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Abstract: Remote-sensing time-series data are significant for global environmental change research
and a better understanding of the Earth. However, remote-sensing acquisitions often provide sparse
time series due to sensor resolution limitations and environmental factors, such as cloud noise for
optical data. Image interpolation is the method that is often used to deal with this issue. This paper
considers the deep learning method to learn the complex mapping of an interpolated intermediate
image from predecessor and successor images, called separable convolution network for sequence
image interpolation. The separable convolution network uses a separable 1D convolution kernel
instead of 2D kernels to capture the spatial characteristics of input sequence images and then is
trained end-to-end using sequence images. Our experiments, which were performed with unmanned
aerial vehicle (UAV) and Landsat-8 datasets, show that the method is effective to produce high-quality
time-series interpolated images, and the data-driven deep model can better simulate complex and
diverse nonlinear image data information.

Keywords: sequence image interpolation; separable convolution network; separable convolution
kernel; UAV dataset; Landsat-8 dataset

1. Introduction

Remote-sensing time-series data are an important part of big earth observation data.
As standard spatiotemporal spectral data, remote-sensing time-series data can be applied
to research and applications in global changes, such as vegetation phenology changes,
land-surface parameter relationships, and land degradation. The value and successful
application of remote-sensing time-series data are significant for earth science to expand
the growth to a deeper level and to better understand the Earth [1,2].

Time-series analysis usually requires the data to be dense and has equal time intervals
to facilitate the process. However, remote-sensing acquisitions often provide sparse time
series due to sensor resolution limitations and environmental factors [3], such as cloud
noise for optical data.

A conventional method to solve missing data is 1D data interpolation, as is usually
done for moderate-resolution imaging spectroradiometer (MODIS) data sequences with the
following processing characteristics. The interpolation method is essentially based on a 1D
sequence in the time dimension. The sequence is relatively long. This method is not suitable
for high-spatial-resolution sequence images containing fine spatial pattern information.
Remote-sensing sequence images are a kind of short-range complex 2D data [4]; these
sequences are rich in spatial information that must be considered during interpolation.
Due to the limitation of sequence length, it is difficult to interpolate 2D images in the same
way that an interpolation is applied on 1D data.
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The simplest interpolation way is linear interpolation; however, because the land cover
of the coverage area changes with time and these changes can show complex phenological
dynamics, the simple and uniform weighted linear method cannot meet the requirements
of spectral fidelity of interpolated images [5].

This paper was inspired by video frame interpolation and applies the idea to the
remote-sensing field. The difference is that video frame interpolation focuses on estimat-
ing inter-frame motion, while remote-sensing sequence image interpolation focuses on
estimating inter-scene spectral transformation.

Niklaus et al. [6] employ a deep fully convolutional neural network to estimate
spatially adaptive 2D or separable 1D convolution kernels for each output pixel and
convolves input frames with them to render the intermediate frame. The convolution
kernel captures both local motion between input frames and the coefficients for pixel
synthesis. The key to making this convolution approach practical is to use 1D kernels to
approximate full 2D ones. The use of 1D kernels significantly reduces the number of kernel
parameters and enables full-frame synthesis.

This paper uses the same idea, and also employs a contraction–expansion of the deep
fully convolutional neural network to estimate spatially adaptive separable 1D convolution
kernels for each output pixel; the convolution kernel captures the local inter-scene spectral
transformation coefficients for pixel synthesis.

To the best of our knowledge, this is one of the first attempts to use the prototype of a
fully convolutional neural network to estimate inter-scene spectral transformation for the
interpolation of remote-sensing sequence images. The major novelty of this paper can be
summarized as follows:

• We use adaptive data-driven model for inter-scene spectral transformation of remote-
sensing images, and provide a robust interpolation approach for making up the
missing remote-sensing images.

• We verify, by experiments, the possibility of simulating missing remote-sensing image
scenes of specified acquisition times and remote-sensing sequences at equal time
intervals using the proposed data-driven spatially adaptive convolution network.
This allows the processing of remote-sensing sequences to be carried out under a
unified framework, instead of requiring different processing logic for each sequence
due to different time intervals.

This paper shows that the data-driven model can better simulate complex and diverse
nonlinear inter-scene spectral transformation, then get the inter-scene interpolated image
based on this data-driven model. High-quality time series of interpolated images can
be produced by the same approach. This enriches the research and development of the
remote-sensing field.

The rest of the paper is organized as follows. Section 2 reviews related studies
regarding remote-sensing time-series data interpolation. Experimental datasets and the
proposed separable convolution network are described in Section 3. Section 4 presents the
experiments and results, including visual comparisons and quantitative evaluation with
other methods. Section 5 discusses the influence of hyperparameters on the interpolated
result. Section 6 concludes the paper.

2. Related Studies

Remote-sensing data interpolation methods can be divided into two major types
according to known spatial and temporal neighborhood data. The first is to establish
a suitable spatial interpolation model based on the spatial relationship between spatial
neighborhood data. The second is to establish a corresponding time-series interpolation
model based on the time characteristics between temporal neighborhood data.

Seaquist et al. [7] used the ordinary kriging (OK) method to improve the accuracy of
a normalized difference vegetable index (NDVI) maximum value composite (MVC) syn-
thesized time series. Mercedes et al. [8] used a spatial interpolation method to interpolate
leaf-area index (LAI) data. Shrutilipi et al. [9] compared the accuracy of remote-sensing
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data interpolated by different spatial interpolation methods and concluded that the accu-
racy of OK was better than inverse distance weight (IDW). The above methods can use
the spatial information of remote-sensing images for spatial interpolation, and cannot use
time-series information for temporal interpolation.

Zhou et al. [10] used NDVI data of the MODIS satellite to conduct simulation ex-
periments and evaluate the Savitzky–Golay (SG) filtering [11] and harmonic analysis of
time-series (HANTS) model [12] refactoring effect at different time intervals. According to
the daily harmonic changes of land surface temperature (LST), Crosson et al. [13] used the
LST data of MODIS Terra and Aqua to repair missing LST points by harmonic analysis.
The above methods provide better 1D data fitting for the interpolation of time-series data
at different time intervals, and are not suitable for the interpolation of high-dimensional
time-series data (remote-sensing sequence images).

Recently, the emergence of the enhanced spatial and temporal adaptive reflectance
fusion model (ESTARTFM) [14], spatial and temporal adaptive reflectance fusion model
(STARTFM) [15], and global dense feature fusion convolutional network [16] has provided
ideas for research on time-series image interpolation. These models can obtain high
temporal and spatial resolution fusion data, but they cannot elaborate on the spatiotemporal
evolution of sequence images.

It is not enough to consider remote-sensing data interpolation only from the temporal
or spatial dimension. Our proposed separable convolution network combines the tempo-
ral neighborhood of predecessor and successor images and the spatial neighborhood to
consider the interpolation of scene-based remote-sensing sequence images. It does not rely
on other high-temporal-resolution remote-sensing data, and only interpolates based on the
sequence itself. This provides a new idea for the interpolation of remote-sensing data.

3. Materials and Methods
3.1. Datasets

This paper uses two datasets (UAV and Landsat-8) for experiments. Figure 1 shows the
location of the UAV dataset: the Sougéal marsh (western France, 48.52◦N, 1.53◦W), which
is part of the long-term socio-ecological research (LTSER) site Zone Atelier Armorique. This
site is a large flooded grassland of 174 ha located in the floodplain of the Couesnon River,
upstream of Mont-Saint-Michel Bay [17]. The projection type is France Lambert-93. The spa-
tial resolution is 0.02 m. The number of bands is 4: green, red, red-edge, and near-infrared.
Figure 2 shows the location of the Landsat-8 dataset, which located in the southeast of
Gansu Province (Path: 129, Row: 37, 33.44◦N, 105.06◦E). The projection type is Universal
Transverse Mercator (UTM). The spatial resolution is 30 m. The number of bands is 7:
coastal, blue, green, red, near-infrared, short-wave infrared-1, and short-wave infrared-2.

Figure 1. Location of unmanned aerial vehicle (UAV) dataset.
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Figure 2. Location of Landsat-8 dataset.

3.2. Theoretical Model

Given two images It1 and It2 temporally in a sequence, it is reasonable to assume the
middle image Iestimated between images It1 and It2 could be estimated by Equation (1):

Iestimated = b1(x, y) ∗ K1(x, y) + b2(x, y) ∗ K2(x, y) (1)

where b1(x, y) and b2(x, y) are the patches centered at (x, y) in It1 and It2 , and K1(x, y)
and K2(x, y) are a pair of 2D convolution kernels; note that ∗ denotes a local convolution
operation. The pixel-dependent kernels K1 and K2 capture both motion and re-sampling
information required for interpolation. The 2D kernels, K1 and K2, could be approximated
by a pair of 1D kernels. That is, K1 could be approximated as k1,v ∗ k1,h and K2 could
be approximated as k2,v ∗ k2,h. Under this assumption, the main task is to estimate each
separable 1D kernel parameter k1,v, k1,h, k2,v, k2,h.

Furthermore, the changes between Iestimated and the changes of It1 and It2 over time
are considered to be nonlinear. The 1D kernel parameter functions k1,v, k1,h, k2,v, k2,h can be
assumed, and both are nonlinear mappings that can be represented by convolutional neural
networks. Without loss of generality, we assume that the four 1D kernels have a tightly
supported set. We apply the kernels to each of the multispectral channels to synthesize the
output pixel.

3.3. Architecture of the Model

The architecture of the model is shown in Figure 3; the separable convolution net-
work consists of a contracting part and an expanding part. The contracting part is used
to extract features of training samples, and the expanding part is used to recover the
extracted features.

The extracting part mainly contains five convolution layers and five pooling layers.
The number of filters in each convolution layer is 16, 32, 64, 128, and 256. Stacks of
3 × 3 convolution with rectified linear unit (ReLu) are used in each convolution layer.
Maximum pooling is used in each pooling layer. The expanding part mainly contains
four deconvolution layers and four upsampling layers. The number of filters in each
deconvolution layer is 256, 128, 64, and 32. The upsampling layers can be executed in
various ways, such as nearest-neighbor, bi-linear interpolation, and cubic convolution
interpolation [18–20]. Furthermore, we utilize skip connection [21,22] to let upsampling
layers incorporate features from the contracting part of the separable convolution network.
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To estimate four sets of 1D kernels, we direct the feature information in the last expansion
layer into four sub-networks, with each sub-network evaluating one kernel.

Figure 3. Overview of our separable convolution network architecture.

In our experiments, the default image block size is 125 × 125 pixels and the separable
convolution kernel size is 11 × 11 pixels. Our approach shares the different convolution
kernels to each of the input channels.

3.4. Loss Functions

Our research uses two types of loss function, `mse loss and `c loss, which measure the
difference between an interpolated image Iestimated and corresponding reference image Igt.
The first loss function is `mse norm based on pixel difference and is defined in Equation (2):

`mse =
1
n

Σ
(∥∥Iestimated − Igt

∥∥
2

)
(2)

The second loss function is `c norm based on the combination of feature difference
and pixel difference and is defined in Equation (3):

`c = `mse + ‖ϕ(Iestimated)− ϕ(Igt)‖2 (3)

where ϕ extracts features from an image. We tried to use feature extractors like visual
geometry group (VGG-19) [23]. During feature extraction, interpolated result and reference
image are intercepted to the 10th layer of the VGG-19 network, which has a total of 16
layers. The extracted feature is usually based on high-level features of input images, and
it can increase the high-frequency components of the interpolated result. To check their
result, we used two versions of our convolution model. For the first and second loss, we
used `mse loss and `c loss for simplicity in this paper.

3.5. Evaluation Indicator

Our research uses two evaluation indicators to evaluate the quality of the interpolated
result: root mean square error (RMSE) and entropy function. RMSE measures the pixel
error between an interpolated image Iestimated and corresponding reference image Igt, as
defined in Equation (4):

RMSE =

√
1
n

Σ
(∥∥Iestimated − Igt

∥∥
2

)
(4)
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The entropy function based on statistical features is an important indicator to measure
the richness of image information. The information amount of an image I is measured by
the information entropy D(I), as defined in Equation (5):

D(I) = −
L−1

∑
i=0

Piln(Pi) (5)

where Pi is the probability of a pixel with a gray value of i in image, and L is the total
number of gray levels (L = 256). According to Shannon’s information theory [24], there is
the most information when there is maximum entropy. Generally speaking, the larger the
D(I), the clearer the image. The benefit of using entropy over RMSE is that entropy can
capture the amount of information in the image, and the detailed information of the image
can be reflected indirectly through entropy.

4. Experiments and Results
4.1. Training Strategy

We take three scenes composed of one sequence from the dataset as examples, and
select the first two scenes as the input and the last scene as the output to train the model.
Each sequence was trained to get one network model.

The size of scenes in sequence in both UAV and Landsat-8 datasets was 3100 × 5650.
To get enough training samples, all scenes in a sequence were aligned and divided into
three regions: a training region with a size of 2000 × 2000, accounting for 22.8% of the
entire scene; a validation region with a size of 2000 × 2000, also 22.8% of the scene; and the
rest of the scene, used as the testing sample, accounting for 55.4% of the entire scene. All
three regions were continuously cropped as a block with a size of 125 × 125, and there was
overlap when cropping.

The optimizer used in the training was Adamax with β1 = 0.9, β2 = 0.99, and a learning
rate of 1 × 10−3. Compared to other network optimizers, Adamax could achieve better
convergence of the model [25].

4.2. Testing Strategy

This paper mainly conducted three sets of the experiment. Each set had an experi-
mental purpose and corresponding data. The first set was mainly designed to verify the
effectiveness of our proposed method; this experiment was implemented within the scene
of sequences. The second set was a generalized application in the time dimension, and this
experiment was implemented between two sequences. The third set of the experiment was
mainly to generate missing images in different time series using the proposed method, and
this was implemented among multiple sequences. The corresponding experimental data
are described in the following paragraphs in detail.

Before describing the experimental data in every experiment, we will first introduce
some symbols used below. I represents image scene in sequence, and It3 represents the
image acquired at time t3. The mapping model generated by `c loss is expressed as
f `c
[It1 , It2 , It3 ]

, and the mapping model generated by `mse loss is expressed as f `mse
[It1 , It2 , It3 ]

, where

[It1 , It2 , It3 ] represents training image triples, It1 and It2 represent the training image pairs,
It3 represents the reference image, t1 and t2 represents the month of training image pairs
acquired, and t3 represents the month of the reference image acquired. f `c

[It1 , It2 ,It3 ]
(It1 , It2)

represents output image with mapping model f `c
[It1 , It2 , It3 ]

and input scenes It1 and It2 , and

f `mse
[It1 , It2 ,It3 ]

(It1 , It2) has a similar meaning.

In the first set of the experiment, both the testing samples and the generated results
were blocks within the scene of sequences, and this is called block interpolated results.
The reference block was the real one there. Our proposed method and the method of
Meyer et al. [26] were compared in this experiment. The method of Meyer et al. was ex-
trapolated, the extrapolated result was expressed as f[It1 , It2 ]

(It1), where f[It1 , It2 ]
represents
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extrapolated mapping trained by training image pair [It1 , It2 ] with reference image It2 . It1

in the brackets represents the input used to generate the extrapolated result.
Table 1 shows the sequences used in this experiment and the dates of all scenes

acquired in them. Figure 4 shows the distribution of training blocks, testing blocks, and
validation samples within all the scenes, where the area inside the red and green boxes
indicate the training and testing blocks, and the others are validation samples.

Table 1. Name and date of experimental datasets in first set of experiment.

Dataset Image Names Image Dates

UAV

I4 April 2019
I5 May 2019
I6 June 2019
I7 July 2019
I8 August 2019

Landsat-8

I4 April 2013
I7 July 2013
I9 September 2013
I11 November 2013
I12 December 2013

Figure 4. Distribution of training, testing, and validation samples in first set of experiment: (A) un-
manned aerial vehicle (UAV) and (B) Landsat-8 images; areas inside red and green box and remainder
of images show distribution of training, testing, and validation samples, respectively.

The second set of the experiment was implemented between two sequences. The map-
ping model was generated by one sequence and the application by an adjacent sequence,
that is, the testing frames out of another sequence, and here the generated result is called
the scene interpolated result. If the mapping model generated by `c loss was f `c

[It1 , It2 ,It3 ]
,

the scene interpolated result was f `c
[It1 , It2 ,It3 ]

(
I′t1

, I′t2

)
. If the mapping model generated by

`mse loss was f `mse
[It1 , It2 ,It3 ]

, the scene interpolated result was f `mse
[It1 , It2 ,It3 ]

(
I′t1

, I′t2

)
. I′t1

and It1

represent images of the same place in month t1. I′t2
and It2 represents images of the same

place in month t2. Figure 5 shows the visual effect between training image (It1 , It2) and
testing image (I′t1

, I′t2
).
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Figure 5. Visual effect of training and testing images in second set of experiment (I4 and I5 show
visual effect of training image; I′4 and I′5 show visual effect of testing image).

The third set of the experiment was conducted with multiple sequences. The remote-
sensing sequence here mainly reflected two aspects: (1) non-equidistant missing images in
the same time series and (2) non-equidistant missing images of the same scene in different
time series. It was difficult to find an analysis method to analyze these sequences in a
unified and integrated manner. The number of sequences in a year may be relatively small,
and the time interval between images uncertain, so there were non-equal time intervals;
some were long and some were short. Figure 6A shows available UAV images from 2017
to 2019 in this experiment. It is obvious there were many missing images for the frequency
of one image per month. This experiment tried to generate those missing images. Figure
6B shows one strategy for generating missing data. The red points mark the first level
interpolated result, in which training and testing images are both existing images; lines of
the same color connect two testing images; green points mark the second level interpolated
result, of which red point images are among training or testing images; cyan-blue points
mark the third level interpolated result, of which green point images are among training or
testing images. In this experiment, our method produced 19 scene images, and the network
model was trained 19 times. The mapping model generated during each training was used
to generate a new scene image. The training triplet images, testing images, and output
images are listed in Table 2.

Figure 6. Strategy for generating missing data in third set of experiment: (A) available UAV images
from 2017 to 2019; (B) one generation strategy. Red, green, and cyan-blue curves show lines of first,
second, and third level of interpolated result.
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Table 2. Training triplet images, testing images, and output images in third set of experiment.

Color of Points Training Triplet Images Testing Images Output Images

Red

April, May, January 2019

April, May 2018

January 2018
April, May, March 2019 March 2018
April, May, June 2019 June 2018
April, May, July 2019 July 2018

April, May, August 2019 August 2018

Green

July, October, November 2017 July, October 2018 November 2018
July, August, September 2018

July, August 2019

September 2019
July, August, October 2018 October 2019

July, August, November 2018 November 2019
July, August, December 2018 December 2019

Cyan-blue

October, November, January 2018

October, November 2017

January 2017
October, November, February 2018 February 2017

October, November, March 2018 March 2017
October, November, April 2018 April 2017
October, November, May 2018 May 2017
October, November, June 2018 June 2017

October, November, August 2018 August 2017
October, November, September 2018 September 2017
October, November, December 2018 December 2017

4.3. Experimental Details

Image blocking: Due to the limitation of the sequence image size, inputting the whole
scene image (image size is 3100 × 5650) would cause the system to run out of memory.
To address this issue, remote-sensing images needed to be processed in blocks during the
experiment. The input image was divided into 25 blocks (each 620 × 1130), which could
cover the entire image information and relieve memory pressure.

Time complexity: We used the Python machine learning library (PyTorch) to execute
this separable convolution network. To improve computational efficiency, we organized
our layer in computer unified device architecture (CUDA) that applies estimated 1D kernels.
Our network was able to interpolate a 620× 1130 image in 40 s. Obtaining the overall scene
image (image size 3100 × 5650) took about 15 min under the acceleration of the graphics
processing unit (GPU) [27].

4.4. Results

Table 3 shows the quantitative evaluation indicator between the block interpolated
result and reference block using our proposed method in both datasets in the first set of the
experiment. The table shows that the entropy value produced by using `c loss was higher
than that produced by using `mse loss, and the RMSE [28] value produced by using `mse loss
was lower than that produced by using `c loss. Table 4 shows a quantitative comparison
between the block interpolated result and reference block using our proposed method
and the method of Meyer et al. on both datasets. The table shows that the entropy value
was higher and the RMSE value was lower using our method compared to the values
produced using Meyer et al.’s method on both datasets. Figure 7 shows the visual effect
and pixel error between the block interpolated result and reference block using different
loss functions in both datasets and illustrates that using `mse loss led to visually blurry
results, and using `c loss led to clear results with more high-frequency components [29–31]
in our proposed method. Figure 8 shows the visual comparison and pixel error between
the block interpolated result and the reference block using our method and the method of
Meyer et al. on both datasets, and illustrates that the block interpolated result using our
method was close to the spectral features of the reference block.
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Table 3. Quantitative evaluation between block interpolated result and reference block using our
proposed method on both datasets.

Dataset Interpolated Results (Block) Reference Blocks Entropy RMSE (Pixel)

UAV

f `mse
[I4, I5,I6]

(I4, I5) I6
3.719 1.052

f `c
[I4, I5,I6]

(I4, I5)
3.723 1.077

f `mse
[I4, I5,I7]

(I4, I5) I7
3.441 1.070

f `c
[I4, I5,I7]

(I4, I5)
3.450 1.294

f `mse
[I4, I5,I8]

(I4, I5) I8
3.498 1.116

f `c
[I4, I5,I8]

(I4, I5)
3.508 1.429

Landsat-8

f `mse
[I4, I7,I9]

(I4, I7) I9
3.143 0.817

f `c
[I4, I7,I9]

(I4, I7)
3.145 1.112

f `mse
[I4, I7,I11]

(I4, I7) I11
3.842 1.233

f `c
[I4, I7,I11]

(I4, I7)
3.846 1.321

f `mse
[I4, I7,I12]

(I4, I7) I12
3.545 1.040

f `c
[I4, I7,I12]

(I4, I7)
3.550 1.476

Figure 7. Visual effect, detailed information, and pixel error between block interpolated result and reference block using (A)
UAV and (B) Landsat-8 datasets with (a) initial image (b,d,f) `mse loss and (c,e,g) `c loss.
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Table 4. Quantitative comparison between block interpolated result and reference block using our
proposed method and method of Meyer et al. on both datasets.

Dataset Interpolated Results (Block) Reference Blocks Entropy RMSE (Pixel)

UAV

f `mse
[I4, I5,I6]

(I4, I5) I6
3.719 1.052

f[I4, I6](I4) 3.701 1.320

f `mse
[I4, I5,I7]

(I4, I5) I7
3.441 1.070

f[I4, I7](I4) 3.440 1.888

f `mse
[I4, I5,I8]

(I4, I5) I8
3.498 1.116

f[I4, I8](I4) 3.477 2.369

Landsat-8

f `mse
[I4, I7,I9]

(I4,I7) I9
3.143 0.817

f[I4, I9](I4) 3.125 1.550

f `mse
[I4, I7,I11]

(I4, I7) I11
3.842 1.233

f[I4, I11](I4) 3.572 1.957

f `mse
[I4, I7,I12]

(I4, I7) I12
3.545 1.040

f[I4, I12](I4) 3.541 1.769

Figure 8. Visual effect and pixel error between block interpolated result and reference block using
(A) UAV and (B) Landsat-8 datasets with (a) initial image (b,d) our proposed method and (c,e) the
method of Meyer et al.



Remote Sens. 2021, 13, 296 12 of 20

Table 5 shows the quantitative evaluation indicator between the scene interpolated
result and reference scene image in the second set of the experiment. The table shows that
the entropy value produced by using `c loss was higher than that using `mse loss, and the
RMSE value produced by using `mse loss was lower than that using `c loss. Figures 9 and 10
show the visual effect and pixel error between the scene interpolated result and reference
scene image using different loss functions and illustrates that the scene interpolated result
using `mse loss and `c loss was close to the reference scene image. Figures 11–13 show
the spectral curves between the scene interpolated result and reference scene image using
different loss functions at different coordinates (vegetation, pond, ditches, and lake) from
June to August 2019 and illustrates that using `mse loss and `c loss could maintain better
spectral features between the scene interpolated result and reference scene image.

Table 5. Quantitative evaluation between scene interpolated result and reference scene image.

Interpolated Results (Scene) Reference Images Entropy RMSE (Pixel)

f `mse
[I4, I5,I6]

(I′4, I′5) I6
3.650 1.124

f `c
[I4, I5,I6]

(I′4, I′5)
3.656 1.163

f `mse
[I4, I5,I7]

(I′4, I′5) I7
3.346 1.017

f `c
[I4, I5,I7]

(I′4, I′5)
3.346 1.381

f `mse
[I4, I5,I8]

(I′4, I′5) I8
3.494 1.210

f `c
[I4, I5,I8]

(I′4, I′5)
3.506 1.550

Figure 9. Visual effect and pixel error between scene interpolated result and reference scene image
using (a) initial image (b,d) `mse loss and (c,e) `c loss (1, 2, and 3 band composite).
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Figure 10. Visual effect and pixel error between scene interpolated result and reference scene image
using (a) initial image (b,d) `mse loss and (c,e) `c loss (1, 2, and 4 band composite).

Figure 11. Spectral curves between scene interpolated result and reference scene image using different
loss functions at different coordinates in June 2019.
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Figure 12. Spectral curves between scene interpolated result and reference scene image using different
loss functions at different coordinates in July 2019.

In the third set of the experiment, `c loss was used to generate a mapping model.
There were no reference images in this experiment. Figure 14 shows the interpolated
results of UAV images using `c loss from 2017 to 2019 and the visual effects of three-level
interpolation according to the interpolation strategy in Table 2. It appears that as the level
of interpolation increased, the spectral features of the interpolated result became worse.
This may be caused by the propagation of pixel error as the level of interpolation increased.

Figure 13. Spectral curves between scene interpolated result and reference scene image using different
loss functions at different coordinates in August 2019.
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Figure 14. Interpolated result of UAV images using `c loss from 2017 to 2019 according to interpo-
lation strategy in Table 2: existing images and interpolated results in (A) 2019 sequence, (B) 2018
sequence, and (C) 2017 sequence.

5. Discussion
5.1. Stacked Convolution Layers

We observed that the number of stacked convolution layers had an impact on the
interpolated result, and conducted a visual comparison between the block interpolated
result and reference block using different stacked convolution layers. We selected 1 × 1,
2 × 2, and 3 × 3 stacked convolution layers to train the proposed separable convolution
network. Table 6 shows the quantitative evaluation indicator and Figure 15 the visual effect
and pixel error between the block interpolated results and reference block using different
stacked convolution layers.

Table 6. Quantitative evaluation between block interpolated result and reference block using different
stacked convolution layers.

Stacked Numbers Interpolated Results (Block) Reference Blocks RMSE (Pixel)

1 × 1

f `c
[I4, I5,I6]

(I4, I5)
I6 1.375

f `c
[I4, I5,I7]

(I4, I5)
I7 1.556

f `c
[I4, I5,I8]

(I4, I5)
I8 1.666

2 × 2

f `c
[I4, I5,I6]

(I4, I5)
I6 1.258

f `c
[I4, I5,I7]

(I4, I5)
I7 1.431

f `c
[I4, I5,I8]

(I4, I5)
I8 1.465

3 × 3

f `c
[I4, I5,I6]

(I4, I5)
I6 1.077

f `c
[I4, I5,I7]

(I4, I5)
I7 1.294

f `c
[I4, I5,I8]

(I4, I5)
I8 1.429
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Figure 15. (a) Initial image (b–d) visual effect and (e–g) pixel error between block interpolated results and reference block
using stacks of 1 × 1, 2 × 2, and 3 × 3 convolution layers.

5.2. Pooling Type

We observed that the pooling type of the network model had an impact on the
interpolated result, and conducted a visual comparison between the block interpolated
result and reference block using different pooling types. We selected average pooling and
maximum pooling to train the proposed separable convolution network. Table 7 shows the
quantitative evaluation indicator and Figure 16 visual effect and pixel error between the
block interpolated result and reference block using different pooling types.

Figure 16. Visual effect and pixel error between block interpolated result and reference block using (a) initial image (b,d)
average pooling and (c,e) maximum pooling.



Remote Sens. 2021, 13, 296 17 of 20

Table 7. Quantitative evaluation between block interpolated result and reference block using different
pooling types.

Pooling Type Interpolated Results (Block) Reference Blocks RMSE (Pixel)

Average pooling
f `c
[I4, I5,I6]

(I4, I5)
I6 1.326

f `c
[I4, I5,I7]

(I4, I5)
I7 1.492

f `c
[I4, I5,I8]

(I4, I5)
I8 1.700

Maximum pooling
f `c
[I4, I5,I6]

(I4, I5)
I6 1.077

f `c
[I4, I5,I7]

(I4, I5)
I7 1.294

f `c
[I4, I5,I8]

(I4, I5)
I8 1.429

5.3. Temporal Gap between Testing Blocks and Model Requirements

We observed that for a given model, the testing block needed to meet certain re-
quirements. What would happen if a temporal gap existed between testing blocks and
those requirements? We conducted a visual comparison between the block interpolated
result and reference block when a temporal gap existed between testing blocks and model
requirements. We selected several testing blocks (April, May 2018; April, October 2018;
and April, December 2018) to test the learned mapping model ( f `c

[I4, I5, I6]
, f `c

[I4, I5, I7]
and

f `c
[I4, I5, I8]

); the model required that testing blocks should be acquired in April and May.
Table 8 shows the quantitative evaluation indicator and Figure 17 the visual effect and
pixel error between the block interpolated result and the reference block using different
testing block pairs.

Figure 17. (a) Initial image (b–d) visual effect and (e–g) pixel error between block interpolated result and reference block
using testing block pairs April–May, April–October, and April–December 2018.
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Table 8. Quantitative evaluation between block interpolated result and reference block using different
testing block pairs.

Testing Image Date Interpolated Results (Block) Reference Blocks RMSE (Pixel)

April, May 2018 f `c
[I4, I5,I6]

(I4, I5)

I6

1.341

April, October 2018 f `c
[I4, I5,I6]

(I4, I10)
3.912

April, December 2018 f `c
[I4, I5,I6]

(I4, I12)
3.989

April, May 2018 f `c
[I4, I5,I7]

(I4, I5)

I7

1.498

April, October 2018 f `c
[I4, I5,I7]

(I4, I10)
5.096

April, December 2018 f `c
[I4, I5,I7]

(I4, I12)
5.271

April, May 2018 f `c
[I4, I5,I8]

(I4, I5)

I8

1.653

April, October 2018 f `c
[I4, I5,I8]

(I4, I10)
5.313

April, December 2018 f `c
[I4, I5,I8]

(I4, I12)
5.568

5.4. Separable Convolution Kernel Size

We observed that the separable convolution kernel size of the network model had
an impact on the interpolated result, and conducted a visual comparison between the
block interpolated result and reference block using different separable convolution kernel
sizes. We selected separable convolution kernels with sizes of 11, 13, and 15 to train
the proposed separable convolution network. Table 9 shows the quantitative evaluation
indicator and Figure 18 the visual effect and pixel error between the block interpolated
result and reference block using different separable convolution kernel sizes.

Figure 18. (a) Initial image (b–d) visual effect and (e–g) pixel error between block interpolated result and reference block
using separable convolution kernel sizes 11, 13, and 15.
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Table 9. Quantitative evaluation between block interpolated result and reference block using different
separable convolution kernel sizes.

Kernel Size Interpolated Results (Block) Reference Blocks RMSE (Pixel)

11
f `c
[I4, I5,I6]

(I4, I5)
I6 1.077

f `c
[I4, I5,I7]

(I4, I5)
I7 1.294

f `c
[I4, I5,I8]

(I4, I5)
I8 1.429

13
f `c
[I4, I5,I6]

(I4, I5)
I6 1.178

f `c
[I4, I5,I7]

(I4, I5)
I7 1.446

f `c
[I4, I5,I8]

(I4, I5)
I8 1.765

15
f `c
[I4, I5,I6]

(I4, I5)
I6 1.217

f `c
[I4, I5,I7]

(I4, I5)
I7 1.656

f `c
[I4, I5,I8]

(I4, I5)
I8 1.868

6. Conclusions

The paper presents a remote-sensing sequence image interpolation approach that can
transform spectral mapping estimation and pixel synthesis into an easier process of using
a separable convolution network to estimate spatially adaptive separable 1D convolution
kernels. The conclusions of this paper can be summarized as follows:

(1) The proposed separable convolution network model provides a new method of
interpolating remote-sensing images, especially for high-spatial-resolution images.
The model can better capture and simulate complex and diverse nonlinear spectral
transformation between different temporal images, and get better-interpolated images
based on the model.

(2) Using `c loss can produce clearer images in the separable convolutional network
compared to `mse loss. Using 3 × 3 convolutional layers with ReLu, max pooling,
and separable convolution kernel of size 11 led to better-interpolated results in the
separable convolutional network. Experiments showed that the proposed separable
convolution network could be used to get interpolated images to fill in missing areas
of sequence images, and produce full remote-sensing sequence images.

The limitation of this method is that the proposed separable convolutional network in
this paper can only perform single-scene interpolation, and the quality of the interpolated
result depends heavily on the reference image. In future work, the proposed method will
be improved from single-scene to multi-scene interpolation using time as a variable to
reduce the dependency of interpolation results on the reference image.
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