Fourth 

Iteration 

Window 
border 

 

      

  ε = 2.635 ε = 2.244 ε = 1.290 ε = 0.837 ε = 0.516 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.569 ρ = 0.638 ρ = 0.805 ρ = 0.919 ρ = 0.957 

Window 
border 

 

 

 
 

    

  ε = 1.278 ε = 0.860 ε = 0.553 ε = 0.375 ε = 0.241 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.832 ρ = 0.915 ρ = 0.949 ρ = 0.957 ρ = 0.965 

Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
ferent image patches with significant geometric and radiometric deformations. It further 
indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
accuracy. 

2.4. Training Dataset and Implementation Details 
We used the open dataset, UBC Phototour [39] for training. It includes six subsets: 

Liberty, Liberty_harris, Notredame, Notredame_harris, Yosemite, Yosemite_harris, and 
there are 2 × 400k normalized 64 × 64 patches in each dataset. All of the matching patches 
are verified by 3D reconstruction model. Both the IHesAffNet and the MTHardNets are 

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

matrix ࡴ is initialized by the DLT strategy and is then iteratively updated. Furthermore, 
the original matching point ࢞ᇱ can be precisely compensated by ࢞ෝᇱ = ᇱ࢞ + (15)  .࢞ࡴ

The parameter that specifies the neighborhood around ࢞ to set to ߣ = 25 pixels, 
and a maximum of ten iterations are used in our DLT-LSM optimization. We randomly 
selected two pairs of conjugate neighborhoods, whose affine parameters have been ob-
tained by our deep learning method, are presented in Table 3. The table lists the affine 
transform error ߝ which is estimated based on the ground truth affine matrix ࡴ଴ and 
following Equation ߝ = ෝᇱ࢞‖ − (16)  .‖࢞଴ࡴ

Table 3. Conjugate neighborhoods, affine transform error ε  (pixels), and correlation coefficient ρ  are corrected by 
DLT-LSM iterations. 

 
Left 

Neighborhood Initial Right Neighborhood 
First 

Iteration 
Second 

Iteration 
Third 

Iteration 
Fourth 

Iteration 

Window 
border 

 

      

  ε = 2.635 ε = 2.244 ε = 1.290 ε = 0.837 ε = 0.516 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.569 ρ = 0.638 ρ = 0.805 ρ = 0.919 ρ = 0.957 

Window 
border 

 

 

 
 

    

  ε = 1.278 ε = 0.860 ε = 0.553 ε = 0.375 ε = 0.241 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.832 ρ = 0.915 ρ = 0.949 ρ = 0.957 ρ = 0.965 

Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
ferent image patches with significant geometric and radiometric deformations. It further 
indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
accuracy. 

2.4. Training Dataset and Implementation Details 
We used the open dataset, UBC Phototour [39] for training. It includes six subsets: 

Liberty, Liberty_harris, Notredame, Notredame_harris, Yosemite, Yosemite_harris, and 
there are 2 × 400k normalized 64 × 64 patches in each dataset. All of the matching patches 
are verified by 3D reconstruction model. Both the IHesAffNet and the MTHardNets are 

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

matrix ࡴ is initialized by the DLT strategy and is then iteratively updated. Furthermore, 
the original matching point ࢞ᇱ can be precisely compensated by ࢞ෝᇱ = ᇱ࢞ + (15)  .࢞ࡴ

The parameter that specifies the neighborhood around ࢞ to set to ߣ = 25 pixels, 
and a maximum of ten iterations are used in our DLT-LSM optimization. We randomly 
selected two pairs of conjugate neighborhoods, whose affine parameters have been ob-
tained by our deep learning method, are presented in Table 3. The table lists the affine 
transform error ߝ which is estimated based on the ground truth affine matrix ࡴ଴ and 
following Equation ߝ = ෝᇱ࢞‖ − (16)  .‖࢞଴ࡴ

Table 3. Conjugate neighborhoods, affine transform error ε  (pixels), and correlation coefficient ρ  are corrected by 
DLT-LSM iterations. 

 
Left 

Neighborhood Initial Right Neighborhood 
First 

Iteration 
Second 

Iteration 
Third 

Iteration 
Fourth 

Iteration 

Window 
border 

 

      

  ε = 2.635 ε = 2.244 ε = 1.290 ε = 0.837 ε = 0.516 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.569 ρ = 0.638 ρ = 0.805 ρ = 0.919 ρ = 0.957 

Window 
border 

 

 

 
 

    

  ε = 1.278 ε = 0.860 ε = 0.553 ε = 0.375 ε = 0.241 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.832 ρ = 0.915 ρ = 0.949 ρ = 0.957 ρ = 0.965 

Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
ferent image patches with significant geometric and radiometric deformations. It further 
indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
accuracy. 

2.4. Training Dataset and Implementation Details 
We used the open dataset, UBC Phototour [39] for training. It includes six subsets: 

Liberty, Liberty_harris, Notredame, Notredame_harris, Yosemite, Yosemite_harris, and 
there are 2 × 400k normalized 64 × 64 patches in each dataset. All of the matching patches 
are verified by 3D reconstruction model. Both the IHesAffNet and the MTHardNets are 

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

matrix ࡴ is initialized by the DLT strategy and is then iteratively updated. Furthermore, 
the original matching point ࢞ᇱ can be precisely compensated by ࢞ෝᇱ = ᇱ࢞ + (15)  .࢞ࡴ

The parameter that specifies the neighborhood around ࢞ to set to ߣ = 25 pixels, 
and a maximum of ten iterations are used in our DLT-LSM optimization. We randomly 
selected two pairs of conjugate neighborhoods, whose affine parameters have been ob-
tained by our deep learning method, are presented in Table 3. The table lists the affine 
transform error ߝ which is estimated based on the ground truth affine matrix ࡴ଴ and 
following Equation ߝ = ෝᇱ࢞‖ − (16)  .‖࢞଴ࡴ

Table 3. Conjugate neighborhoods, affine transform error ε  (pixels), and correlation coefficient ρ  are corrected by 
DLT-LSM iterations. 

 
Left 

Neighborhood Initial Right Neighborhood 
First 

Iteration 
Second 

Iteration 
Third 

Iteration 
Fourth 

Iteration 

Window 
border 

 

      

  ε = 2.635 ε = 2.244 ε = 1.290 ε = 0.837 ε = 0.516 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.569 ρ = 0.638 ρ = 0.805 ρ = 0.919 ρ = 0.957 

Window 
border 

 

 

 
 

    

  ε = 1.278 ε = 0.860 ε = 0.553 ε = 0.375 ε = 0.241 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.832 ρ = 0.915 ρ = 0.949 ρ = 0.957 ρ = 0.965 

Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
ferent image patches with significant geometric and radiometric deformations. It further 
indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
accuracy. 

2.4. Training Dataset and Implementation Details 
We used the open dataset, UBC Phototour [39] for training. It includes six subsets: 

Liberty, Liberty_harris, Notredame, Notredame_harris, Yosemite, Yosemite_harris, and 
there are 2 × 400k normalized 64 × 64 patches in each dataset. All of the matching patches 
are verified by 3D reconstruction model. Both the IHesAffNet and the MTHardNets are 

ε = 1.278 ε = 0.860 ε = 0.553 ε = 0.375 ε = 0.241

Correlation
windows

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

matrix ࡴ is initialized by the DLT strategy and is then iteratively updated. Furthermore, 
the original matching point ࢞ᇱ can be precisely compensated by ࢞ෝᇱ = ᇱ࢞ + (15)  .࢞ࡴ

The parameter that specifies the neighborhood around ࢞ to set to ߣ = 25 pixels, 
and a maximum of ten iterations are used in our DLT-LSM optimization. We randomly 
selected two pairs of conjugate neighborhoods, whose affine parameters have been ob-
tained by our deep learning method, are presented in Table 3. The table lists the affine 
transform error ߝ which is estimated based on the ground truth affine matrix ࡴ଴ and 
following Equation ߝ = ෝᇱ࢞‖ − (16)  .‖࢞଴ࡴ

Table 3. Conjugate neighborhoods, affine transform error ε  (pixels), and correlation coefficient ρ  are corrected by 
DLT-LSM iterations. 

 
Left 

Neighborhood Initial Right Neighborhood 
First 

Iteration 
Second 

Iteration 
Third 

Iteration 
Fourth 

Iteration 

Window 
border 

 

      

  ε = 2.635 ε = 2.244 ε = 1.290 ε = 0.837 ε = 0.516 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.569 ρ = 0.638 ρ = 0.805 ρ = 0.919 ρ = 0.957 

Window 
border 

 

 

 
 

    

  ε = 1.278 ε = 0.860 ε = 0.553 ε = 0.375 ε = 0.241 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.832 ρ = 0.915 ρ = 0.949 ρ = 0.957 ρ = 0.965 

Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
ferent image patches with significant geometric and radiometric deformations. It further 
indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
accuracy. 

2.4. Training Dataset and Implementation Details 
We used the open dataset, UBC Phototour [39] for training. It includes six subsets: 

Liberty, Liberty_harris, Notredame, Notredame_harris, Yosemite, Yosemite_harris, and 
there are 2 × 400k normalized 64 × 64 patches in each dataset. All of the matching patches 
are verified by 3D reconstruction model. Both the IHesAffNet and the MTHardNets are 

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

matrix ࡴ is initialized by the DLT strategy and is then iteratively updated. Furthermore, 
the original matching point ࢞ᇱ can be precisely compensated by ࢞ෝᇱ = ᇱ࢞ + (15)  .࢞ࡴ

The parameter that specifies the neighborhood around ࢞ to set to ߣ = 25 pixels, 
and a maximum of ten iterations are used in our DLT-LSM optimization. We randomly 
selected two pairs of conjugate neighborhoods, whose affine parameters have been ob-
tained by our deep learning method, are presented in Table 3. The table lists the affine 
transform error ߝ which is estimated based on the ground truth affine matrix ࡴ଴ and 
following Equation ߝ = ෝᇱ࢞‖ − (16)  .‖࢞଴ࡴ

Table 3. Conjugate neighborhoods, affine transform error ε  (pixels), and correlation coefficient ρ  are corrected by 
DLT-LSM iterations. 

 
Left 

Neighborhood Initial Right Neighborhood 
First 

Iteration 
Second 

Iteration 
Third 

Iteration 
Fourth 

Iteration 

Window 
border 

 

      

  ε = 2.635 ε = 2.244 ε = 1.290 ε = 0.837 ε = 0.516 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.569 ρ = 0.638 ρ = 0.805 ρ = 0.919 ρ = 0.957 

Window 
border 

 

 

 
 

    

  ε = 1.278 ε = 0.860 ε = 0.553 ε = 0.375 ε = 0.241 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.832 ρ = 0.915 ρ = 0.949 ρ = 0.957 ρ = 0.965 

Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
ferent image patches with significant geometric and radiometric deformations. It further 
indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
accuracy. 

2.4. Training Dataset and Implementation Details 
We used the open dataset, UBC Phototour [39] for training. It includes six subsets: 

Liberty, Liberty_harris, Notredame, Notredame_harris, Yosemite, Yosemite_harris, and 
there are 2 × 400k normalized 64 × 64 patches in each dataset. All of the matching patches 
are verified by 3D reconstruction model. Both the IHesAffNet and the MTHardNets are 

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

matrix ࡴ is initialized by the DLT strategy and is then iteratively updated. Furthermore, 
the original matching point ࢞ᇱ can be precisely compensated by ࢞ෝᇱ = ᇱ࢞ + (15)  .࢞ࡴ

The parameter that specifies the neighborhood around ࢞ to set to ߣ = 25 pixels, 
and a maximum of ten iterations are used in our DLT-LSM optimization. We randomly 
selected two pairs of conjugate neighborhoods, whose affine parameters have been ob-
tained by our deep learning method, are presented in Table 3. The table lists the affine 
transform error ߝ which is estimated based on the ground truth affine matrix ࡴ଴ and 
following Equation ߝ = ෝᇱ࢞‖ − (16)  .‖࢞଴ࡴ

Table 3. Conjugate neighborhoods, affine transform error ε  (pixels), and correlation coefficient ρ  are corrected by 
DLT-LSM iterations. 

 
Left 

Neighborhood Initial Right Neighborhood 
First 

Iteration 
Second 

Iteration 
Third 

Iteration 
Fourth 

Iteration 

Window 
border 

 

      

  ε = 2.635 ε = 2.244 ε = 1.290 ε = 0.837 ε = 0.516 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.569 ρ = 0.638 ρ = 0.805 ρ = 0.919 ρ = 0.957 

Window 
border 

 

 

 
 

    

  ε = 1.278 ε = 0.860 ε = 0.553 ε = 0.375 ε = 0.241 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.832 ρ = 0.915 ρ = 0.949 ρ = 0.957 ρ = 0.965 

Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
ferent image patches with significant geometric and radiometric deformations. It further 
indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
accuracy. 

2.4. Training Dataset and Implementation Details 
We used the open dataset, UBC Phototour [39] for training. It includes six subsets: 

Liberty, Liberty_harris, Notredame, Notredame_harris, Yosemite, Yosemite_harris, and 
there are 2 × 400k normalized 64 × 64 patches in each dataset. All of the matching patches 
are verified by 3D reconstruction model. Both the IHesAffNet and the MTHardNets are 

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

matrix ࡴ is initialized by the DLT strategy and is then iteratively updated. Furthermore, 
the original matching point ࢞ᇱ can be precisely compensated by ࢞ෝᇱ = ᇱ࢞ + (15)  .࢞ࡴ

The parameter that specifies the neighborhood around ࢞ to set to ߣ = 25 pixels, 
and a maximum of ten iterations are used in our DLT-LSM optimization. We randomly 
selected two pairs of conjugate neighborhoods, whose affine parameters have been ob-
tained by our deep learning method, are presented in Table 3. The table lists the affine 
transform error ߝ which is estimated based on the ground truth affine matrix ࡴ଴ and 
following Equation ߝ = ෝᇱ࢞‖ − (16)  .‖࢞଴ࡴ

Table 3. Conjugate neighborhoods, affine transform error ε  (pixels), and correlation coefficient ρ  are corrected by 
DLT-LSM iterations. 

 
Left 

Neighborhood Initial Right Neighborhood 
First 

Iteration 
Second 

Iteration 
Third 

Iteration 
Fourth 

Iteration 

Window 
border 

 

      

  ε = 2.635 ε = 2.244 ε = 1.290 ε = 0.837 ε = 0.516 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.569 ρ = 0.638 ρ = 0.805 ρ = 0.919 ρ = 0.957 

Window 
border 

 

 

 
 

    

  ε = 1.278 ε = 0.860 ε = 0.553 ε = 0.375 ε = 0.241 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.832 ρ = 0.915 ρ = 0.949 ρ = 0.957 ρ = 0.965 

Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
ferent image patches with significant geometric and radiometric deformations. It further 
indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
accuracy. 

2.4. Training Dataset and Implementation Details 
We used the open dataset, UBC Phototour [39] for training. It includes six subsets: 

Liberty, Liberty_harris, Notredame, Notredame_harris, Yosemite, Yosemite_harris, and 
there are 2 × 400k normalized 64 × 64 patches in each dataset. All of the matching patches 
are verified by 3D reconstruction model. Both the IHesAffNet and the MTHardNets are 

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

matrix ࡴ is initialized by the DLT strategy and is then iteratively updated. Furthermore, 
the original matching point ࢞ᇱ can be precisely compensated by ࢞ෝᇱ = ᇱ࢞ + (15)  .࢞ࡴ

The parameter that specifies the neighborhood around ࢞ to set to ߣ = 25 pixels, 
and a maximum of ten iterations are used in our DLT-LSM optimization. We randomly 
selected two pairs of conjugate neighborhoods, whose affine parameters have been ob-
tained by our deep learning method, are presented in Table 3. The table lists the affine 
transform error ߝ which is estimated based on the ground truth affine matrix ࡴ଴ and 
following Equation ߝ = ෝᇱ࢞‖ − (16)  .‖࢞଴ࡴ

Table 3. Conjugate neighborhoods, affine transform error ε  (pixels), and correlation coefficient ρ  are corrected by 
DLT-LSM iterations. 

 
Left 

Neighborhood Initial Right Neighborhood 
First 

Iteration 
Second 

Iteration 
Third 

Iteration 
Fourth 

Iteration 

Window 
border 

 

      

  ε = 2.635 ε = 2.244 ε = 1.290 ε = 0.837 ε = 0.516 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.569 ρ = 0.638 ρ = 0.805 ρ = 0.919 ρ = 0.957 

Window 
border 

 

 

 
 

    

  ε = 1.278 ε = 0.860 ε = 0.553 ε = 0.375 ε = 0.241 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.832 ρ = 0.915 ρ = 0.949 ρ = 0.957 ρ = 0.965 

Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
ferent image patches with significant geometric and radiometric deformations. It further 
indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
accuracy. 

2.4. Training Dataset and Implementation Details 
We used the open dataset, UBC Phototour [39] for training. It includes six subsets: 

Liberty, Liberty_harris, Notredame, Notredame_harris, Yosemite, Yosemite_harris, and 
there are 2 × 400k normalized 64 × 64 patches in each dataset. All of the matching patches 
are verified by 3D reconstruction model. Both the IHesAffNet and the MTHardNets are 

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

matrix ࡴ is initialized by the DLT strategy and is then iteratively updated. Furthermore, 
the original matching point ࢞ᇱ can be precisely compensated by ࢞ෝᇱ = ᇱ࢞ + (15)  .࢞ࡴ

The parameter that specifies the neighborhood around ࢞ to set to ߣ = 25 pixels, 
and a maximum of ten iterations are used in our DLT-LSM optimization. We randomly 
selected two pairs of conjugate neighborhoods, whose affine parameters have been ob-
tained by our deep learning method, are presented in Table 3. The table lists the affine 
transform error ߝ which is estimated based on the ground truth affine matrix ࡴ଴ and 
following Equation ߝ = ෝᇱ࢞‖ − (16)  .‖࢞଴ࡴ

Table 3. Conjugate neighborhoods, affine transform error ε  (pixels), and correlation coefficient ρ  are corrected by 
DLT-LSM iterations. 

 
Left 

Neighborhood Initial Right Neighborhood 
First 

Iteration 
Second 

Iteration 
Third 

Iteration 
Fourth 

Iteration 

Window 
border 

 

      

  ε = 2.635 ε = 2.244 ε = 1.290 ε = 0.837 ε = 0.516 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.569 ρ = 0.638 ρ = 0.805 ρ = 0.919 ρ = 0.957 

Window 
border 

 

 

 
 

    

  ε = 1.278 ε = 0.860 ε = 0.553 ε = 0.375 ε = 0.241 

Correlation 
windows 

 

 

 
 

    

  ρ = 0.832 ρ = 0.915 ρ = 0.949 ρ = 0.957 ρ = 0.965 

Table 3 shows that the DLT-LSM iteration can converge very rapidly for two dif-
ferent image patches with significant geometric and radiometric deformations. It further 
indicates that our DLT strategy would provide good affine parameter values for 
DLT-LSM, and thus the corresponding feature points are optimized to be subpixel-level 
accuracy. 

2.4. Training Dataset and Implementation Details 
We used the open dataset, UBC Phototour [39] for training. It includes six subsets: 

Liberty, Liberty_harris, Notredame, Notredame_harris, Yosemite, Yosemite_harris, and 
there are 2 × 400k normalized 64 × 64 patches in each dataset. All of the matching patches 
are verified by 3D reconstruction model. Both the IHesAffNet and the MTHardNets are 

ρ = 0.832 ρ = 0.915 ρ = 0.949 ρ = 0.957 ρ = 0.965

Table 3 shows that the DLT-LSM iteration can converge very rapidly for two different
image patches with significant geometric and radiometric deformations. It further indicates
that our DLT strategy would provide good affine parameter values for DLT-LSM, and thus
the corresponding feature points are optimized to be subpixel-level accuracy.

2.4. Training Dataset and Implementation Details

We used the open dataset, UBC Phototour [39] for training. It includes six subsets:
Liberty, Liberty_harris, Notredame, Notredame_harris, Yosemite, Yosemite_harris, and
there are 2 × 400 k normalized 64 × 64 patches in each dataset. All of the matching patches
are verified by 3D reconstruction model. Both the IHesAffNet and the MTHardNets
are trained with the models implemented using the Pytorch library [40]. In IHesAffNet
training, there are 1024 triplet samples in a batch, and all image patches are resized to
32 × 32 pixels. Optimization is done by stochastic gradient descent strategy with learning
rate 0.005, momentum 0.9, and weight decay 0.0001, and the model trained 20 epochs on
RTX2080Ti GPU for every training data set. MTHardNets training is similar to IHesAffNet,
but we use the proposed EWLF function to train the model with the learning rate of 10,
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and 1024 quintuple samples are prepared in a batch. Additionally, data augmentation is
applied in both trainings to prevent over-fitting.

3. Results
3.1. Test Data and Evaluation Criteria

In order to test the performance of the proposed method, we selected six groups (A–F)
of stereo images with large differences in viewpoints. The image pairs (A–C) are large
baseline images acquired from the ground, and (D–F) were large baseline oblique images
taken from an unmanned aerial vehicle (UAV). All groups of image data have severe
geometric and radiometric distortions and cover various scenes with poor or repetitive
textures. The image-to-image affine transform matrix H0 was estimated by the strategy
presented in [41] for each groups of stereo images and used as a ground truth. Additionally,
five indexes were chosen to comprehensively estimate the effectiveness of method:

1. Number of correct correspondences nε0 (the unit is pair): The matching error is
calculated using H0 and Equation (16). If the error of a corresponding point is less
than the given threshold ε0 (1.5 pixels in our experiment), it was regarded as a inlier
and used to compute nε0 .

2. Correct ratio β (in percentage, %) of matches: It is computed by β = nε0 /num, where
num (the unit is pair) is the number of total matches.

3. Root mean square error εRMSE (the unit is pixel) of matches: It is calculated by

εRMSE =

√
1

num

m

∑
i=1

y′i −H0yi
2, (17)

4. Matching distribution quality MDQ: Lower MDQ value indicates the geometric
homogeneity of the Delaunay triangles, which are generated based on matched
points. Thus, the MDQ can be a uniform distribution metric of matches. This index is
estimated by previous Equation (2).

5. Matching efficiency η (the unit is second per pair of matching points): We compute
the η according to average run time for one pair of corresponding points, namely
η = t/num, where t (the unit is second) denotes the total test time of the algorithm.

3.2. Experimental Results of the Key Steps of the Proposed Method

Considering that the proposed approach includes three key steps, e.g., feature extrac-
tion, descriptor generation, and matching, we conduct comparison experiments based on
six different matching algorithms to check the validity of each key step for six different
methods: AMD, ISD, IPD, IHD, IMN, and the proposed method.

For intuitive understanding, we present each key step of six different methods in
Table 4, where “Null” denotes that the current step is not applicable. For a fair and objective
evaluation, we exploit a unified strategy to reject inconsistent matches. Table 5 records the
number of correct correspondences achieved by six different methods. Table 6 denotes the
total test time of six different methods. Comparative results of correct ratio (%) and root
mean square error (pixels) of matches are displayed in Figure 7 to inspect the effectiveness
and accuracy of these methods.

Table 4. List of six different methods, namely, the AMD, the ISD, the IPD, the IHD, the IMN, and the proposed method.

Steps AMD ISD IPD IHD IMN Proposed Method

Feature extracting AffNet [25] IHesAffNet IHesAffNet IHesAffNet IHesAffNet IHesAffNet
Descriptor
generating MTHardNets SIFT [6] PPD [26] HardNet [24] MTHardNets MTHardNets

Match optimizing DLT-LSM DLT-LSM DLT-LSM DLT-LSM Null DLT-LSM
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Table 5. Number of correct correspondences obtained by the AMD, ISD, IPD, IHD, IMN, and
proposed method based on six groups of stereo images. Bold font denotes the best results.

Image Pair AMD ISD IPD IHD IMN Proposed Method

A 78 21 86 92 41 152
B 219 35 203 235 87 349
C 313 85 409 402 164 662
D 329 90 339 348 97 397
E 912 120 937 921 196 972
F 375 42 401 398 93 408

Table 6. The total test time (the unit is second) of the AMD, ISD, IPD, IHD, IMN, and proposed
method based on six groups of stereo images. Bold font denotes the best results.

Image Pair AMD ISD IPD IHD IMN Proposed Method

A 29.02 24.09 29.36 30.45 29.14 31.49
B 32.79 27.49 33.45 34.58 33.20 36.55
C 39.60 36.52 43.10 42.70 39.05 45.73
D 40.14 35.60 42.08 41.83 40.57 44.61
E 47.05 41.65 48.74 49.06 43.74 52.32
F 40.33 35.94 40.16 41.63 40.92 43.80
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3.3. Experimental Results of Comparison Methods

We further verify the performance of the proposed method and contrast four methods
on oblique image matching as follows. The four methods include the following:

1. The proposed method.
2. Detone’s method [26]: This approach uses a fully convolutional neural network (Magic-

Point) trained on an extensive synthetic dataset which poses a liability to real scenarios.
The homographic adaptation (HA) strategy is employed to transform MagicPoint into
SuperPoint, which boosts the performance of the detector and generate repeatable
feature points. This method also combines SuperPoint with a descriptor subnetwork
that generates 256 dimensional descriptors. Matching is achieved using NNDR metric.
While the use of HA outperforms classical detectors, the random nature of the HA
step limits the invariance of this technique to geometric deformations.

3. Morel’s method [10]: This method samples stereo images by simulating discrete
poses in the 3D affine space. It uses SIFT algorithm to simulated image pairs and
transforms all matches to the original image pair. This method was shown to find
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correspondences from image pairs with large viewpoint changes. However, false
positives often occur for repeating patterns.

4. Matas’s method [12]: The approach extracts features using MSER and estimates SIFT
descriptors after normalizing the feature points. It uses the NNDR metric to obtain
matching features.

In our comparisons, for fair and objective evaluation, a unified strategy was employed
for all four methods to eliminate the controversial mismatches. The results are organized
as separate figures for each technique. In Figure 8, we provide additional visualization
to demonstrate the feature matching results using our method, where the corresponding
features and regions around them are denoted by cyan ellipses and lines. Figures 9–12 show
the final matching results respectively by the methods of proposed, Detone’s, Morel’s and
Matas’s, where the red points are matches, and the yellow lines are the estimated epipolar
lines. To visually check the matching accuracy for all four methods, we superimpose stereo
images based on affine transform, and present the chessboard registration of image pair A
using four methods in Figure 13. In Figure 14, we show the contrast of matching error before
and after DLT-LSM. Based on the four methods, Table 7 presents the quantitative contrast
results, including the number of correct matches, correct ratio of matches, matching error,
matching distribution quality, matching runtime, and matching efficiency. Considering the
training and testing are independent of each other on deep learning, we thus only count
the runtime of testing for our and Detone’s method in Table 7.

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 8. (a)–(f) Matching results of our approach on a group of stereo pairs. The ellipses represent the regions matching 
around each feature point. Lines represent the matches. 

 
Figure 9. (a)–(f) Red points show the matching results of the proposed method with groups of stereo images. The yellow 
lines represent the epipolar lines estimated from matching points. 

Figure 8. (a–f) Matching results of our approach on a group of stereo pairs. The ellipses represent the regions matching
around each feature point. Lines represent the matches.



Remote Sens. 2021, 13, 274 15 of 21

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 8. (a)–(f) Matching results of our approach on a group of stereo pairs. The ellipses represent the regions matching 
around each feature point. Lines represent the matches. 

 
Figure 9. (a)–(f) Red points show the matching results of the proposed method with groups of stereo images. The yellow 
lines represent the epipolar lines estimated from matching points. 
Figure 9. (a–f) Red points show the matching results of the proposed method with groups of stereo images. The yellow
lines represent the epipolar lines estimated from matching points.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 10. (a)–(f) Red points show the matching results of the Detone’s method with groups of stereo images. The yellow 
lines represent the epipolar lines estimated from matching points. 

 
Figure 11. (a)–(f) Red points show the matching results of the Morel’s method with groups of stereo images. The yellow 
lines represent the epipolar lines estimated from matching points. 

Figure 10. (a–f) Red points show the matching results of the Detone’s method with groups of stereo images. The yellow
lines represent the epipolar lines estimated from matching points.



Remote Sens. 2021, 13, 274 16 of 21

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 10. (a)–(f) Red points show the matching results of the Detone’s method with groups of stereo images. The yellow 
lines represent the epipolar lines estimated from matching points. 

 
Figure 11. (a)–(f) Red points show the matching results of the Morel’s method with groups of stereo images. The yellow 
lines represent the epipolar lines estimated from matching points. 
Figure 11. (a–f) Red points show the matching results of the Morel’s method with groups of stereo images. The yellow lines
represent the epipolar lines estimated from matching points.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 12. (a)–(f) Red points show the matching results of the Mata’s method with groups of stereo images. The yellow 
lines represent the epipolar lines estimated from matching points. 

 
Figure 13. The chessboard registration results of four comparison approaches for image pair A. (a) Registration image of 
proposed, (b) registration image of Detone’s, (c) registration image of Morel’s, and (d) registration image of Matas’s. 
Subregions I and II display the detailed view. 

Figure 12. (a–f) Red points show the matching results of the Mata’s method with groups of stereo images. The yellow lines
represent the epipolar lines estimated from matching points.



Remote Sens. 2021, 13, 274 17 of 21

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 12. (a)–(f) Red points show the matching results of the Mata’s method with groups of stereo images. The yellow 
lines represent the epipolar lines estimated from matching points. 

 
Figure 13. The chessboard registration results of four comparison approaches for image pair A. (a) Registration image of 
proposed, (b) registration image of Detone’s, (c) registration image of Morel’s, and (d) registration image of Matas’s. 
Subregions I and II display the detailed view. 

Figure 13. The chessboard registration results of four comparison approaches for image pair A. (a) Registration image
of proposed, (b) registration image of Detone’s, (c) registration image of Morel’s, and (d) registration image of Matas’s.
Subregions I and II display the detailed view.

Table 7. Quantitative comparison of four methods based on six groups of image pairs. In this table,
nε0 is the number of correct matches (pair), β is the correct ratio (%) of matches, εRMSE is the matching
error (pixels), MDQ is the matching distribution quality, t is the total test time (second), and η is the
matching efficiency (the unit is second per pair of matching points). The best score of each index is
displayed in a bold number.

Method Indexes A B C D E F

Proposed

nε0 152 349 662 397 972 408
β 94.43 87.70 87.45 92.98 94.71 90.66

εRMSE 0.64 0.61 0.93 0.54 0.59 0.91
MDQ 0.893 1.021 1.130 0.988 0.764 1.104

t 31.49 36.55 45.73 44.61 52.32 43.80
η 0.196 0.092 0.060 0.105 0.051 0.097

Detone’s

nε0 6 56 0 0 0 0
β 46.15 43.75 0 0 0 0

εRMSE 3.32 2.28 221.83 53.62 50.25 247.41
MDQ 1.706 1.290 3.379 2.561 3.027 2.643

t 16.84 20.33 27.89 24.30 30.95 25.19
η 1.295 0.159 3.984 3.038 3.095 1.679

Morel’s

nε0 257 408 86 66 532 31
β 36.25 41.17 23.50 21.71 38.89 13.78

εRMSE 0.91 0.92 1.80 0.96 0.88 0.98
MDQ 0.974 1.083 1.384 1.920 1.005 1.766

t 31.38 33.20 33.90 29.13 32.07 33.85
η 0.044 0.034 0.093 0.096 0.023 0.150

Matas’s

nε0 10 48 7 6 4 0
β 34.48 78.69 41.18 42.86 66.67 0

εRMSE 2.74 1.39 3.61 8.35 1.93 25.26
MDQ 1.562 1.495 2.279 1.981 1.596 2.885

t 2.78 3.82 5.99 6.72 6.37 6.38
η 0.095 0.063 0.352 0.480 1.062 0.798
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4. Discussion
4.1. Discussion on Experimental Results of the Key Steps of the Proposed Method

Our overall goal is to automatically produce adequate matches at a subpixel-level
from large baseline oblique stereo images. The proposed method reaches the goal by three
key steps. First, the proposed IHesAffNet can extract abundant and well-distributed affine
invariant regions, laying the good foundation not only for the feature description but
also for the DLT-LSM. Second, we design the MTHardNets descriptor based on HardNet,
but our improved has better discrimination when compared to HardNet. Third, each
correspondence is further optimized based on the DLT-LSM iteration, which is the key
to achieving subpixle matching. As can be observed from Table 5, the proposed method
outperforms all other methods including AMD and IHD. This is due to the fact that we
apply the IHesAffNet in the feature detection stage, instead of using the AffNet. The
quality of the feature descriptor also significantly affects the matching performance. The
Table 5 also shows that the ISD produces the fewest correct correspondences among the
compared six methods. This is attributed to the fact that ISD adopts the SIFT method to
extract descriptors, while others generate deep learning-based descriptors; we can use
this observation to conjecture that the deep learning strategy generally provides better
descriptors when compared to the handcrafted SIFT method. According to the comparison
between IHD and the proposed in Table 5, it reveals that our MTHardNets can outperform
the HardNet in the process of generating correct matches. Table 6 reveals that the ISD takes
the least time among the six methods. This is because the deep leaning-based descriptor
would cost more time than handcrafted SIFT descriptor. Figure 7 verifies that the IMN
without DLT-LSM step achieves more than 1.5 pixels accuracy and has the lowest correct
ratio of matches. That means our DLT-LSM effectively decreases the matching error of deep
learning from pixel-level to subpixel-level. In short, according to the contrasting results of
the key steps, our proposed method can obtain the most number of correct matches and
the highest correct ratio, and synchronously gain the best matching accuracy, which can be
attributed to the fact that we have adopted the relatively effective strategy in each stage of
the proposed pipeline.

4.2. Discussion on Experimental Results of Comparison Methods

A large number of correct corresponding features with better spatial distribution can
be achieved by the proposed deep learning affine invariant feature matching. In the six
groups of Large baseline oblique stereo images with repetitive patterns, the numbers of
correct corresponding deep learning features are computed as 165, 404, 1504, 545, 1233,
and 710, respectively, (see Figure 8). Therefore, these matches would lay a good foundation
for estimating the geometry transform between the two images. However, the positional
errors of these correspondences before applying DLT-LSM operation are generally more
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than one pixel (see Figure 14), so it is difficult to produce subpixel matches only by deep
learning pipeline.

Table 7 shows that our matching accuracy of six groups of image pairs is at a subpixel-
level. As a result, the subpixel accuracy provides better registration between matching
features (see Figure 13a). Figure 14 depicts that the feature matching error can be effectively
compensated by our DLT-LSM iteration in spite of severe distortion between corresponding
neighborhoods. This is because our deep learning feature correspondences would provide
good initial transform for the DLT-LSM step. However, there are still a few feature-point
matches that DLT-LSM does not work (see Figure 14). We investigate the main reason that
these outliers are often located in image regions with poor texture.

The proposed method can obtain sufficient number of conjugate points with the best
spatial distribution among the four methods. By the visual inspection of Figure 9, our
method gains the most evenly distributed results than the other three methods. According
to the quantitative comparison given in Table 7, we can see that our method has advantage in
term of matching distribution quality. This is because we have integrated IHesAffNet with
MTHardNets, which may contribute to a better matching distribution. The loss function
used in Detone’s method only considers the distance between positive samples, which limits
the discrimination of the deep learning descriptors, and results in a not well-distributed
feature matches (see Figure 10).

Table 7 shows the proposed method has superiority in term of matching correct ratio.
Moreover, the detailed view in Figure 13 reveals that our registration is more precise than
the other three approaches. Table 7 shows Detone’s method fails to obtain correct matches
from image pairs C, D, E and F. The main reason may be that the homographic adaptation
of SuperPoint is randomly, which limits its invariance to diverse geometric deformations.

Observing the matching efficiency in Table 7, our proposed is more efficient than the
Detone’s. The main reason is that our method would stably gain a large number of matches,
while the Detone’s method almost fails to obtain matches from large oblique stereo images.
However, the matching efficiency of our proposed and Detone’s are not as good as the
handcrafted methods of Morel’s and Matas’s. This is because the deep leaning methods
involve numerous convolution operations in the process of feature detection and description.

According to the aforementioned qualitative and quantitative results, the proposed
approach is superior in terms of number of correct matches, correct ratio of matches,
matching accuracy, and distribution quality. The contribution of our method includes three
aspects. The first is the proposed IHesAffNet can detect more well-distributed features with
higher repeatability than the original AffNet. The second is the proposed MTHardNets can
generate higher discrimination descriptor when compared to HardNet especially for the
poor texture image regions. The third is the advanced DLT-LSM can significantly improve
the accuracy of corresponding points. In summary, our method is effective and stable for
large baseline oblique stereo image matching.

5. Conclusions

In this paper, we presented a novel and effective end-to-end feature matching pipeline
for large baseline oblique stereo images with complex geometric and radiometric distor-
tions as well as repetitive patterns. The proposed introduces the IHesAffNet that can
extract affine invariant features with well distribution and good repeatability. The output
of this network inputs to the proposed MTHardNets that generates highly discriminatory
descriptors providing increased accuracy for stereo feature matching. Furthermore, the
proposed approach features a DLT-LSM based iterative step that compensates for the posi-
tion errors of feature points. As a result, it can obtain a sufficient number of subpixel-level
matches with uniform spatial distribution. The qualitative and quantitative comparisons
on different large baseline oblique images verify that our method can outperforms the
state-of-the-art methods for oblique image matching. Future research can include devel-
oping deep learning strategies for multiple image primitives, such as corner, edges, and
regions. Moreover, the affine invariant matching approach can be extended from planar
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scenes to large baseline oblique 3D scenes. Meanwhile, the proposed end-to-end CNN can
be extended from grayscale images to color images for application.
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