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Abstract: Mangrove forests are important woody plant communities that grow in the intertidal
zone between land and sea. They provide important social, ecological and economic services to
coastal areas. In recent years, the growth environment of mangrove forests has been threatened.
Mangrove forests have become one of the most endangered ecosystems in the world. To better
protect mangrove forests, effective monitoring methods are essential. In this study, a spatio-temporal
simulation method for mangrove forests was proposed in the mangrove protected areas of Hainan
Island, China. This method compared the simulation accuracy of different models in terms of
spatial characteristics, evaluated the applicability of driving factors in mangrove simulation and
predicted the future spatio-temporal distribution and change trends of mangrove forests under
different scenarios. The simulation results of different models showed that AutoRF (random forest
with spatial autocorrelation) performs best in spatial characteristic simulation. Driving factors such as
the Enhanced Vegetation Index (EVI), various location indices and the spatial autocorrelation factor
can significantly improve the accuracy of mangrove simulations. The prediction results for Hainan
Island showed that the mangrove area increased slowly under a natural growth scenario (NGS),
decreased significantly under an economic development scenario (EDS) and increased significantly
under a mangrove protection scenario (MPS) with 4460, 2704 and 5456 ha respectively by 2037. The
contraction of mangrove forests is closely related to the expansion of aquaculture ponds, building
land and cultivated land. Mangrove contraction is more severe in marginal or fragmented areas. The
expansion of mangrove forests is due to the contraction of aquaculture ponds, cultivated land and
other forests. The areas around existing mangrove forests and on both sides of the riverbank are typi-
cal areas prone to mangrove expansion. The MPS should be the most suitable development direction
for the future, as it can reasonably balance economic development with mangrove protection.

Keywords: mangrove forests; Hainan Island; CLUE-S; spatio-temporal simulation; future change trends

1. Introduction

Mangrove forests are important woody plant communities that grow in the intertidal
zone between land and sea. They are widely distributed in tropical and subtropical regions
of the world between 30◦ N and 30◦ S latitude [1]. Mangrove forests can sequestrate
carbon, mitigate climate change, maintain marine and land biodiversity, purify water,
protect coastlines and coastal infrastructure and export economic products, thus providing
important social, ecological and economic services for surrounding areas [2–10]. Mangrove
forests are constantly threatened due to natural and anthropogenic factors such as extreme
weather events, sea-level rise, aquaculture and urban development, making them one of the
most endangered ecosystems in the world [11–14]. Currently, the world’s mangrove forests
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have declined by about 40% compared to the middle of the last century [15]. Throughout
the 1990s, the annual loss rate of mangrove forests was 1%, which was about twice that
of terrestrial forests during the same period [16]. In recent years, with the continuous
advancement of protection measures around the world, the loss rate of mangrove forests
has slowed, but still remains at 0.26–0.66% per year [17]. If the loss rate of mangrove
forests continues, about 40% of the world’s mangrove forests will completely disappear
by the end of this century. The services and products provided by mangrove forests will
be significantly reduced or lost, which will have a negative impact on human survival
and development [1]. Therefore, the protection of mangrove forests is urgent and has
reached a broad international consensus. Effective mangrove monitoring methods are
very important, which can provide a theoretical basis and decision support for mangrove
protection, restoration and utilization.

Mangrove forests grow in the mudflats between land and sea. Traditional field survey
methods have difficulty in obtaining accurate, comprehensive and timely mangrove data.
In recent years, the rapid development of remote sensing technology has provided a
new means for better extraction, analysis and prediction of mangrove forests. At present,
mangrove monitoring mainly focuses on mangrove change analysis and time series analysis.
Mangrove change analysis is a statistical analysis of the area, extent, conversion and
landscape pattern of mangrove forests [8,13,18–29]. Although this method can reflect
spatial distribution, area change and the causes of changes in mangrove forests, it only
statistically analyzes the overall changes, and cannot accurately reveal the spatial trends of
each section. Mangrove time series analysis is based on vegetation indices, with short time
intervals and long time series. This method explores mangrove trends by linear regression
analysis, Theil-Sen median trend analysis, the Mann-Kendall test, the Hurst exponent and
so forth. It can reflect the change trends and future trends of mangrove forests, and further
reveal the causes and effects of these trends [30–33]. Although this method accurately
reflects the spatial trends of each section, it only analyzes the changes of historical data and
cannot predict how long the sustainable trends will continue [34], which poses a challenge
for the future continuous monitoring of mangrove forests.

Therefore, it is crucial to conduct spatio-temporal simulation of mangrove forests
to predict the future spatio-temporal distribution of mangrove forests under different
scenarios. Land-use change models are the key to spatio-temporal simulation, which can
be divided into two categories, non-spatial models and spatial models. Non-spatial models
were developed earlier, such as the SAhelian Land-Use model (SALU) [35], linear program-
ming model [36,37], system dynamics model [38,39] and Markov chain model [40]. These
models consider only quantity changes and do not measure location changes. Spatial mod-
els consist of micromodels (bottom-up) and macromodels (top-down), which consider both
quantity and location changes. Micromodels first configure land-use changes according to
demands at the microscale and then aggregate the results to the macroscale, with examples
including cellular automation (CA) [41,42], SAMBA [43], the Future Land Use Simulation
(FLUS) [44] and so forth. Macromodels first configure land-use changes at the macroscale,
and then allocate demands to the microscale layer by layer; applications include the Land
Use Planning and Analysis System (LUPAS) [45], the Conversion of Land Use and its
Effects at Small region extent (CLUE-S) [46] and so forth. At present, few studies address
the spatio-temporal simulation of mangrove forests, and these are mainly based on CA-
Markov models. This model uses a Markov chain model to calculate the quantity changes,
and then brings it into a CA model to simulate location changes. Mukhopadhyay et al. [47]
utilized this model to predict the mangrove species of Bangladesh Sundarbans in 2025,
2055 and 2105. Bozkaya et al. [48] compared the CA-Markov and St. Markov models and
predicted the distribution of mangrove forests along the northwest coast of Turkey in 2030.
DasGupta et al. [49] used Multi-Layer Perceptron-Markov Chain Analysis (MLP-MCA)
to predict the distribution of mangrove forests in Sundarbans, India in 2030, under four
development scenarios. Tajbakhsh et al. [50] developed a hybrid model (CA-Markov-ANN)
to predict the distribution of mangrove forests in Qeshm Island, Southern Iran in 2025.
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However, the above studies for mangrove forests still have some shortcomings. First,
previous studies are mainly based on the CA-Markov model. The CLUE-S model has
been widely used in spatio-temporal simulation in different regions [51–53]. For long-term
simulation with non-stationary change patterns, the CLUE-S model has better stability
compared to the CA-Markov model. The statistical significance of the probability values
in the CA-Markov model is affected when the number of area changes is small [54]. The
CLUE-S model is more accurate in the simulation of the land-use spatial patterns compared
to the CA-Markov model [55]. Second, the simulation accuracy of spatial characteristics
needs to be improved. Spatial characteristics are key to the CLUE-S model to assess the po-
tential for land-use changes, which was calculated from land-use data and driving factors
by logistic regression [51,56], autologistic regression [52,57,58], NE-Logistic regression [56],
artificial neural networks [51] and random forest (RF) [53,59], and so forth. Some studies
have shown that machine learning methods such as RF have higher simulation accuracy
compared to traditional logistic regression [53], but no systematic comparisons have been
made. Third, driving factors need to be further refined and selected. Most driving factors
in the previous studies are commonly used indices such as elevation, slope and location
indices. Vegetation indices such as NDVI and its change trend can well reflect the change
trends of vegetation [60], which can provide a reference for simulation and prediction. The
spatial autocorrelation factor was proposed to address the spatial autocorrelation effect
inherent to spatial statistical analysis [61]. Traditional logistic regression methods can
significantly improve the simulation accuracy along with it [57], but machine learning
methods have not yet considered it.

Mangrove protected areas in Hainan Island were selected as the study area to ex-
plore the spatio-temporal simulation of mangrove forests under different scenarios. The
objectives of this study were as follows: (1) compare the simulation accuracy of different
models in terms of spatial characteristics and evaluate the applicability of driving factors
in mangrove simulation; (2) set different development scenarios and predict the future
spatio-temporal distribution of mangrove forests; and (3) analyze the future change trends
of mangrove forests.

2. Materials
2.1. Study Area

Hainan Island is rich in mangrove species, with 26 species of true mangrove, 12 species
of semi-mangrove and more than 40 species of mangrove associates [62], containing almost
all of the mangrove species found in China. For more than half a century, the mangrove area
in Hainan Island has experienced a developmental process from a sharp decline to a slow
increase. In the 1950s, the mangrove area of Hainan Island accounted for about a quarter
of China’s mangrove area, reaching 9992 ha [63]. Then, these mangrove forests suffered
serious damage due to excessive economic development, such as marine aquaculture, land
reclamation and mangrove deforestation. In the 1980s, the mangrove area was reduced by
half, to reach 4836 ha [64]. By 2010, the mangrove area in Hainan Island had decreased to
3576 ha [21]. In recent years, as the government began to vigorously implement restrictive
measures such as converting cultivated land to wetlands and converting fishponds to
wetlands, the public awareness of protecting mangroves has increased significantly. The
mangrove area of Hainan Island has responded with a slow increase, recovering to 4278 ha
in 2017 [65]. At present, Hainan Island has established 10 mangrove reserves, including one
national reserve, two provincial reserves and seven local reserves. Seven of these mangrove
reserves were selected for this study (Figure 1 and Table S1). Dongzhaigang National
Mangrove Reserve is the best preserved and most abundant mangrove reserve in China.
Qinglangang Nature Mangrove Reserve consists of three regions: Huiwen, Puqian and
Guannan (a1, a2 and a3 in Figure 1), containing the largest number of mangrove species
in China. Dongfang Nature Reserve was established in 2006. Mangrove forests within
it provide a good habitat for the international endangered species Platalea minor. The
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remaining four local protected reserves are located in the northern part of Hainan Island.
The study area was selected within the 2 km buffer zone of the reserve boundary [27].
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Figure 1. Location of selected reserves (a1–g) in this study (red lines are the boundary of reserves;
green areas indicate the appearance of mangrove forests in 2017).

2.2. Data Sources

The data sources used in this study are land cover data and driving factor data. The
land cover data used in the study was based on the classification results of Landsat images
in 1987, 1993, 1998, 2003, 2007, 2013 and 2017, with a spatial resolution of 30 m [65]. The
2017 dataset was classified according to the support vector machine method with a high-
precision manual correction; the overall accuracy was 98.8%. The classified 2017 image
was then used as a reference for the visual interpretation of the remaining images [27]. The
land cover types were categorized into 10 classes: mangrove forests (MF), tidal sandflats
(TS), aquaculture ponds (AP), water (WT), cultivated land (CL), wetlands (WL), bare land
(BL), other forests (OF), suitable land for mangrove (SLM) and building land (BDL).

The driving factor data were mainly selected from 12 indices related to mangrove
distribution, including two terrain indices, two vegetation indices, seven location indices
and one correlation index (Table 1).
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Table 1. The driving factor data used in this study.

Type Factors Unit

Terrain
Elevation m

Slope degree

Vegetation EVI -
EVI change trends -

Location

Distance to major road m
Distance to minor road m

Distance to sea m
Distance to river m

Distance to aquaculture ponds m
Distance to building land m

Distance to suitable land for mangrove m

Correlation Spatial autocorrelation factor m

For the terrain indices, the elevation was derived from the 30 m resolution SRTM
1 Arc-Second Global (SRTMGL1) dataset. The slope was then calculated from the eleva-
tion gradient.

For the vegetation indices, the EVI was calculated from Landsat images. This index
solves the saturation problem under high vegetation coverage [66], and is more suitable
for mangrove change studies [33]. In this study, the Landsat TM/ETM+/OLI images
with a spatial resolution of 30 m were acquired each year for Huiwen from 1999 to 2003
(for simulation) and for all the study areas from 2013 to 2017 (for prediction). Due to the
insignificant phenology effect of mangrove forests, the impacts of cloud cover and tide level
were the main parameters considered when screening the images. In this study, the image
with the lowest tide level among images, with cloud cover less than 10%, was selected as a
representative image for that year. The EVI change trends were calculated by the Theil-Sen
median trend analysis using the EVI images of the last five years (Equation 1). It has been
proven that this method can well reflect the trends of long time series data, and has been
widely used in vegetation studies [33,34,67,68].

S = median
(

EVIj − EVIi

j− i

)
(1)

where EVIi and EVIj are the EVI values of years i and j. S > 0 indicates an increasing trend
of the series; all other values indicate a decreasing trend.

The location indices were calculated by the inverse distance weighting method accord-
ing to the different information. The road information was obtained from OpenStreetMap
(OSM). In this study, motorway, trunk, primary, secondary, tertiary and highway links
were merged as major roads, while minor roads constituted the remaining residential,
pedestrian, cycleways and so forth. The information of sea, river, aquaculture ponds,
building land and suitable land for mangrove were obtained from land cover data.

For the correlation index, the spatial autocorrelation factor was selected as follows

autocov(i, k) = ∑
j 6=i

wijyj/∑
j 6=i

wij (2)

where k is the land cover type of pixel i. yj is the state in which land cover type k exists in
pixel j (1 means exists, 0 means does not exist). wij is the inverse distance weight between
pixel i and j, which can be expressed as:

wij =

{
1/Dij , Dij < d

0 , Dij ≥ d
(3)
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where Dij is the Euclidean distance between pixels i and j. d is the threshold distance. In
this study, d = 500 m is taken according to the pixel size (30 m) of this study.

3. Methods

A spatio-temporal simulation method for mangrove forests was proposed (Figure 2).
According to the characteristics of mangrove forests, the simulation accuracy of different
models such as logistic regression, support vector regression (SVR) and random forest,
in terms of spatial characteristics, was compared, and the applicability of driving factors
such as vegetation and correlation indices in mangrove simulation were explored. Then,
according to the characteristics of the different protected areas, three development scenarios
of NGS, EDS and MPS were set. The CLUE-S model was used to predict the spatio-temporal
distribution of mangrove forests from 2022 to 2037 under different scenarios. Finally, based
on the prediction results of spatio-temporal distribution of mangrove forests, the future
change trends of mangrove forests from 2017 to 2037 were analyzed.
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3.1. CLUE-S Model

The CLUE-S model was chosen to simulate mangrove forests in protected areas.
It was developed by researchers at Wageningen University based on the CLUE model.
Considering the competing mechanisms of land-use changes, this model can effectively
link the land-use change processes and environmental driving factors, and is suitable for
mesoscale and small-scale land-use simulation studies. The CLUE-S model consists of four
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input modules (spatial policies and restrictions, land-use type conversion rules, land-use
requirements and spatial characteristics) and a spatial allocation module [46].

The spatial policies and restrictions module is used to restrict land-use layout. It
refers to areas where land-use changes are not allowed to occur, usually including policy
restrictions (nature reserves, national parks and so forth) and spatial restrictions (rivers,
oceans and so forth). In this study, rivers and estuaries are usually not encroached upon
by other land-use types. Therefore, these areas were set as restricted areas to ensure the
connectivity of water bodies.

The land-use type conversion rules module is used to quantify the possibility and
intensity of the land-use type conversion, mainly containing conversion sequence and
conversion elasticity. Conversion sequence is a parameter that indicates whether conversion
can occur between various land-use types. It is represented by a matrix in the CLUE-S
model, and the value is 0 (not transferable) or 1 (transferable). The conversion sequence
of this study was adjusted according to different scenarios, as described in Section 3.3.
Table S2 shows the conversion sequence under different scenarios. Conversion elasticity is
a parameter that quantifies the reversibility of land-use changes, with a value range of 0
(easy to transfer) to 1 (not easy to transfer). According to different scenarios, the conversion
elasticity of this study was adjusted for different land-use types separately, as described in
Section 3.3. Table S3 shows the conversion elasticity under different scenarios.

The land-use requirements module is used to calculate future area demands, which is a
key parameter affecting the iterations of the CLUE-S model. It can be estimated by a statistical
model [52,53,69–72], a system dynamics model [73,74], a professional model [75,76] and so
forth. In this study, linear regression and scenario analysis were used to predict the future
area demands for 2022–2037, as described in Section 3.3.

The spatial characteristics module is used to calculate the spatial suitability probability
of various land-use types at specific locations. It is key for the CLUE-S model to assess
the potential for land-use changes. Spatial suitability probability is generally calculated
from land-use data and driving factors by different models. In this study, in addition to the
traditional logistic regression, two commonly used machine learning models that support
vector regression and random forest methods were added to compare the simulation
accuracy in terms of spatial characteristics. Support vector regression uses different kernel
functions to nonlinearly map the original low-dimensional feature to the high-dimensional
feature space, and then it constructs a linear decision function to solve the nonlinear
problem [77]. This method is well suited for solving high-dimensional and nonlinear
regression problems. Random forest is based on multiple decision trees. Parts of the
features on the tree node are randomly selected for training, and then the optimal feature is
selected to divide the node. The final regression result is the average of all the results of the
decision tree [78]. This method reduces the generalization error of a single decision tree,
and greatly improves the regression accuracy. To reduce the problem of uneven sample
selection, both training and validation samples in this study were generated by a stratified
random sampling method, where the number of training samples constituted 2% of the
total pixels.

The space allocation module is used to calculate the final allocation result. It is
based on the results of the four input modules and the land-use map of the starting year.
According to the total occurrence probability of various land-use types in each pixel, the
space is allocated by several iterations until the land-use requirements are satisfied [46].
The CLUE-S model was implemented through the lulcc-package in R software [79].

3.2. Model Validation Indices

The area under curve (AUC) was chosen to evaluate the simulation accuracy of the
different models in terms of spatial characteristics. It represents the area under the receiver
operating characteristic (ROC) curve, and is commonly used as a performance evaluation
index for the classification or fitting algorithms [80]. The value of AUC ranges from 0.5 to
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1.0; the closer to 1 the value is, the better performance of the model. An AUC above 0.7 is
generally considered as good, and above 0.9 is excellent [51].

Four types of indices were selected to assess the accuracy of the simulation results:
the overall accuracy (OA), the Kappa coefficient, the three-dimensional approach and the
Figure of Merit (FoM). The OA is the ratio of the number of correctly classified pixels to
the total number of pixels, and is often used in the accuracy assessment of classification
algorithms. It is also widely used for consistency checking between simulation and obser-
vation maps of land-use change models [52,53,72]. The Kappa coefficient represents the
proportion of error reduction in the evaluated classification, compared with a completely
random classification. It is an index designed for evaluating the accuracy of classification
results [81], and is further developed into four different forms that can quantify either
quantity error or location error [82]; KQuantity believes that the results have the ability
to consider location precision and is applicable to area change evaluation; KLocation be-
lieves that the results have the ability to consider quantity precision and is applicable
to location change evaluation; and KStandard and KNo consider location and quantity
precision together. KNo believes that the results do not have the ability to consider quantity
and location precision, which is more objective. KStandard, KNo and KLocation were
selected in this study to evaluate the simulation results in terms of location changes. The
three-dimensional approach is based on the three-map comparison method, which divides
the simulation results into two agreement and three disagreement components [83]. The
agreement components are Correct rejections (persistence simulated correctly) and Hits
(change simulated correctly). The disagreement components are Misses (change simulated
as persistence), Wrong hits (change simulated as change to wrong category) and False
alarms (persistence simulated as change). This approach uses a three-dimensional, spatio-
temporal comparison method to evaluate results, which is a good supplement to the Kappa
coefficient [84]. The FoM is the intersection of the observed change and simulated change
divided by the union of the observed change and simulated change [85]. It is often used
to compare the consistency of the simulation and observation maps, which is expressed
as follows

FoM =
b

a + b + c + d
(4)

where a is Misses, b is Hits, c is Wrong hits and d is False alarms.
To explore the contribution of different driving factors to spatial characteristic sim-

ulation, the applicability of different driving factors was analyzed using IncNodePurity
(Increase in node purity) in random forest. The principle of this index is to calculate the
sum of the squares of the residuals. It represents the heterogeneous impact of each feature
on the observations of decision tree nodes, reflecting the feature importance in the context
of decreasing accuracy. The larger the IncNodePurity, the greater the importance of the
driving factor in spatial characteristic simulation.

3.3. Scenario Setting

Three development scenarios, NGS, EDS and MPS, were set up to analyze the im-
pact of different development directions on the future spatio-temporal distribution of
mangrove forests.

The NGS is designed to maintain current development trends. Based on the land cover
changes from 2003 to 2017, the conversion sequence (Table S2) and the conversion elasticity
(Table S3) were determined. The area demands for 2022–2037 were predicted based on
the area of 2003, 2007, 2013 and 2017 by linear regression. The results were appropriately
adjusted to ensure the rationality of the changes (Table S4).

The EDS is designed to prioritize economic development. Under this scenario, the
area of building land and aquaculture ponds will increase and the area of mangrove forests
will decrease. The conversion sequence of aquaculture ponds and building land was
restricted. The two types were only allowed to be transferred into economic construction
land (aquaculture ponds, cultivated land and building land) (Table S2). The conversion
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elasticity was adjusted to 0.9 (the highest value) for aquaculture ponds and to 0.35 (the
lowest value) for mangrove forests (Table S3). The area demands for 2022–2037 were
predicted based on the area changes during the economic development phase (rapid
growth of building land and aquaculture ponds) from 1987 to 2017. The results were
appropriately adjusted to ensure that the growth rate of building land and aquaculture
ponds under this scenario was higher than the NGS (Table S4).

The MPS is designed to prioritize the protection of mangrove forests. Under this
scenario, the area of mangrove forests will increase and the area of building land and aqua-
culture ponds will decrease. The conversion sequence of mangrove forests was restricted.
Mangrove forests were not allowed to be transferred into aquaculture ponds, cultivated land
and building land (Table S2). The conversion elasticity was adjusted to 0.9 (the highest value)
for mangrove forests and to 0.35 (the lowest value) for aquaculture ponds and building
land (Table S3). The area demands for 2022–2037 were predicted based on the area changes
during the mangrove protection phase (rapid growth of mangrove forests) from 1987 to
2017. The results were appropriately adjusted to ensure that the growth rate of mangrove
forests under this scenario was higher than the NGS (Table S4).

4. Results
4.1. Simulation Accuracy of Spatial Characteristic

Based on the observation map and driving factors of Huiwen in 2003, the AUC values
of various land cover types in different models were calculated (Table 2). Autologistic,
AutoSVR and AutoRF are improved models of Logistic, SVR and RF with the spatial
autocorrelation factor. AutoRF had the highest AUC values, with all types of land cover
types exceeding 0.95. AutoSVR also achieved excellent accuracy, with all AUC values
above 0.9. Autologistic was slightly worse, with AUC values below 0.9 for suitable land
for mangrove and cultivated land, but greater than 0.7, indicating that the model also
maintained good accuracy. The AUC values of Autologistic, AutoSVR and AutoRF were
all higher than those of the unimproved model, indicating that the spatial autocorrelation
factor can indeed improve the simulation accuracy. The AUC values of the above six
models were greater than 0.7 for all types of land cover types, especially for mangrove
forests (above 0.95), showing that the 12 driving factors selected in this study could well
simulate the changes in mangrove forests. It is of interest that the AUC values of RF were
higher than those of the improved Autologistic and AutoSVR, proving that the random
forest had significant advantages in spatial characteristic simulation.

Table 2. AUC values of various land cover types in different models.

Model AP WT CL WL BL MF OF SLM BDL

Logistic 1.000 0.981 0.808 0.910 0.779 0.948 0.931 0.708 1.000
SVR 0.978 0.986 0.932 0.889 0.913 0.959 0.932 0.965 0.946
RF 1.000 0.996 0.968 0.905 0.919 0.993 0.969 1.000 1.000

Autologistic 1.000 0.986 0.808 0.973 0.903 0.956 0.936 0.703 1.000
AutoSVR 0.981 0.991 0.930 0.967 0.952 0.960 0.950 0.994 0.981
AutoRF 1.000 0.999 0.976 0.979 0.958 0.995 0.978 1.000 1.000

4.2. Simulation Results and Accuracy Assessment

Based on the observation map and spatial characteristics in 2003, the spatial distri-
bution in 2007, 2013 and 2017 were simulated using the CLUE-S model. To assess the
accuracy of the simulation results, the OA and Kappa coefficients were calculated for the
simulation results of different models based on the observation map of 2007, 2013 and 2017
(Table 3). The simulation accuracy decreased with the increase of simulation time. The
highest accuracy was in 2007, the second highest was in 2013 and the lowest was in 2017,
all maintaining good levels (OA above 75%). For different models, similar to the results of
AUC values, RF is more advantageous than SVR and Logistic and the model with spatial
autocorrelation is more ideal than the model without it. AutoRF had the highest simulation
accuracy, with an OA of 77.94% in 2017, indicating that the simulation results of this model
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are in high agreement with the observation. KStandard, Kno and Klocation were 0.7638,
0.7835 and 0.8293, respectively, indicating that the model had high simulation accuracy for
location changes.

Table 3. OA and Kappa coefficients of different models in 2007, 2013 and 2017.

Year Model OA KStandard Kno Klocation

2007

Logistic 91.28% 0.8919 0.9019 0.8925
SVR 90.63% 0.8839 0.8946 0.8848
RF 91.30% 0.8922 0.9021 0.8928

Autologistic 91.38% 0.8931 0.9030 0.8936
AutoSVR 91.48% 0.8944 0.9041 0.8951
AutoRF 92.00% 0.9008 0.9100 0.9014

2013

Logistic 82.14% 0.7808 0.7991 0.7814
SVR 82.07% 0.7799 0.7983 0.7809
RF 83.33% 0.7954 0.8124 0.7958

Autologistic 82.46% 0.7847 0.8027 0.7854
AutoSVR 83.75% 0.7882 0.8059 0.7886
AutoRF 83.76% 0.8007 0.8173 0.8012

2017

Logistic 76.38% 0.7118 0.7343 0.7123
SVR 76.57% 0.7140 0.7364 0.7147
RF 77.61% 0.7268 0.7481 0.7274

Autologistic 76.69% 0.7155 0.7378 0.7160
AutoSVR 77.31% 0.7231 0.7447 0.7236
AutoRF 77.94% 0.7638 0.7835 0.8293

The three-dimensional approach and FoM were also used to further analyze the
simulation results of different models in 2017 (Table 4). The results of FoM differed from
the previous results. The SVR is more advantageous than RF and Logistic, and the model
without spatial autocorrelation is more ideal than a model with it. This is because AutoRF
is more conservative in change strategy compared to other models. It ignored some pixels
that should have been changed (Misses and Hits) but reduced some false pixels (False
alarms + Wrong hits). This led to a lower FoM for AutoRF, but the correct predicted pixels
(Correct rejections + Hits) were higher than other models, indicating that AutoRF has some
advantages in balancing the overall simulation accuracy.

Table 4. Three-dimensional approach and FoM of different models in 2017.

Model Misses Hits Wrong
Hits

False
Alarms

Correct
Rejections FoM

Logistic 0.1515 0.0103 0.0247 0.0600 0.7536 0.0417
SVR 0.1393 0.0207 0.0264 0.0686 0.7449 0.0813
RF 0.1430 0.0139 0.0295 0.0514 0.7622 0.0586

Autologistic 0.1475 0.0115 0.0274 0.0582 0.7554 0.0469
AutoSVR 0.1408 0.0190 0.0266 0.0595 0.7541 0.0772
AutoRF 0.1459 0.0123 0.0283 0.0464 0.7672 0.0526

Figure 3 compares the simulation maps and observation maps for AutoRF in 2007,
2013 and 2017. The similarity between the simulation maps and the observation maps was
high and both reflected the real spatial distribution of various land cover types. Mangrove
forests in simulation maps were all distributed near the sea, which was consistent with
the actual growth of mangrove forests. There were also some deviations in simulation
maps. The simulation maps were more fragmented compared to the observation maps,
which may be related to the high simulation resolution (30 m). The new bridges (Zone A1),
new roads (Zone A2) and aquaculture ponds governance (Zone A3), which were greatly
affected by policy, were not well simulated. In general, however, the spatial agreement
between the simulation maps and observation maps was good.
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4.3. Applicability of Driving Factors

The IncNodePurity was used to evaluate the applicability of driving factors in the
mangrove simulation (Figure 4). The results of AutoRF and RF were basically the same. EVI
had the greatest importance, indicating that vegetation indices will significantly improve
the accuracy of the mangrove simulation. The distance to suitable land for mangrove was
the second greatest, suggesting that the changes of mangrove forests are closely related to
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the distribution of suitable land for mangrove. The importance of the two location indices,
distance to river and distance to sea, were also greater, as mangrove forests mostly grow
on mudflats between land and sea. The greater importance of the distance to aquaculture
ponds and building land indicated that the presence of those two land cover types exerts
a strong influence on mangrove growth, which is consistent with the results of previous
studies [27]. The spatial autocorrelation factor was equally important, showing that this
factor is also essential in machine learning models. The distance to major road was also
an important influencing factor, indicating that mangrove growth is closely related to
the frequency of human activities. The four indices of EVI change trends, distance to
minor road, slope and elevation were weakly related. EVI change trends may better reflect
mangrove trends within time spans, and have limited ability to predict future trends. The
distance to minor road reflects the impact of residential, pedestrian, cycleway and other
trails. The frequency of human activity on these roads is weaker than on major roads, so
the impact on mangrove forests was weaker. Since the study area is small and belongs to
the coastal area, the two terrain indices, slope and elevation, had little variation, so they
were the least important.
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4.4. Spatio-Temporal Distribution and Change Trends of Mangrove Forests under
Different Scenarios

Based on the observation map and the spatial characteristics of AutoRF in 2017, the
spatial distribution of mangrove forests was predicted in all protected areas in 2022, 2027,
2032 and 2037 under different scenarios using the CLUE-S model, and the change trends of
mangrove forests were then analyzed.

4.4.1. Spatio-Temporal Distribution of Mangrove Forests

Figure S1 shows the observation maps for 2017 and the prediction maps for 2037
under different scenarios. The results of Huiwen were shown in Figure 5. Mangrove
forests in Huiwen were mainly distributed in the junction areas between land and sea
along the coast, interlacing with aquaculture ponds. It can be seen that the CLUE-S model
used in this study can predict the future spatio-temporal distribution well. The simulation
maps in 2037 varied under different scenarios, but the spatial distribution of various land
cover types was similar to the observation map in 2017. Under NGS, mangrove forests
had few changes as a whole, showing a slow expansion trend. The expansion areas were
mainly concentrated in the southern (Zone A1) and central (Zone A2) coastal areas, which
were transferred from aquaculture ponds and other forests. Aquaculture ponds showed a
contraction trend, especially in the eastern coastal region (Zone A3), which provided a more
suitable growth environment for surrounding mangrove forests. Under EDS, mangrove
forests showed a significant contraction trend. This is because EDS was designed to ensure
economic development. The economic construction land will be aggressively expanded,
and the growth areas of mangrove forests will inevitably be occupied. Only three patches
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of mangrove forests remained in the region, in the west (Zone B1), northeast (Zone B2)
and south (Zone B3), noting that the area has been significantly reduced compared to 2017.
Mangrove forests in all other areas were severely contracted, and most of them have been
developed for building land and aquaculture ponds (Zones B4, B5 and B6). The remaining
scattered mangrove forests were surrounded by other land cover types. The quality of the
mangrove habitats was worrisome. Under MPS, mangrove forests showed a significant
expansion trend. This is because MPS focuses on the protection of mangrove forests. The
economic construction land that destroys mangrove habitats will drastically contract, and
mangrove forests will inevitably expand. Similar to NGS, the southern (Zone C1) and
central (Zone C2) coastal areas were the priority areas for mangrove growth. The two
patches of mangrove forests in the west (Zone C3) and northeast (Zone C4) also expanded
further outward, which was associated with the contraction of surrounding aquaculture
ponds. Aquaculture ponds showed a significant contraction trend, and mangrove forests
have begun to dominate the eastern coastal areas (Zone C5).
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4.4.2. Temporal Change Trends of Mangrove Forests

To explore the temporal change trends of mangrove forests under different scenarios,
the area changes of mangrove forests and three related land cover types (aquaculture
ponds, building land and other forests) were calculated in all protected areas from 2017
to 2037 (Figure 6). By 2037, the mangrove area increased slowly under NGS, decreased
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significantly under EDS and increased significantly under MPS with 4460, 2704 and 5456 ha
respectively. The reasons for different changes of mangrove forests under different scenarios
were as follows. Under EDS, the area of aquaculture ponds and building land increased
significantly. The decreased area of other forests cannot provide enough space for economic
construction land; mangrove forests will be seriously encroached upon. Thus, the mangrove
area will decrease significantly. Under NGS, aquaculture ponds and building land still
maintained their growth trends, but slowed down significantly compared to EDS. Thus,
the impact of economic development on mangrove habitats was greatly reduced and the
mangrove area will increase slowly. Under MPS, although the area of building land still
increased slightly, the area of aquaculture ponds was reduced significantly, providing
enough space for mangrove growth. Thus, the mangrove area will increase significantly.
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4.4.3. Spatial Change Trends of Mangrove Forests

To further analyze the causes of mangrove changes, the conversion between mangrove
forests and other land cover types was analyzed from 2017 to 2037 under different scenarios
(Figure 7). Under EGS, the two largest land cover types transformed from mangrove forests
were aquaculture ponds (916 ha) and building land (557 ha), much higher than other land
cover types, indicating that mangrove contraction is indeed closely related to the expansion
of economic construction land. Cultivated land also had a larger area (100 ha) transformed
from mangrove forests, showing that some mangrove forests were encroached upon for
crop production. Under MPS, aquaculture ponds, cultivated land and other forests were the
three largest types transformed into mangrove forests with 422, 326 and 322 ha, respectively.
The reason for the larger area transformed from aquaculture ponds and cultivated land
is due to the strict implementation of the policy of converting fishponds to wetlands and
converting cultivated land to wetlands. Other forests can transform into mangrove forests
because there is a transformation route: other forests—aquaculture ponds/suitable land for
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mangrove—mangrove forests. Under NGS, the changes of mangrove forests were between
EGS and MPS. Other forests had the largest area (139 ha) transformed into mangrove
forests. Water, wetlands, aquaculture ponds and cultivated land also had a larger area
(about 50 ha per type). Building land (102 ha) and aquaculture ponds (85 ha) were the two
largest land cover types transformed from mangrove forests.
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Figure 8 shows the land cover changes of mangrove forests from 2017 to 2037 under
NGS. The mangrove area of all protected areas generally increased. Only the coastal of
Puqian (Zones B1 and B2), the central of Guanan (Zones C1 and C2) and the western of
Dongzhaigang (Zone E1) decreased significantly. Most of the mangrove growth areas were
around existing mangrove forests (Zones A1, D1, D2, F1, F2, G1, H1 and I1) or along the
riverbank (Zone I2).
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Figure 9 shows the land cover changes of mangrove forests from 2017 to 2037 under
EDS. The mangrove area of all protected areas showed a significant decrease. The main
types transformed from mangrove forests are aquaculture ponds (Zones A1, A2, A3, B1, B2,
C1, D1, F1 and G1), building land (Zones A4, B2, C2, D1, E1, H1 and H2) and cultivated
land (Zones F2, F3 and I1). Most of the contraction areas are comprised of marginal
mangrove forests, as mangrove forests here are vulnerable to external disturbances. Their
health conditions were worse compared to the interior mangrove forests. Therefore, these
areas are more easily transformed into economic construction land, and will be the priority
encroachment area during the economic development phase. The fragmented and scattered
mangrove forests (Zones A1, B1, B2 and C2) contracted more than the intact and contiguous
mangrove forests. Since these mangrove forests are mostly surrounded by other land cover
types, their ability to resist stress is weak. With the decline of the habitat quality, the growth
areas of fragmented and scattered mangrove forests will be rapidly encroached upon.
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Figure 10 shows the land cover changes of mangrove forests under MPS from 2017 to
2037. The mangrove area of the most protected areas showed a significant increase. The
main types transformed into mangrove forests were aquaculture ponds (Zones B1, D1, D2,
F1, G1, G2 and H2), cultivated land (Zones B1, D2, E2, F1 and H1) and other forests (Zones
A1, D3, E1, F2, I1 and I2). Most of these expansion areas were located around existing
mangrove forests, as the habitat quality there is better. Therefore, after the governance of
economic construction land, these areas are more easily transformed into mangrove forests,
and will be the priority restoration area during the mangrove protection phase. Other
expansion areas were along the riverbank (Zones E1 and I2). This is because these areas are
close to water and away from other land cover types, which are conducive to mangrove
growth, especially for mangrove seedlings [33]. Only the mangrove area in Guannan did
not increase significantly under this scenario, as the ecological management of this region
has always been poor. Aquaculture ponds have been threatening surrounding mangrove
forests [65].
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5. Discussion
5.1. Comparison of the Spatio-Temporal Simulation Methods of Mangrove Forests

In this study, the simulation accuracy of logistic regression, support vector regression
and random forest were first compared in terms of spatial characteristics, and the simulation
potential of different models was evaluated. The results showed that: (1) RF is more
advantageous than SVR and Logistic; (2) the model with spatial autocorrelation is more
ideal than the model without it; and (3) AutoRF performs the best in spatial characteristic
simulation. AutoRF was then combined with the CLUE-S model to simulate the spatio-
temporal distribution of mangrove forests. The results showed that the simulation maps of
the model are in good spatial agreement with the observation maps, and the OA (77.94%)
is better compared to the other models. This indicated that AutoRF proposed in this
study has significant advantages for mangrove simulation. Driving factors reflecting the
characteristics of mangrove forests were also explored in this study, and the applicability
of mangrove simulation was assessed. The results showed that the vegetation index EVI
can significantly improve the accuracy of mangrove simulation; location indices such as
distance to suitable land for mangrove, river, sea, aquaculture ponds, major road and
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building land are also very important constraints; and the spatial autocorrelation factor
is also indispensable in machine learning models. This indicated that the driving factors
selected in this study play an important role in mangrove simulation. Overall, the spatio-
temporal simulation method proposed in this study can effectively simulate the relationship
between mangrove change processes and environmental driving factors, accurately predict
the future spatio-temporal distribution of mangrove forests, and provide a theoretical basis
and decision support for mangrove protection, restoration and utilization.

5.2. Future Changes of Mangrove Forests in Hainan Island

The future changes of mangrove forests in Hainan Island from 2022 to 2037 vary under
different scenarios. By 2037, the mangrove area increased slowly under NGS, decreased
significantly under EDS and increased significantly under MPS occupying 4460, 2704 and
5456 ha, respectively. The changes in area are associated with changes in aquaculture ponds,
building land, cultivated land and other forests. The contraction of mangrove forests is
closely related to the expansion of aquaculture ponds, building land and cultivated land.
The marginal mangrove forests are more prone to contraction than the interior mangrove
forests and the fragmented mangrove forests contracted more than the intact mangrove
forests. Mangrove forests in these areas should be protected as a priority in the future.
The expansion of mangrove forests is attributed to the contraction of aquaculture ponds,
cultivated land and other forests. The areas around existing mangrove forests and on
both sides of the riverbank are typical areas for mangrove expansion; these areas are
preferable for artificial planting. Comparing different development scenarios, the MPS
should be the most suitable development direction in the future. The reason is that
this scenario maintains a steady growth of economic construction land and significant
growth of mangrove forests, which reasonably balances the relationship between economic
development and mangrove protection.

5.3. Limitations and Future Perspective of the Study

The potential of land cover changes was assessed in this study through spatial suitability
probability, considering only the relationship between land cover types and driving factors
from a mono-temporal perspective. Although this model may be more stable for long-term
simulation with non-stationary change patterns, it is difficult to capture and distinguish
different change processes, as the spatial configuration of past changes is not considered [54].
Therefore, other forests can directly transform into mangrove forests in this study. This
is because the transformation route of other forests-aquaculture ponds/suitable land for
mangrove-mangrove forests was simplified to other forests-mangrove forests. Another simi-
lar phenomenon was that only a small area of suitable land for mangrove was transformed
into mangrove forests. This is because the transformation route of aquaculture ponds-suitable
land for mangrove-mangrove forests was simplified to aquaculture ponds-mangrove forests.
Another limitation of this method is the difficulty in predicting changes affected by policy
such as new bridges, new roads and aquaculture ponds governance (Zones A1, A2 and A3 in
Figure 3). Meanwhile, the future area demands under different scenarios were predicted by
linear regression and scenario analysis. Although these methods are simple and effective [53],
they cannot reflect the complex processes in land-use changes. This study also found that
the simulated maps were more fragmented compared to the observation maps, which may
be related to the high simulation resolution (30 m).

Therefore, models that consider the relationship between past changes and driving
factors, such as DINAMICA and the Land Change Modeler (LCM), should be combined
in future studies to better capture the actual process of land cover changes [54]. Future
planning data should be added to the model to reduce the uncertainty of simulation results
caused by policy. At the same time, system dynamics models or artificial neural networks
should also be used to estimate area demands. Finally, it is also the goal of future efforts to
explore the simulation accuracy of models and the applicability of driving factors under



Remote Sens. 2021, 13, 4059 20 of 23

different resolutions, especially for high resolutions (integrated with Sentinel-1/2), and
select the optimal resolution applicable to mangrove spatio-temporal simulation.

6. Conclusions

Mangrove forests are important wetland ecosystems that grow in the intertidal zone
between land and sea. They provide important social, ecological and economic services
to coastal areas. In recent years, mangrove protection has reached a broad international
consensus and effective mangrove monitoring methods are essential. A spatio-temporal
simulation method for mangrove forests was proposed in this study. This method compared
the simulation accuracy of different models in terms of spatial characteristics, evaluated
the applicability of driving factors in mangrove simulation and predicted the future spatio-
temporal distribution and change trends of mangrove forests under different scenarios.

The simulation results of different models reveal that for spatial characteristic sim-
ulation: (1) RF is more advantageous than SVR and Logistic; (2) the model with spatial
autocorrelation is more ideal than the model without it; and (3) AutoRF performs the
best. For different driving factors, knowledge of vegetation index EVI, various location
indices and the spatial autocorrelation factor can significantly improve the accuracy of
mangrove simulation. The prediction results of Hainan Island showed that the future
spatio-temporal distribution of mangrove forests varies under different scenarios. The man-
grove area increased slowly under NGS, decreased significantly under EDS and increased
significantly under MPS. The contraction of mangrove forests is closely related to the
expansion of aquaculture ponds, building land and cultivated land. Mangrove contraction
is more severe in marginal or fragmented areas. The expansion of mangrove forests is
due to the contraction of aquaculture ponds, cultivated land and other forests. The areas
around existing mangrove forests and on both sides of the riverbank are typical areas of
mangrove expansion. The MPS should be the most suitable development direction for the
future, as it can reasonably balance economic development with mangrove protection. This
will provide a theoretical basis and decision support for mangrove protection, restoration
and utilization.
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