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Abstract: Fast reconstruction of power lines and corridors is a critical task in UAV (unmanned
aerial vehicle)-based inspection of high-voltage transmission corridors. However, recent dense
matching algorithms suffer the problem of low efficiency when processing large-scale high-resolution
UAV images. This study proposes an efficient dense matching method for the 3D reconstruction of
high-voltage transmission corridors with fine-scale power lines. First, an efficient random red-black
checkerboard propagation is proposed, which utilizes the neighbor pixels with the most similar
color to propagate plane parameters. To combine the pixel-wise view selection strategy adopted in
Colmap with the efficient random red-black checkerboard propagation, the updating schedule for
inferring visible probability is improved; second, strategies for decreasing the number of matching
cost computations are proposed, which can reduce the unnecessary hypotheses for verification. The
number of neighbor pixels necessary to propagate plane parameters is reduced with the increase
of iterations, and the number of the combinations of depth and normal is reduced for the pixel
with better matching cost in the plane refinement step; third, an efficient GPU (graphics processing
unit)-based depth map fusion method is proposed, which employs a weight function based on the
reprojection errors to fuse the depth map. Finally, experiments are conducted by using three UAV
datasets, and the results indicate that the proposed method can maintain the completeness of power
line reconstruction with high efficiency when compared to other PatchMatch-based methods. In
addition, two benchmark datasets are used to verify that the proposed method can achieve a better
F1 score, 4–7 times faster than Colmap.

Keywords: power lines; UAV inspection; red-black propagation; depth map fusion; PatchMatch

1. Introduction

In high-voltage transmission corridor scenarios, the power line is one of the key
elements that should be regularly inspected by power production and maintenance de-
partments. Recently, UAV photogrammetric systems equipped with optical cameras have
been extensively used for data acquisition of transmission corridors, and a large number of
high-resolution UAV images can be collected rapidly to achieve offsite visual inspection
of power lines by using 3D point clouds of transmission corridors [1]. In the fields of
photogrammetry and computer vision, 3D point clouds are usually generated through
the combination of SfM (structure from motion) [2–6] for recovering camera poses and
MVS (multi-view stereo) [7,8] for dense point clouds, which has been widely used in
automatic driving [9], robot navigation [10], 3D visualization [11], DSM (digital surface
model) generation [12], and vegetation encroachment detection [13]. In general, a majority
of computational costs are consumed in MVS compared with SfM-based image orientation.
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Thus, efficient reconstruction of 3D point clouds from UAV images is an urgent problem to
be solved for the regular inspection of transmission corridors.

According to the work of [14], MVS methods can be divided into four groups: surface-
evolution-based methods [15,16], voxel-based methods [17], patch-based methods [18,19],
and depth-map-based methods [20–22]. As it is suitable for 3D dense matching of large-
scale scenes, depth-map-based methods have been widely used, which can be verified
from traditional dense matching algorithms, e.g., SGM (semi-global matching) [23] and
PMVS (patch-based multi-view stereo) [18], to the recent PatchMatch-based methods. The
PatchMatch algorithm was first proposed by [24], which can quickly find the nearest
matching relationship with random searching and is successfully applied in the image
interactive editing field. This method mainly includes three steps: random initialization,
propagation, and searching, which are also the basic steps of the PatchMatch based dense
matching methods. Barnes et al. [25] then expanded the algorithm in three aspects: k-
proximity searching, multi-scale and multi-rotation searching, and matching with arbitrary
descriptors and distances. The improved method is optimized and accelerated in parallel.
Although these methods can be robustly applied in the field of image interactive editing,
they cannot be directly used in the procedure of MVS because the matching correspondence
between the two methods is only based on 2D similarity transformation [26]. Inspired
by these two pioneering works, numerous PatchMatch-based dense matching methods
emerge and achieve excellent performance in many fields.

According to the number of images used in the stereo matching, the PatchMatch
based dense matching algorithms can be roughly divided into two categories: two-view-
based stereo matching with disparities and multi-view-based stereo matching with depths.
Bleyer et al. [27] was the first to apply PatchMatch to the two-view-based stereo-matching
field. This method establishes the slanted support windows with disparities through two
images, and the parameters of slanted support windows are estimated with the PatchMatch
algorithm. Based on this work, Heise et al. [28] integrated the PatchMatch algorithm
into a variational smoothing formulation with quadratic relaxation. With the estimated
parameters of slanted support windows, the method can explicitly regularize the disparities
and normal gradients. Besse et al. [29] analyzed the relationship between PatchMatch and
belief propagation and proposed the PMBP algorithm, which combined PatchMatch with
particle belief propagation optimization. It optimizes the disparity plane parameters by
minimizing the global energy function in the continuous MRF (Markov random field),
which improves the accuracy of disparities. However, due to the complicated matching
cost calculation, its efficiency would slow down with the increase of the local support
window size. Yu et al. [30] improved the PMBP algorithm in two aspects: cost aggregation
and the propagation of PatchMatch, and proposed the SPM-BP method, which significantly
improves the computational efficiency. All the above algorithms are matched at the
pixel level, which is often inefficient and has poor performance on weak texture regions.
Xu et al. [31] put forward the PM-PM method, which uses a unified variational formulation
to combine object segmentation and stereo matching. The convex optimized multi-label
Potts model is integrated into the PatchMatch techniques to generate disparity maps at
object level while the efficiency and accuracy are maintained. Lu et al. [32] proposed
PMF (PatchMatch filter) algorithm, which combined the random search procedure in
PatchMatch with the edge-aware filtering technique. This method extends the random
search procedure to the superpixels and takes the multi-scale consistency constraints into
account. It can deal with the weak texture problem and improve efficiency. Similar to
the strategy used in PMF, Tian et al. [33] proposed TDP-PM (tree dynamic programming-
PatchMatch) method, which further combined the coarse-to-fine image pyramid matching
strategy with global energy optimization based on continuous MRF. This method not only
uses the local α-expansion-based tree dynamic programming, but also includes the PMF
hierarchical strategy. UAV images often have a high overlap ratio and rich perspectives. For
linear objects such as power lines, multi-view images are usually required to reconstruct
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the dense point clouds. Therefore, the two-view-based stereo matching is unsuitable for
the UAV images in high-voltage power transmission lines.

In the PatchMatch-based multi-view stereo matching methods, Shen et al. [34] firstly
extended the PatchMatch to multi-view stereo. The image orientation priors and the
number of shared tie points computed by SfM (structure from motion) are applied to select
neighbor images. The depth values of each pixel are then optimized by the lowest matching
cost aggregation procedure with the support plane. Finally, the depth values are refined to
improve the accuracy. Galliani et al. [20] presented a red-black symmetric checkerboard
propagation mode to improve the efficiency of PatchMatch. The above two methods
cannot handle the problem of occlusion, and the neighbor images are only selected based
on the geometric information of the images. Zheng et al. [35] used the EM (expectation
maximum) algorithm to achieve pixelwise visible image selection and established the
visible probability of each pixel in the neighbor images through the graph model of HMM
(hidden Markov field), which is solved jointly by EM optimization and the PatchMatch
technique. Schonberger et al. [21] improved it by estimating the normal of the depth plane,
fusing texture and geometric priors to perform pixelwise visible image selection, and using
the multi-view geometric consistency to optimize the depth maps. Finally, the graph-based
depth values and normal fusion strategy are proposed. This method achieves state-of-the-
art results in accuracy, completeness, and efficiency, and the source codes are provided
in Colmap as open source. Inspired by the work of [21], there are a variety of methods to
improve the performance of PatchMatch mainly in two aspects: supporting weak texture
regions [26,36] and taking into account the prior knowledge of planes [37,38]. To solve
the problem of weak texture region matching, Romanoni et al. [36] modified the matching
cost of photometric consistency to support the weak texture region depths estimation. The
depth refinement and gaps filling strategies are then performed to eliminate the incorrect
depth values and normal. Liao et al. [26] introduced a local consistency strategy with multi-
scale constraints to alleviate the difficulty of weak texture region matching problems. In
the methods with consideration of plane prior knowledge, Hou et al. [38] firstly segmented
the image into superpixels and generated the candidate planes through the extended
PatchMatch algorithm. The AMF (adaptive-manifold filter) is then applied to calculate
and aggregate the matching cost. Finally, the BP is used to perform smoothing constraints.
Xu et al. [37] integrated the plane assumptions into the PatchMatch framework with
probabilistic graph models and formed a new way to aggregate the matching cost. However,
with the plane assumptions or multi-scale constraints, the robustness and accuracy of weak
texture regions can be improved. However, the application in other scenes is limited,
which is unfavorable for the reconstruction of small objects or linear objects. Xu et al. [22]
improved the PatchMatch method in the aspects of propagation mode, view selection
and multi-scale constraints, and proposed the ACMH and ACMM methods. In terms
of propagation, an efficient adaptive checkerboard mode is proposed, which is more
efficient than the sequence propagation adopted in Colmap and the symmetric red-black
checkerboard mode adopted in Gipuma [20]. The ACMM method ensures the efficiency
and accuracy, and also supports the weak texture region matching.

Although the PatchMatch-based matching methods have been extensively explored,
some issues still exist that should be addressed for the 3D reconstruction of transmission
corridors. On the one hand, existing studies mainly focus on indoor and urban scenarios,
and the dense matching results of UAV images in high-voltage power transmission lines
need to be investigated. On the other hand, due to a large number of UAV images,
existing methods are confronted with challenges of inefficiency, which cannot meet the
demand of regular inspection of the high-voltage power transmission line. Thus, the main
purpose of this paper is to improve the efficiency of dense matching while maintaining the
completeness of the 3D point cloud of power lines under the framework of Colmap. First,
with the assumption that the depth values of pixels with similar colors in the local region
would be close, an efficient random red-black checkerboard propagation is proposed, which
uses the most similar neighbor pixels to propagate the plane parameters. Furthermore, an
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improved strategy for the hidden variable state updating with HMM is proposed, which
can make the random red-black checkerboard propagation adapt with the pixelwise view
selection in Colmap. Second, two strategies for reducing the matching cost computation are
adopted to improve efficiency. With the increase of iterations, the depth values converge
gradually. The number of neighbor pixels propagated plane parameters to the current
pixel is reduced in the later iterations. Considering that the depth error would be small
with a lower matching cost, the number of combinations of depth values and normal in
the refinement procedure is reduced for the pixels with low matching costs. Third, an
efficient depth-map fusion method is proposed, which uses weight function based on the
reprojection errors to fuse depths from multi-view images and is implemented under the
GPU. Finally, three datasets of UAV images with high-voltage power transmission lines
are used for analyzing the performance of power line reconstruction and efficiency. Two
benchmark datasets are used in experiments for precision analysis.

The remainder of this paper is organized as follows. Section 2 describes the materials
and methods. Three test sites of high-voltage power transmission lines and two benchmark
datasets are introduced. Additionally, the framework of Colmap and three strategies for
efficiency improvement are detailly described, including fast PatchMatch with random
red-black checkerboard propagation, strategies for reducing matching cost calculation, and
fast depth-map fusion with GPU acceleration. In Section 3, comprehensive experiments are
presented and discussed with three UAV image datasets. In Section 4, the discussions about
the accuracy analysis with two benchmark datasets are presented. Section 5 concludes the
results of this study.

2. Materials and Methods
2.1. Study Sites and Test Data

To verify the applicability of the proposed method in the high-voltage power transmis-
sion line, three test sites of UAV images are selected for experimental analysis. The three
test sites of UAV images are collected by means of a DJI Phantom 4 RTK UAV, including
the voltage of 500 kV, 220 kV, and 110 kV in transmission lines, which used the rectangle
closed-loop trajectory, the S-shaped strip trajectory, and the traditional multiple trajectories
in the photogrammetry field, respectively. For the dense matching results of UAV images
of the transmission line, this paper focuses on the analysis of the completeness of recon-
structed power lines. To verify the precision of the proposed method, two benchmark
datasets: the close-range outdoor dataset, Strecha [39], and the large-scale aerial dataset,
Vaihigen [40], are selected to perform the experiments.

2.1.1. Test Sites of High-Voltage Power Transmission Lines

The three test sites of UAV images of high-voltage power transmission lines are shown
in Figure 1. Test site 1 and test site 2 are both located in mountainous areas, which are
mainly covered by vegetation; test site 3 is flat land includes roads and some part of a
transformer substation. In test site 1, there are a total of 6 pylons and 5 spans of power lines
which are 4-bundled conductors; in test site 2, there are 2 pylons and 1 span of power lines
which are 2-bundled conductors; in test site 3, there are 2 pylons and one span of power
lines which are 1-bundled conductors. The flight heights of the three test sites are 160 m,
80 m, and 65 m, respectively, which are relative to the location from where the UAV took
off. Additionally, the GSD (ground resolution distance) of images in the three test sites are
4.70 cm, 2.72 cm, and 1.75 cm. The image numbers of the three test sites are 222, 191, and
103. The details of the three test sites are list in Table 1.

Table 1. Details of the three test sites.

Item Name Test Site 1 Test Site 2 Test Site 3

Flight mode rectangle S-shaped multiple trajectories
Flight height (m) 160 80 65
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Table 1. Cont.

Item Name Test Site 1 Test Site 2 Test Site 3

Voltage (kV) 500 220 110
Bundled conductors 4-bundled 2-bundled 1-bundled

Type of UAV DJI Phantom 4 RTK
Image size 5472 × 3078 4864 × 3648 5472 × 3078

Image number 222 191 103
GSD (cm) 4.70 2.72 1.75
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Figure 1. UAV images of the three test sites. (a–c) are the rectangle dataset in test site 1, S-shaped 
dataset in test site 2, and traditional multiple trajectories dataset in test site 3, respectively. 
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Figure 1. UAV images of the three test sites. (a–c) are the rectangle dataset in test site 1, S-shaped
dataset in test site 2, and traditional multiple trajectories dataset in test site 3, respectively.
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2.1.2. Benchmark Datasets

In the Strecha dataset, a Canon D60 camera was used for image collection, and the
image resolution is 3072 × 2048 pixels. The ground truth meshes are provided with
Fountain and Herzjesu in the Strecha dataset, which are acquired by Zoller+Forhlich
IMAGER 5003. There are 11 and 8 images in Fountain and Herzjesu and the projection
matrix of each image is provided. In the Vaihigen dataset, the Intergraph/ZI DMC is
applied for the 20 pan-sharpened color infrared images collection. The forward and side
overlaps are both 60%, the resolution of images is 7680 × 13,824 pixels, and the GSD is
8 cm. The ground truth airborne laser scanning (ALS) data is provided, which is collected
by a Leica ALS50 system with 10 strips. Test site 1 and test site 3 in the Vaihigen dataset
are selected for evaluating the precision of the reconstructed point clouds. The two test
sites in the Vaihigen dataset are shown in Figure 2. Test site 1 is located in the center of the
city and contains some historical buildings; test site 3 is located in the residential area with
small detached houses and a few trees.
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Figure 2. Two test sites in the Vaihigen dataset: (a,b) are test site 1 and test site 3, respectively.

2.2. Methodologies

In this section, the overview of PatchMatch-based dense matching is first introduced.
The three aspects to improve the efficiency of dense matching for the 3D reconstruction of
high transmission corridors are then presented: (1) fast PatchMatch with random red-black
checkerboard propagation; (2) strategies for reducing matching cost calculation; and (3)
fast depth-map fusion with GPU acceleration.

2.2.1. Overview of PatchMatch-Based Dense Matching

The Colmap framework proposed by [21] is improved based on [35]. Colmap can
estimate the depth values and normal of the reference image at the same time. Additionally,
the photometric and geometric priors are adopted to infer the pixelwise visibility proba-
bility from source images. The photometric and geometric consistency across multi-view
images are used to optimize the depth and normal maps. The sequence propagation mode
is applied in Colmap, which iteratively optimizes the depth values and normal in each
row or column independently. For the convenience of the following discussion, this paper
also uses l to describe the coordinates of the pixel in the image. Colmap estimates the
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depth dl and normal nl together with the binary visibility state variable Zj
l ∈ {0, 1} for a

pixel l of the reference image Ire f from the neighboring source images Isrc =
{

I j
∣∣j = 1...J

}
.

In the binary visibility state variable Zj
l ∈ {0, 1}, 0 represents that the pixel l is occluded

in the source image I j while 1 means that pixel l is visible in the source image I j. These
parameters are inferred with a maximum a posterior (MAP) estimation, and the posterior
probability is defined as:

P(Z, d, N
∣∣∣I) = P(Z,d,N,I)

P(I)

= 1
P(I)

L
∏
l=1

J
∏
j=1

[P(Zj
l,t|Z

j
l−1,t, Zj

l,t−1)P(I j
l |Z

j
l , dl , nl)P(dl , nl |d

j
l , nj

l)]
(1)

where L is the number of rows or columns in the reference image during the current
iteration, I =

{
Ire f , Isrc

}
and N = {nl |l = 1...L}.

In formula (1), the first likelihood term P(Zj
l,t|Z

j
l−1,t, Zj

l,t−1) enforces the smoothness
constraint of the visibility probability calculation during the optimization process, which
can ensure the smoothness both spatially and along with the successive iteration; the
second likelihood term P(I j

l |Z
j
l , dl , nl) means that the photometric consistency between

the pixels in the windows Bl centered on the pixel l in the reference image Ire f and the
corresponding projection pixels in the non-occluded source image I j. The bilaterally
weighted NCC (normalized cross-correlation) cost function is applied to compute the
photometric consistency, which can achieve better accuracy at the boundary of the occluded
regions. In the cost aggregation procedure, the Monte Carlo sampling method is used
to randomly sample the neighbor images in the sampling distribution function Pl(j),
and the matching costs of the image of which the probability Pl(j) is bigger than the
randomly generated probability are accumulated; the sampling distribution function
Pl(j) takes full consideration of the triangulation prior, resolution prior, incident prior,
and visibility probability of images; the last likelihood term P(dl , nl |d

j
l , nj

l) represents the
geometric consistency from multi-view images, which enforces the depth consistency and
the accuracy of normal estimation.

Solving formula (1) directly is intractable. Analogous to [35], Colmap factorizes the
real posterior P(Z, d, N|I) as an approximation function q(Z, d, N) = q(Z)q(d, N) and
adapts the GEM (generalized expectation-maximization) algorithm to optimize. In the
E-step, the parameters of depth and normal (d, N) are kept fixed, and the parameter Z
is regarded as the hidden state variable of HMM. The function q(Zj

l,t) is estimated by
the forward-backward message passing algorithm during each iteration, the formula is
as follows:

q(Zj
l,t) =

1
A
→
m(Zj

l,t)
←
m(Zj

l,t) (2)

where
→
m(Zj

l,t) and
←
m(Zj

l,t) represent the recursively forward and backward message pass-

ing, respectively. The specific formulas of
→
m(Zj

l,t) and
←
m(Zj

l,t) are

→
m(Zj

l ) = P(I j
l |Z

j
l , dl , nl) ∑

Zj
l−1

→
m(Zj

l−1)P(Zj
l,t|Z

j
l−1,t, Zj

l,t−1) (3)

←
m(Zj

l ) = ∑
Zj

l+1

←
m(Zj

l+1)P(I j
l+1|Z

j
l+1, dl+1, nl+1)P(Zj

l,t|Z
j
l+1,t, Zj

l,t−1) (4)

where
→
m(Zj

0) and
←
m(Zj

l+1) are set to 0.5 as an uninformative prior. The variable q(Zj
l,t)

together with the triangulation prior, resolution prior, and incident prior determines the
Monte Carlo sampling distribution function Pl(j). In the M-step, the function q(Z) is kept
fixed, and the parameters q(d, N) are estimated through PatchMatch. Finally, by iterating
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the E-step and the M-step in the row- or column-wise propagation, the depth values,
normal, and pixelwise visibility probability are estimated.

In the depth map filtering stage, the characteristics of photometric and geometric
consistency, the number of images that are visible in the source images, the visibility
probability, the triangulation angle, resolution, and the incident angle for a pixel in the
reference image are considered. In the depth-map-fusion stage, the pixel in the reference
image and the set of corresponding pixels in source images with photometric and geometric
consistency are regarded as a directed graph. These corresponding pixels are the nodes of
the graph and the directed edges of the graph point from the pixel in the reference image
to the pixels in the source images. Colmap recursively finds all the pixels with photometric
and geometric consistency, and then uses the media depth value and mean normal as the
fused depth value and normal, respectively. Finally, all the pixels that participated in the
fusion stage in the directed graph are removed and the steps above are repeated to fuse the
next point until the directed graph is empty.

2.2.2. Fast PatchMatch with Random Red-Black Checkerboard Propagation

Galliani et al. [20] firstly introduced the symmetric red-black checkerboard propa-
gation mode into the PatchMatch framework and proposed the Gipuma method, which
makes full use of the parallel processing of GPU and improves the efficiency of Patch-
Match. Xu et al. [22] further proposed the adaptive red-black checkerboard propagation
mode to improve the efficiency of PatchMatch. The diffusion-like red-black checkerboard
propagation scheme is proved to be more efficient than the sequence propagation scheme.
The purpose of the paper is to improve the efficiency of the Colmap by adopting the
diffusion-like propagation scheme while preserving the innovational pixelwise view selec-
tion strategy with HMM inference.

Through the analysis of the symmetry red-black pattern proposed by [20] and the
adaptive red-black pattern proposed by [22], it can be discovered that these two propagation
modes both use fixed neighbor positions to propagate the plane parameters. Gipuma
employs the fixed positions of 8 neighbor points for propagation, while ACMH and
ACMM expand the neighbor ranges and sample 8 points from specific patterns with the
smallest matching cost for propagation, which fully takes into account the structural region
information and makes the propagating range further and more effective. Different from
the two propagation modes, this paper adopts the random red-black checkerboard pattern
to propagate the plane parameters. A fixed number Ns of sampling points with different
color patterns are randomly generated within the local window range centered at the
current pixel. In the experiment, the Ns is set to 32 and the local window radius is set to
the same with the matching window radius. Then 8 neighbor points with the most similar
color to the current pixel are selected to propagate their plane parameters. The advantage
of employing the randomly sampling neighbor pixels is that it can break through the
limitation of fixed positions and the pixels with other color patterns in the local window
have the opportunity to propagation their plane parameters.

Each thread unit in the GPU processes a single pixel instead of the entire row or column
of pixels when the random red-black checkerboard propagation is applied in PatchMatch.
The hidden state variable updating schedule of Colmap cannot be used directly in such
propagation. To combine the pixelwise view selection strategy in Colmap with the random
red-black checkerboard propagation, the updating schedule should be improved.

The GEM is applied in Colmap to approximate the solution of the function q(Z, d, N) =
q(Z)q(d, N), and in the E-step, the forward-backward message passing algorithm is used
to update the hidden state variable q(Zj

l,t). In Colmap, the updating schedule with q(Zj
l,t)

proposed by [35] is deeply integrated with the sequence propagation, as shown in Figure 3.
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l ) with the
matching cost using formula (3). Algorithm 1 shows the details below.

Algorithm 1 Updating schedule of sequence propagation in Colmap [35]

Input: All images, depth map, and normal map
(randomly initialized or from previous propagation)

Output: Updated depth map and normal map, the visible probability for each pixel
(j—image index,l—pixel index)

1: For l = L to 1
2: For j = 1 to J
3: Compute backward message

←
m(Zj

l )
4: For l = 1 to L
5: For j = 1 to J
6: Compute forward message

→
m(Zj

l )

7: Compute q(Zj
l,t)

8: Estimate q(d, N) by PatchMatch
9: For j = 1 to J
10: Recompute forward message

→
m(Zj

l )

This paper adopts the following steps to improve the updating schedule: (a) After
the random initialization of depth values and normal in the reference image, the bilateral
weighted NCC is adopted to calculate the matching cost with source images; (b) given the
traversal direction, traverse the whole image row- or column-wise in direction, compute
the backward message with the previous matching cost using formula (4); (c) traverse
all the pixels of the row or column in the opposite direction of step (b), compute the
forward message with the previous matching cost using formula (3) and update q(Zj

l,t)
using formula (2); (d) propagate the plane parameters with red pattern pixels to the black
pattern pixels, and update q(d, N) of black pattern pixels by PatchMatch; (e) rotate the
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traversal direction 90◦ clockwise, repeat steps (b) and (c) to finish the updating of hidden
variable q(Zj

l,t); (f) propagate the plane parameters with black pattern pixels to the red
pattern pixels, and update q(d, N) of red pattern pixels by PatchMatch; (g) repeat the steps
from (b) to (f), process the random red-black checkerboard propagation with PatchMatch
until reaching the maximum iteration number. Algorithm 2 shows the details below.

Algorithm 2 Updating schedule of random red-black checkerboard propagation

Input: All images, depth map, and normal map
(randomly initialized or from previous propagation)

Output: Updated depth map and normal map, the visible probability for each pixel
(j—image index, l—pixel index)

1: procedure Update(q(Z),L)
2: For l = L to 1
3: For j = 1 to J
4: Compute backward message

←
m(Zj

l )
5: For l = 1 to L
6: For j = 1 to J
7: Compute forward message

→
m(Zj

l )

8: Compute q(Zj
l,t)

9: end procedure
10: Initialize the traversal direction D
11: Execute Update(q(Z), Lrow,) in direction D
12: Update the q(d, N) of back pattern pixels with the plane parameters of red pattern pixels by
PatchMatch
13: Rotate the direction D 90◦ clockwise, execute Update(q(Z),Lcol) in direction D
14: Update the q(d, N) of red pattern pixels with the plane parameters of black pattern pixels by
PatchMatch
15: Repeat steps from 11 to 14 until reaching the maximum iteration number

Algorithm 1 and Algorithm 2 show the updating schedule of sequence propagation in
Colmap and the updating schedule of random red-black checkerboard propagation of the
proposed method. The main difference is that: the E-step and M-step in Colmap are closely
related to each other, but they are separated in the proposed method. In each iteration
of the row or column of the referenced image, the hidden variables q(Zj

l,t) are inferred

through a forward-backward message passing algorithm, and the hidden variables q(Zj
l,t)

affect the pixelwise view selection during the matching cost aggregation in PatchMatch.
The E-step and M-step are completed together in each iteration of the row or column.
However, with the proposed updating schedule, the E-step and M-step are completed
individually. The traversal unit is each row or column in E-step, while it is an independent
pixel in M-step. The updating schedule in Colmap strictly follows the Markov assumption
in HMM, that is, the current hidden state is only related to the previous hidden state. It
can better approximate the hidden state function q(Z), but it also limits the scalability of
the propagation. To better adapt to the diffusion-like propagation, the proposed schedule
completely separates the E-step and M-step. Although this schedule is not as rigorous
as in Colmap, it is still an optional strategy with the consideration of the scalability of
propagation and efficiency.

Figure 4 shows the two depth maps calculated with three different view selection and
propagation strategies. The first row is the images from the South Building dataset [41]; and
the second row is the images from the UAV dataset of a high-voltage power transmission
line, which is located at the border of the corridor and has fewer neighboring images
overlapped with them. From the first row, it can be seen that the depth map of “top-
k-winners-take-all” view selection with symmetric red-black checkerboard propagation
strategy has more incorrect depth values at the boundary of the occluded regions of
the tree, while the depth map generated with the proposed strategy with random red-
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black checkerboard propagation is close to the result of Colmap. From the second row,
it can be seen that the “top-k-winners-take-all” view selection with symmetric red-black
checkerboard propagation strategy cannot infer the depth values in the region where there
are few overlapped source images, while the proposed strategy and Colmap can infer the
depth values better. To conclude, the depth maps with the proposed strategy are close to
the results calculated by Colmap, which proves the effectiveness of the proposed strategy.
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2.2.3. Strategies for Reducing Matching Cost Calculation

In Colmap, the most time-consuming processing step of PatchMatch is the matching
cost calculation with bilateral weighted NCC. This paper adopts the following strategies to
further improve efficiency by reducing the unnecessary calculation of bilateral weighted
NCC.

Firstly, the number of neighbor pixels to propagate plane parameters is reduced
with the increasing iteration number. From Figure 5, it can be seen that the accuracy
of the reconstructed depth values gradually converges to being stable as the number of
iterations increases. At about the third iteration, the convergence speed of the depth values
increases significantly, which indicates that a large number of depth values and normal
in the reference image are correctly estimated. Therefore, the 8 neighbor points with the
most similar to the current pixel are employed to propagate the plane parameters in the
early iterations. Additionally, the number of neighbor points can be reduced to improve
the efficiency as the number of iterations increases. In this paper, when the number of
iterations is greater than 3, the number of neighbor points is reduced to 4.

Secondly, the number of combinations with the depth and normal hypotheses is
reduced in the plane refinement procedure according to the matching cost. The current
best depth dl and normal nl obtained from the neighbor pixels propagation have the three
states: neither of them, one of them, or both of them are close to the optimal depth d∗l
and normal n∗l [21]. Therefore, Colmap generates a new depth dprp

l and normal nprp
l by

perturbing the current best depth dl and normal nl within a small range. Additionally, to
increase the chance of sampling the correct depth and normal, the random depth drnd

l and
normal nrnd

l are generated at the same time. Finally, these three hypotheses of depth values
and normal are combined to obtain 6 new hypotheses, as shown in formula (5). These



Remote Sens. 2021, 13, 4097 12 of 24

hypotheses are then applied to calculate the matching cost, and the depth and normal with
the smallest matching cost are regarded as the optimal solution in the plane refinement.{

(dprp
l , nl), (drnd

l , nl), (dl , nrnd
l ), (drnd

l , nrnd
l ), (dprp

l , nl), (dl , nprt
l )
}

(5)
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In practical application, it can be found that the current best depth di and normal nl
is close to the optimal depth d∗l and normal n∗l when the matching cost is relatively small.
Therefore, the random depth drnd

l and normal nrnd
l should be considered whether to join the

new six hypotheses according to the current best matching cost. If the matching cost is less
than a threshold of 0.5, only three new hypotheses are adopted in the plane refinement, as
shown in formula (6); otherwise, the six hypotheses are still used as shown in formula (5).
In this way, the number of matching cost computations can be reduced.{

(dprp
l , nl), (d

prp
l , nl), (dl , nprt

l )
}

(6)

2.2.4. Fast Depth Map Fusion with GPU Acceleration

In the depth-map-fusion stage, Colmap uses a recursive method to fuse the depth
values and normal which meet the condition of photometric and geometric consistency.
However, this method faces the following problems: (1) firstly, using the recursive method
to traverse through the directed graph is inefficient, which is not suitable for GPU parallel
processing; (2) secondly, due to the incorrectly estimated depth value, this method may
merge the 3D points of different pixels in the same image, which increases the number of
iterations. Therefore, this paper proposed a fast depth-map-fusion method accelerated by
the GPU, and the speed of fusing each depth map is stable.

The constraints of fusing depth maps similar to [20–22] are adopted in the proposed
method. Firstly, the depths with photometric consistency are considered to be fused.
For the depth estimated with PatchMatch, the number kcos t of matching costs with the
source images that are less than a threshold Tncc = 0.5 are counted. If kcos t ≥ 3, the
depth is regarded as stable. Secondly, the constraints with geometric consistency, such as
reprojection error ψ ≤ 2 and relative depth difference ε ≤ 0.01, are adopted in the depth
map fusion. Additionally, statistically the number kgeo in source images that satisfy the
constraints. If kgeo ≥ 3, these depths should be fused. It should be pointed out that the
normal angle constraint is not adopted in the proposed method. The reason is that the
estimated normal of linear objects such as power lines are not accurate. If the normal angles
are considered in the depth map fusion stage, most reconstructed point clouds of power
lines would be filtered out and become too sparse.
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Once the depth values from the source images that satisfy all the constraints are
clustered, the median location and mean normal are adopted as the fused depth value
and normal in Colmap. However, it does not take into account the influence of the depth
error. The reprojection errors from the source images can reflect the error to some extent.
Therefore, the depth values are fused by the weighted reprojection errors in the proposed
depth map fusion stage. The weighting method proposed by [42] is adopted in this paper, as
shown in formulas (7) and (8), which is theoretically equivalent to the least-square solution.

Dk+1(x) =
Wi(x)Di(x) + wi+1(x)di+1(x)

Wi(x) + wi+i(x)
(7)

Wi+1(x) = Wi(x) + wi+1(x) (8)

where Di(x) and Wi(x) are the depth value and weight accumulated for the i-th time, respec-
tively. The weighting formula according to the reprojection errors is wi(x) = 1

1+exp( ∑
i∈N

cos tj)
,

where is the reprojection error between the depth value x in the j-th image and the
corresponding depth values in the neighbor images (the index of neighbor images is
i = 1, 2, ..., N) which satisfy all the constraints.

Finally, the main steps of the depth map fusion in the GPU are as follows:

(a) Initialize the global binary state values of all the depth maps as 0;
(b) Load the reference image Ii, source image Ineib, the corresponding depth maps D,

and normal maps N into the GPU;
(c) Iterate all the pixels in the reference image Ii. For a current pixel pj in the image Ii, if

kcos t of pj is bigger than 3 and the state value of pj is 0, then the depth value Di
j of

pj is back-projected to the source images Ineib and find the depths cluster Dneib
s that

satisfies all the geometric constraints; otherwise, process the next pixel pj+1 of the
referenced image Ii;

(d) Count the number Vij in the depths cluster Dneib
s and the corresponding binary state

values Ss. If Vij ≥ 3 and the values in Ss are 0, then use formulas (7)and (8) to fuse the
depth Di

j and Dneib
s , average the corresponding normal, and set all the corresponding

binary state values to 1; otherwise, process the next pixel pj+1. Algorithm 3 shows
the details below.

Algorithm 3 Fast depth maps fusion with GPU

Input: All images I, depth maps D, and normal maps N
Output: Fused dense point cloud

(i—image index,j—pixel index)
1: Initialize the global binary state values S of depth maps as 0
2: foreach image Ii in I
3: Load the reference image Ii, the source images Ineib,

the depth maps Di and Dneib, and the normal maps Ni and Nneib into GPU
4: foreach pixel pj in Ii

5: if kcos t ≥ 3 and the binary state value of Di
j is 0

6: Compute the depth cluster Dneib
s that satisfies all the geometry constraints

7: Statistic the number Vij in the depths cluster Dneib
s

8: if Vij ≥ 3 and all the binary state values Ss of Dneib
s is 0

9: Set the binary state values of Di
j and Dneib

s as 1

10: Use formula (7) and (8) to fuse the depth Di
j and Dneib

s ,
11: Average the corresponding normal
12: endif
13: endif
14: end foreach
15: end foreach
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3. Results

The PatchMatch-based methods: Colmap [21], Gipuma [20], and ACMH [22], are
selected for the comparative analysis of precision and efficiency. All the methods are imple-
mented in the GPU and their codes are open source. All the experiments are conducted on
eight Intel Core i7-7700 CPUs with Nvidia GeForce GTX 1080 graphic card, 32GB RAM,
and 64-bit Windows 10 OS.

3.1. Analysis of the Power Line Reconstruction

In this experiment with the three datasets of high-voltage power transmission lines,
the image size is set to half the width and height of the image: in test site 1 and test
site 3 the image size is set to 2736 × 1824 pixels, in test site 2 the image size is set to
2432 × 1824 pixels. The matching widows are all set to 15 × 15 pixels, the step size is
1 pixel, and the number of iterations is set to 6. Since the rectangle closed-loop trajectory
is adopted in test site 1, the maximum number of views selected for PatchMatch is set to
10 to ensure that the side-overlapping images can be selected to reconstruct more stable
power lines, while it is set to 5 in test site 2 and test site 3. Only the photometric consistency
matching cost is applied in Colmap and ACMH without the geometric consistency since
the geometric consistency matching cost is not conducive for reconstructing small objects
such as power lines. In the depth-map fusion, the normal angle constraint is not taken
into consideration with all the methods since the normal of power lines estimated by
PatchMatch is not accurate. The minimum number kgeo of images satisfying the geometry
constraints are set to 3 for all four methods to ensure the reconstructed point cloud with less
noise. Additionally, the left parameters are maintained at default. Since the median filter is
applied for the depth maps in ACMH, it would filter out most of the power lines. In the
experiments, the median filter is not adopted in ACMH. The depth-map fusion program
provided in Gipuma only processes one depth map fusion with source images and the
fused points in previous fusion can still be used in the next depth map fusion procedure,
which leads to the final fused point clouds being redundant. Additionally, the depth map
fusion constraints used in Gipuma are similar to ACMH, so the fusion program provided
by ACMH is used for fusing the depth maps generated with Gipuma in the experiments.

Firstly, the depth maps for the image in test site 1 generated by the four methods
are selected for comparative analysis, as shown in Figure 6. It can be seen that there are
more noisy speckles in the depth map generated by Gipuma because only the “top-k-
winners-take-all” strategy is adopted without visible view selection and the matching
cost is a weighted combination of the absolute color and gradient differences, which is
not as robust as weighted bilateral NCC adopted in Colmap, ACMH, and the proposed
method. The heuristic multi-hypothesis joint view selection adopted in ACMH uses the
neighbor best matching cost to infer the visibility, which is sensitive to the threshold. In the
vegetation coverage area, the matching costs between different images are different due to
the perspective change. This visible view selection method would fail to select the right
visible image and lead to large speckles in the depth map. Unlike Gipuma and ACMH,
Colmap uses the HMM to infer the pixelwise visible probability in the source images,
which is more robust. Therefore, the depth map generated by Colmap has less noise and
higher completeness. The HMM inference strategy in Colmap is improved to adapt to the
random red-black checkerboard propagation in this paper. Although the inference strategy
is not as rigorous as Colmap, it can be seen that the depth map generated by the proposed
method is still better than Gipuma and ACMH, and is slightly worse than Colmap in some
local details. Through the comparison of the depth maps, it can be found that the updating
strategy of HMM adopted in the proposed method is still suitable for the UAV images of
the high-voltage power transmission line.
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Secondly, this paper focuses on the comparative analysis of the reconstructed point
clouds of power lines in the UAV images of the three test sites with the four different
methods, as shown in Figure 7, Figure 8, and Figure 9, respectively. In test site 1, three
spans’ point clouds of power lines are selected for visual comparison. From Figure 7, it can
be seen that the power lines reconstruction result by Gipuma is the worst, and only a few
power lines can be reconstructed in each bundled conductor. The ACMH can reconstruct
the point clouds of power lines on both sides of the spans, but the point clouds in the
middle of the spans are sparse and incomplete. Colmap and the proposed method can
reconstruct more complete point clouds in each span, and the results of power lines are
significantly better than those reconstructed by Gipuma and ACMH.
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The two sides of test side 2 are hillsides, while the middle part is low, with a large
height difference between both sides. Figure 8 is the results of the reconstructed power lines
with different methods. From Figure 8, it can be seen that Gipuma can only reconstruct a
few of the power lines on both sides of the span; while the ACMH can reconstruct relatively
more complete point clouds of power lines than Gipuma, but in the middle region, parts of
power line cannot be reconstructed; Colmap and the proposed method reconstruct power
lines more completely than ACMH and Gipuma.

The terrain in test site 3 is relatively flat, including part of the transformer substation
and roads. Figure 9 shows the comparison of the reconstructed power lines with different
methods in test site 3. It can be seen that the Gipuma can only reconstruct part of the power
lines, and there are many breaks at the uppermost power lines; ACMH, Colmap, and the
proposed method can reconstruct power lines more completely than Gipuma. In addition,
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from the reconstructed jumper lines marked as blue rectangles in Figure 9, it can be seen
that Gipuma failed to reconstruct the jumper lines; while ACMH can only reconstruct part
of the jumper lines. Similarly, Colmap and the proposed method can reconstruct jumper
lines more completely than Gipuma and ACMH.

Since the rectangle closed-loop trajectory is applied for UAV image collection, the
intersection angle between adjacent images on the same side is small. If the images on
the same side are selected for dense matching, the depth error of power lines would
be augmented, which would be regarded as noise and removed in depth-map fusion.
Therefore, the pixelwise visible image selection is extremely important for power line
reconstruction with the rectangle closed-loop trajectory. In addition, because the power
lines are suspended and the background in the image with different perspectives is different,
the matching cost function directly affects the reconstruction result of power lines. The “top-
k-winner-take-all” strategy is applied in Gipuma without robust pixelwise view selection,
and the matching costs are the weight combinations of the color and gradient difference,
which lead to poor performance on the reconstruction of power lines. Unlike Gipuma,
the weighted bilateral NCC matching cost function is adopted in ACMH, Colmap, and
the proposed method. Therefore, the main factors that affect the completeness of power
lines are the view selection and the propagation mode. ACMH performs poorly in the
completeness of power line reconstruction in test site 1 because it only uses pixels with the
smallest matching cost in the fixed neighbor positions to select the visible image without
taking into account the influence of the intersection angle. In addition, these pixels with
sorted smallest matching costs are used to propagate the plane parameters. However, the
matching cost of power lines is usually greater than that of the pixels of the ground. In this
case, the pixels selected to propagate their plane parameters are located in the background
of power lines, which leads to the low efficiency of propagation and the convergence speed
of power lines is very slow in limited iterations. The structures of UAV images in test site 2
and test site 3 are stable, the propagation modes become the main factor that affects the
completeness of reconstructed power lines. Due to the large terrain undulations and the
large height difference between the terrain and power lines in test site 2, ACMH updates the
depth and normal of power lines through the neighbor pixels with the smallest matching
cost, which has poor propagation efficiency. The sequence propagation is adopted in
Colmap, and the propagation direction in each iteration is changed to realize the depth and
normal updating with the four neighbor pixels, which has high effectiveness for power line
reconstruction. Random red-black propagation is applied in the proposed method, and the
depth and normal are updated through the neighbor pixels with the most similar color,
which can also ensure the effectiveness of the propagation for power lines. Compared
with the results of Colmap, the proposed method has little difference from Colmap in the
completeness of the reconstructed power lines.

3.2. Analysis of the Performance of Efficiency

In this experiment, the three datasets of the UAV images in the high-voltage power
transmission line are selected to analyze the runtime performance. All the parameters
are maintained the same as those in Section 3.1 and all the methods are run on the same
platform. Figure 10 is a comparison chart of the total runtime of dense matching and
depth map fusion with the four methods, and Table 2 lists the detailed runtime with the
three high-voltage power transmission line datasets. Through comparative analysis, it
can be seen that Colmap has the slowest runtime due to the sequence propagation, while
Gipuma, ACMH, and the proposed method use diffusion-like propagation, which is more
efficient and convenient for GPU parallel processing. However, bisection refinement is
employed in Gipuma, which is time-consuming to generate more hypotheses to verify.
ACMH directly accesses the color values from the texture memory in the GPU for matching
cost computation, which does not make full use of the advantage of the shared memory
technique of GPU. This paper fully combines the advantages of the above methods and
adopts the random red-black checkerboard propagation and shared memory technique in
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GPU to improve efficiency. Moreover, two strategies for reducing the number of matching
cost computations are adopted in the proposed method. Therefore, the runtime of the
proposed method of PatchMatch is about 3–5 times faster than Colmap. With regards to
depth-map fusion, it can be found that Colmap is the slowest, and the runtime is about
1/3 of the dense matching. ACMH and the proposed depth map fusion methods are more
efficient than Colmap. The total runtime of the PatchMatch and depth-map fusion of the
proposed method is about 4–7 times faster than Colmap.
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Table 2. Details of the runtime of dense matching and depth map fusion with different methods for
the three datasets in the high-voltage power transmission line.

Methods Test Site
1/(Min)

Test Site
2/(Min)

Test Site
3/(Min)

Gipuma
PatchMatch 139.04 52.74 34.12

Depth fusion 7.75 4.88 2.38
Total 146.79 57.62 36.50

ACMH
PatchMatch 92.39 31.82 19.56

Depth fusion 7.75 4.88 2.38
Total 100.14 36.70 21.94

Colmap
PatchMatch 201.03 117.28 75.04

Depth fusion 78.54 58.62 41.07
Total 279.57 175.90 116.11

Ours
PatchMatch 58.55 22.62 14.09

Depth fusion 7.07 3.86 2.35
Total 65.62 26.48 16.44

4. Discussion

In this section, the analysis of the precision with the proposed method is discussed.
The Strecha dataset and Vaihigen dataset are applied to verify the precision of the proposed
method. The two benchmark datasets both provide the parameters of image orientations,
the intrinsic parameters of the camera, and the ground truth mesh or point cloud. The
accuracy, completeness, and F1 score [43] are adopted for precision analysis.

In the experiment with the Strecha dataset, the image size is set 1563× 1024 pixels and
the maximum number of views selected for PatchMatch is set 10. In this experiment with
the Vaihigen dataset, the image size is set 3889 × 7000 pixels, and the maximum number of
views selected for PatchMatch is set 5. The remaining parameters are consistent with the
experiment of the UAV images in the high-voltage power transmission line.
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Figure 11 shows the comparison of reconstructed results of different methods in
the Fountain and Herzjesu datasets. It can be seen that ACMH can match more point
clouds on both sides of the Fountain dataset and at the gates of the Herzjesu dataset.
This is mainly because there are coplanar areas in the two datasets, and the adaptive
red-black checkerboard propagation adopted in ACMH can propagate the depth and
normal in a larger range, which is more efficient in the coplanar areas and can improve
the completeness in the low-textured areas. Gipuma performs worse than other methods
in these two datasets. The proposed method can match slightly more point clouds on
both sides of the Fountain dataset than Colmap, indicating that the random red-black
checkerboard propagation adopted in the proposed method is better than the sequence
propagation of Colmap in the coplanar regions but still worse than the adaptive red-black
propagation of ACMH.
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Figure 11. The comparison of reconstructed point clouds with the Strecha dataset. (a1,a2) are the
ground truth meshes of the Fountain and Herzjesu datasets, respectively. (b1–e1) and (b2–e2) are
generated by Gipuma, ACMH, Colmap, and the proposed method with the Fountain and Herzjesu
datasets, respectively.

In addition, this paper quantitatively analyses the precision of point clouds recon-
structed by the four methods in the Strecha dataset, in which the accuracy, completeness,
and F1 score of point clouds are used. The vertexes of the meshes in the Fountain and
Herzjesu datasets are used as ground truth point clouds for the precision analysis. Table 3
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shows the accuracy, completeness, and F1 score with the evaluation threshold of 2 cm and
10 cm in percentage. It can be seen that Gipuma achieves the highest accuracy of the two
datasets with the 2 cm and 10 cm thresholds because the bisection refinement is applied
in Gipuma to obtain more accurate depth values. However, Gipuma performs worse in
terms of completeness and F1 score. ACMH has the highest completeness and F1 score
in the Fountain dataset with 2 cm and 10 cm, and in the Herzjesu dataset with a 2 cm
threshold, indicating that ACMH has advantages in the coplanar regions. The F1 score
of the proposed method is higher than that of Colmap, which verifies that the random
red-black propagation can improve the propagation efficiency.

Table 3. The precision comparison of point clouds with different methods in the Strecha dataset. The
accuracy (A), completeness (C), and F1 score (in %) are evaluated with 2 cm and 10 cm thresholds.

Datasets Methods
2 cm/(%) 10 cm/(%)

A C F1 A C F1

Fountain

Gipuma 84.47 41.39 55.56 97.54 54.33 69.79
ACMH 74.83 48.95 59.19 95.83 60.32 74.04
Colmap 75.08 44.72 56.05 95.18 58.71 72.62

Ours 74.61 47.20 57.82 95.26 59.44 73.20

Herzjesu

Gipuma 78.42 29.53 42.90 96.43 47.78 63.90
ACMH 74.08 39.51 51.53 94.52 54.75 69.34
Colmap 67.28 32.84 44.13 92.26 55.20 69.07

Ours 73.16 37.78 49.83 94.28 54.73 69.25

Figure 12 shows the ground truth point clouds and the results of reconstructed point
clouds in test site 1 and test site 3 of the Vaihigen with different methods. It can be seen
that Gipuma has the worst completeness with a large number of holes in both test sites.
ACMH, Colmap, and the proposed method all have poor performance in the road regions
because the roads are weakly textured with fewer color changes and they are difficult to
match with bilateral weighted NCC. It can also be found that the completeness of ACMH
in test site 1 marked with a black rectangle is worse than Colmap and the proposed method.
The reconstructed point clouds of Colmap in test site 3 marked with a black rectangle are
better than the other three methods.

Similarly, the accuracy, completeness, and F1 score are used for quantitative evaluation
with the thresholds of 0.2 m and 0.5 m, as shown in Table 4. It can be seen that Gipuma has
the highest accuracy in test site 1 with the evaluation threshold of 0.5 m, but has the lowest
F1 score in both test sites similar to the Strecha dataset. ACMH has the highest accuracy
and F1 score in both test sites with the evaluation threshold of 0.2 m; the proposed method
achieves the highest F1 score in both test sites with an evaluation threshold of 0.5 m. It can
also be found that the F1 scores in both test sites of the Vaihigen dataset of the proposed
method are better than Colmap.

Table 4. The precision comparison of point clouds with different methods in test site 1 and test site 3
of the Vaihigen dataset. The accuracy (A), completeness (C), and F1 score (in %) are evaluated with
0.2 m and 0.5 m thresholds.

Datasets Methods
0.2 m (%) 0.5 m(%)

A C A C F1

Test site 1

Gipuma 37.11 23.35 28.66 71.68 50.32 59.13
ACMH 39.91 41.10 40.50 68.35 65.23 66.76
Colmap 32.64 26.59 29.31 55.80 66.32 60.61

Ours 38.62 42.11 40.29 66.29 67.58 66.93

Test site 3

Gipuma 36.47 16.27 22.50 73.85 41.43 53.08
ACMH 40.92 38.88 39.87 74.93 65.99 70.17
Colmap 36.26 26.92 30.90 64.41 71.18 67.63

Ours 37.04 37.40 37.22 72.08 69.78 70.91
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5. Conclusions

An improved fast PatchMatch method for the UAV images of high-voltage power
transmission lines is proposed based on Colmap, which can greatly improve efficiency
while ensuring the completeness of the reconstruction of power lines. This paper employs
the following three aspects to improve the efficiency of Colmap. Firstly, a new random
red-black checkerboard propagation is proposed. By randomly sampling the neighbor
pixels with different color patterns, the pixels with the most similar color to the current
pixel are selected to propagate the plane parameters, which is more conducive to the
reconstruction of power lines compared with the adaptive red-black propagation in ACMH.
To combine the pixelwise view selection strategy in Colmap with the efficient random
red-black checkerboard propagation, the updating schedule of hidden variables adopted
in Colmap is improved. Secondly, strategies for reducing the number of matching cost
computations are adopted. The number of neighbor pixels for the plane parameters
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propagation is reduced with the increasing of iteration number; the number of combinations
with the depth and normal hypotheses is reduced in the plane refinement procedure
according to the matching cost. Finally, an efficient depth map fusion is implemented
in the GPU, which uses the weighted function based on reprojection error to fuse depth
values. Through these strategies, the efficiencies of dense matching and depth-map fusion
are greatly improved.

The experiments with UAV images of high-voltage power transmission lines from
three test sites show that the proposed method can reconstruct more complete point clouds
of power lines than Gipuma and ACMH, and the reconstructed power lines are more
similar to Colmap. With the analysis of runtime performance, the proposed method
achieves 4–7 times faster than that of Colmap. Experiments of the precision analysis with
two benchmark datasets, Strecha and Vaihigen, demonstrate that the score of the proposed
method is higher than Colmap. Comprehensive experiments indicate that the proposed
method has promising application for high-voltage power transmission lines.
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