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Abstract: The Copernicus Sentinel-2 mission operated by the European Space Agency (ESA) provides
comprehensive and continuous multi-spectral observations of all the Earth’s land surface since
mid-2015. Clouds and cloud shadows significantly decrease the usability of optical satellite data,
especially in agricultural applications; therefore, an accurate and reliable cloud mask is mandatory
for effective EO optical data exploitation. During the last few years, image segmentation techniques
have developed rapidly with the exploitation of neural network capabilities. With this perspective,
the KappaMask processor using U-Net architecture was developed with the ability to generate a
classification mask over northern latitudes into the following classes: clear, cloud shadow, semi-
transparent cloud (thin clouds), cloud and invalid. For training, a Sentinel-2 dataset covering the
Northern European terrestrial area was labelled. KappaMask provides a 10 m classification mask for
Sentinel-2 Level-2A (L2A) and Level-1C (L1C) products. The total dice coefficient on the test dataset,
which was not seen by the model at any stage, was 80% for KappaMask L2A and 76% for KappaMask
L1C for clear, cloud shadow, semi-transparent and cloud classes. A comparison with rule-based
cloud mask methods was then performed on the same test dataset, where Sen2Cor reached 59%
dice coefficient for clear, cloud shadow, semi-transparent and cloud classes, Fmask reached 61% for
clear, cloud shadow and cloud classes and Maja reached 51% for clear and cloud classes. The closest
machine learning open-source cloud classification mask, S2cloudless, had a 63% dice coefficient
providing only cloud and clear classes, while KappaMask L2A, with a more complex classification
schema, outperformed S2cloudless by 17%.

Keywords: convolutional neural network; cloud mask; Sentinel-2; KappaMask; active learning;
image segmentation; remote sensing

1. Introduction

As part of Europe’s Copernicus Earth Observation programme, Sentinel-2 is one of
the core missions providing global and continuous multi-spectral observations of all the
Earth’s land masses. Thanks to the two operating satellites, images over a specific area
can be acquired every five days at the equator, whilst at higher latitudes the temporal
resolution of the data is even higher.

Clouds and cloud shadows are the main obstacles for frequent land monitoring,
significantly reducing the usability of optical satellite data. For information retrieval
with automatic processing chains, it is required to separate valid pixels from the ones
contaminated by clouds and cloud shadows. Otherwise, extensive manual pre-processing
is needed, or errors might propagate to higher level products. Hence, accurate cloud

Remote Sens. 2021, 13, 4100. https://doi.org/10.3390/rs13204100 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5414-6089
https://doi.org/10.3390/rs13204100
https://doi.org/10.3390/rs13204100
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13204100
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13204100?type=check_update&version=2


Remote Sens. 2021, 13, 4100 2 of 22

filtering algorithms could boost and improve optical satellite data application for Earth
Observation (EO) services.

To tackle the cloud mask problem, various approaches have been developed. The
most used are rule-based algorithms, such as Sen2Cor [1], Fmask [2] and MAJA [3]. These
are further divided into single-scene and multi-temporal algorithms. MAJA [3] belongs
to the multi-temporal-algorithm group that identifies clouded pixels based on tempo-
ral time-series of the satellite acquisitions. MAJA performs atmospheric correction and
cloud detection for Sentinel-2 images using time series, which can help to avoid the over-
classification of clouds by utilizing the correlation of the pixel neighbourhood with previous
images. It is very unlikely that there are two different clouds of the same shape at the
same location on successive dates. However, MAJA software is complex to set up and is
computationally expensive to run.

Sen2Cor [1] is the algorithm currently used by the European Space Agency (ESA) for
atmospheric correction and cloud masking on Sentinel-2 images, providing scene classifica-
tion maps, cloud and snow probabilities at a ground resolution of 20 m. Sen2Cor’s cloud
detector belongs to the single-scene-algorithm group. Fmask [2] was developed by Zhe
Zhu et al. and is another single-scene-algorithm allowing automated masking of clouds,
cloud shadows, snow and water from Landsat 4-8 and Sentinel-2 images. Alternatively,
S2cloudless [4] is a single-scene cloud detection algorithm which runs single pixel-based
classification using machine learning models, such as decision trees, support vector ma-
chines (SVM) and neural networks using FastAI API [5]. The best performing method for
S2cloudless is with neural networks using FastAI API; nevertheless, due to the slower infer-
ence time of neural networks S2cloudless utilizes the tree-based method with LightGBM [6].
However, S2cloudless focuses only on cloud detection, ignoring cloud shadows.

With the rapid development of deep learning, the advantages of using CNN-based
networks for image segmentation have been highlighted by many researchers [7]. One
data driven approach for solving the cloud segmentation task using a modified U-Net
convolutional neural network was proposed by Marc Wieland et al. [8]. The authors trained
the network on a global database of Landsat OLI images to segment five classes (“shadow”,
“cloud”, “water”, “land” and “snow/ice”). A similar type of network was used by Jeppesen
et al. [9], who trained RS-Net on Landsat 8 BIOME [10] and SPARCS datasets [11]. RS-Net
is a variation of U-Net which aims to improve the exploitation of spatial information.
Landsat dataset was segmented in 2017 by Badrinarayanan et al. [12], who used their own
adaptation of SegNet to produce segmentation masks. To reduce the computational load, all
images of the Landsat Collection 1 scenes were split into non-overlapping 512 × 512 pixels
image blocks with a 30 m spatial resolution. A publicly accessible GaoFen-1 dataset was
released by Li et al. [13] with 108 full Landsat 7 and Landsat 8 scenes in different global
regions of different land-cover types, including forest, barren, ice, snow, water and urban
areas. ResNet with modifications for pixel-level segmentation was used on this dataset
with products cropped into 512 × 512 pixel sub-tiles [14]. The developed model is called
a multilevel feature fused segmentation network (MFFSNet). It segments input to cloud,
cloud shadow and background, and does not differentiate between cloud types. A similar
type of network was proposed by Li et al. in [13]. The network, named multi-scale
convolutional feature fusion (MSCFF), is meant for remote sensing images of different
sensors. It was validated on a dataset including Landsat 5/7/8, Gaofen-1/2/4, Sentinel-2,
Ziyuan-3, CBARS-04 and Huanjing images. Regardless of the dataset size, the Northern
European terrestrial area relevant for the current development is missing. In comparison
to Fmask, the authors achieved an improvement of 3% in the overall accuracy on Landsat
7, and an almost 5% improvement on Landsat 8 dataset.

Training a deep learning model requires a balance between a good representation of
the data domain and the ability to converge within the given space. The active learning
approach that was introduced to remote sensing in 2009 [15] promotes the idea that a
carefully selected subset of data will perform as good as a large dataset of random samples.
With the rising interest in deep learning approaches, the active learning methodology has
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become a powerful tool for creating reference cloud mask datasets. Baetens et al. [16,17]
used a random forest in active learning loop to create a reference cloud mask dataset.
However, the use of a neural network in an active learning loop has yet to be explored.

In our work, we utilize the active learning methodology in training a CNN-based
model that outputs L2A and L1C classification masks at 10 m resolution. Cloud mask
output at 10 m is preferred, since it is the native spatial resolution of Sentinel-2 RGB and
NIR spectral bands. The finer delineation helps increase the amount of usable data for a
large variety of higher-level products generation. Unfortunately, until now, public 10 m
Sentinel-2 cloud mask datasets were scarcely available. Recently, the reference dataset that
covers Asian region was introduced in [18,19]. Therefore, one objective of this study is the
creation of a novel active learning-based hand-annotated dataset “Sentinel-2 KappaZeta
Cloud and Cloud Shadow Masks” that covers Northern European terrestrial area at a 10 m
resolution [20].

The other objectives of the current study are to further analyse the capabilities of
CNN-based models for the creation of cloud and cloud shadow mask for Sentinel-2 in
Northern European terrestrial area and to meet the need for a more accurate, categorised
and finer resolution mask that has not been published before. The paper describes an
active learning methodology with a deep learning network in the loop to create a dataset
and train a CNN-based model. The novelty of the training procedure comprises of pre-
training on the 20 m resolution reference dataset distributed globally and fine-tuning on
the 10 m resolution dataset with a focus on the Northern European area. The approach
leverages advantages of the 20 m resolution dataset and increases its robustness to different
landscapes. The evaluation on the test dataset is shown, including comparison with
rule-based methods—Sen2Cor, Fmask, MAJA—and AI-based methods—S2cloudless, DL-
L8S2-UV (Deep Learning for Cloud Detection in Landsat-8 and Sentinel-2 Images [21]).
The feature importance in the model for both L1C and L2A input is analysed. Finally,
a brief timing comparison over KappaMask on GPU and CPU, Fmask, S2cloudless and
DL-L8S2-UV methods is presented.

2. Materials and Methods

The open data policy of the Copernicus program makes Sentinel-2 one of the most
powerful resources for EO applications. Data can be accessed through several distribution
channels, such as CREODIAS [22] among the five DIASes of the DIAS Hub [23], the
Copernicus Open Access Hub [24] and the Collaborative National Mirror Sites, e.g., [25,26].
Sentinel-2 data are provided at different processing levels, including Level-1C (L1C) and
Level-2A (L2A). L1C is a cartographic UTM projection of the Top of Atmosphere (TOA)
reflectances orthorectified using a digital elevation model (DEM) to correct geometric
distortion. The L2A product provides Bottom of Atmosphere (BOA) reflectance images
derived from the associated L1C products. Both L1C and L2A Sentinel-2 products are
distributed in ~100 by ~100 km2 ortho-image tiles resulting in up to 10,980 by 10,980 pixel
images at 10, 20 and 60 m spatial resolution depending on the spectral band.

The pipeline for obtaining the training dataset can be split into several blocks (Figure 1).
First, the “Sentinel-2 Cloud Mask Catalogue” dataset by Francis et al. [27] is used for initial
model training. Next, we prepared our own Sentinel-2 (S-2) labelled dataset “Sentinel-2
KappaZeta Cloud and Cloud Shadow Masks” [28] using Computer Vision Annotation Tool
(CVAT) [29] and Segments.ai [30] labelling tools, which will be described in Section 2.2.
On our labelled data (Figure 2), the model is fine-tuned (the process is described in more
detail in Section 2.3). After this step, the prediction is performed on the new Sentinel-2
products, followed by a selection of the sub-tiles with the lowest prediction accuracy for
further labelling.
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The final model is validated on the isolated test dataset (Figure 3) and the performance
is compared to the existing masks, such as Sen2Cor, MAJA, Fmask and S2cloudless.
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2.1. Data Processing

KappaMask can generate the classification mask from both, L2A and L1C products
input. Thus, the processing pipeline for each product level utilizes different input bands
which, in the context of machine learning, are referred to as features.

The algorithm for Level-2A product is using features at spatial resolutions of 10 m,
20 m and 60 m. The following features are used for training:

• 10 m bands: “B02” (490 nm), “B03” (560 nm), “B04” (665 nm), “B08” (842 nm);
• 20 m resolution bands: “B05” (705 nm), “B06” (740 nm), “B07” (783 nm), “B8A”

(865 nm), “B11” (1610 nm), “B12” (2190 nm);
• 60 m resolution bands: “B01” (443 nm), “B09” (940 nm);
• “AOT” (Aerosol Optical Thickness) and “WVP” (Water vapor map).

Level-1C product includes all listed above bands, but AOT and WVP are not available.
Additionally, L1C includes 60 m Band 10 (1375 nm).

Each of the S-2 product is divided into 484 non-overlapping sub-tiles of 512 × 512 pixels
before uploading the tiles to CVAT or Segments.AI for labelling. Since the channels of
S-2 products have dimensions of either 10,980 × 10,980 pixels (10 m spatial resolution),
5490 × 5490 pixels (20 m spatial resolution) or 1830 × 1830 pixels (60 m spatial resolution),
the 512 × 512 pixel sub-tiles on the right and bottom edges are only partially filled with
data, hence zero padding is applied when needed.

The features are resampled to the same 10 m resolution with Sinc Infinite Impulse
Response (IIR) filter that is windowed with a Blackman filter [7].

For training, both the open-source dataset “Sentinel-2 Cloud Mask Catalogue” by Fran-
cis et al. [27] and the ”Sentinel-2 KappaZeta Cloud and Cloud Shadow Masks” dataset [28]
that we created ourselves, were processed. The “Sentinel-2 Cloud Mask Catalogue” con-
tains cloud masks for 513 subscenes of 1022 × 1022 pixels at 20 m resolution, from the
2018 L1C Sentinel-2 archive. To use this dataset for pretraining the KappaMask model, the
output mask is resampled to 10 m resolution and cropped to 512 × 512 pixel sub-tiles. The
corresponding L2A products were processed for the same size and resolution and were
used for training.

The “Sentinel-2 KappaZeta Cloud and Cloud Shadow Masks” dataset consists of 150
Sentinel-2 products with 10 sub-tiles of 512 × 512 pixels labelled at 10 m resolution. The
dataset contains roughly equal amounts of stratus, cumulus and cirrus clouds. Different
cloud types were chosen in order to achieve maximal representation. For each month, ten
products with stratus clouds, ten products with cumulus clouds and ten products with
cirrus clouds were chosen from different locations. The labelled products are distributed
uniformly over Northern Europe (Figure 2). Sentinel-2 products form a fixed grid which
covers the globe; therefore, many dots on Figure 2 share similar latitude and/or longitude.
The dots that are bundled together represent products from the same grid point. However,
the products from the same location usually have different cloud types and they are from
different months.

From each Sentinel-2 product represented with a red, blue or green dot, which correspond
respectively to stratus, cumulus and cirrus cloud types, ten sub-tiles of 512 × 512 pixels were
labelled. The selection of sub-tiles was done using active learning approach by selecting
worst performing sub-tiles after model inference. All 484 sub-tiles were predicted by the
model, and the prediction masks were laid half-transparently over the original images.
Based on the visual evaluation of the resulting images, a human labeller chose the sub-tiles
where the prediction mask was most erroneous. This way, only the highest impact sub-tiles
were chosen for subsequent labelling. From each month, one product with stratus clouds,
one product with cumulus clouds and one product with cirrus clouds were reserved for the
test set, and the rest of the products were used for training. Additionally, six S-2 products
covering Estonia were fully labelled, meaning that all 484 sub-tiles of 512 × 512 pixels were
labelled with an additional 2821 sub-tiles. However, those fully labelled product sub-tiles
are present only in the training dataset.
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2.2. Output Classification Classes

The labelling was done using the Computer Vision Annotation Tool (CVAT) [29] and
Segments.ai [30]. CVAT is a free, open-source tool that can be used to create segmentation
mask annotations. Using CVAT, six S-2 images over Estonia were labelled, resulting in
6 × 484 sub-tiles of 512 × 512 pixels. The rest of the products was labelled using the
Segments.ai platform that supports model-assisted labelling. Thanks to the possibility of
integrating active learning process into Segments.ai by uploading new images with predic-
tions, the labelling speed improved significantly. However, after the model predictions, all
sub-tiles were still manually corrected. Therefore, a further 150 Sentinel-2 products were
labelled using Segments.ai and resulted in ~1500 labelled sub-tiles of 512 × 512 pixel size.
The labelling from both tools were peer-reviewed by labellers. CVAT and Segments.ai have
significant differences in usage and resulting outputs. While Segments.ai has ability to
draw with brush, CVAT uses polygon shapes. As a result, Segments.ai labels are smoother
and less angular. The “Sentinel-2 Cloud Mask Catalogue” by Francis et al. [27] that was
used for pre-training was labelled semi-automatically using the IRIS toolkit [31]. We believe
that a combination of different tools is another advantage for training, which reduces a
bias towards one specific way of labelling.

Labels in both CVAT and Segments.ai are split into the following categories:

• 0—MISSING: missing or invalid pixels;
• 1—CLEAR: pixels without clouds or cloud shadows;
• 2—CLOUD SHADOW: pixels with cloud shadows;
• 3—SEMI TRANSPARENT CLOUD: pixels with thin clouds through which the land is

visible;
• 4—CLOUD: pixels with cloud;
• 5—UNDEFINED: pixels that the labeller is not sure which class they belong to.

Undefined class is used where the labeller is either not certain what is in the image or
when the class borders are not clear. The UNDEFINED class is excluded from the model
training and the predictor assigns the class with the highest confidence from the other five
classes.

Table 1 illustrates the mapping of output classes from different classification masks
for validation and performance comparison. The table includes the Cloud Masking
Inter-Comparison Exercise (CMIX) standard notation [32], Sen2Cor, Fmask, MAJA and
S2cloudless label comparison.

Table 1. Output correspondence for different cloud classification masks. KappaMask output scheme is used for model
fitting with logic corresponded to CMIX notation. Sen2Cor, Fmask, MAJA and S2cloudless are mapped respectively to
KappaMask output. FMSC to Francis, Mrziglod and Sidiropoulos’ classification map [27] is used for pretraining.

Sen2Cor CMIX KappaMask Fmask S2Cloudless FMSC
0 No data 0 Missing

1 Saturated or defective 0 Missing
2 Dark area pixels 1 Clear
3 Cloud shadows 4 Cloud shadows 2 Cloud shadows 2 Cloud shadows 2 Cloud shadows

4 Vegetation 1 Clear 1 Clear 0 Clear 0 Clear 0 Clear
5 Not vegetated 1 Clear

6 Water 1 Clear 1 Water
7 Unclassified 5 Undefined

8 Cloud medium probability 4 Cloud
9 Cloud high probability 2 Cloud 4 Cloud 4 Cloud 1 Cloud 1 Cloud

10 Thin cirrus 3 Semi-transparent cloud 3 Semi-transparent cloud
11 Snow 1 Clear 3 Snow

2.3. Model Fitting

Each input Sentinel-2 L2A image has 13 features: “B01”, “B02”, “B03”, “B04”, “B05”,
“B06”, “B07”, “B08”, “B8A”, “B09”, “B11”, “B12”, “AOT”, “WVP”. Meanwhile, the Sentinel-
2 L1C model has 12 input features as an input: “B01”, “B02”, “B03”, “B04”, “B05”, “B06”,
“B07”, “B08”, “B8A”, “B09”, “B10”, “B11”, “B12”. The input features are normalised with
min-max normalization and passed to the model as an input. The output of the network is
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a classification map that is identifying each pixel as clear, cloud shadow, semi-transparent
cloud, cloud, or missing class.

The full dataset is divided into training, validation and test sets. The training and
validation sets are split randomly, according to the ratio of 80/20%. The test dataset consists
of separate Sentinel-2 products which were preselected with a diverse geographical and
temporal distribution in mind. For each month from April to August, three Sentinel-2
products with different types of clouds were selected. Moreover, from each product, the 10
most complicated sub-tiles were selected by data labellers. As the most complicated sub-
tiles we considered the tiles that covered all different classes and for which the model gave
the most errors during prediction with manual observation. The geographical distribution
for the test dataset is shown in blue, alongside the training data in red (which includes
both training and validation set) in Figure 3.

In contrast to standard pixel classifications where a limited pixel neighbourhood is
exploited, we aim to segment one sub-tile as a whole, giving both spatial context from the
whole image and spectral information from all channels.

The input of the model has 512 × 512 × 14 dimensionality corresponding to the
rows, columns and channels of the image, respectively. The output segmentation map
consists of the confidence values for five classes and the values transformed with argmax
for the final segmentation mask. U-Net architecture [33] has two sides: the encoding
part which down-samples the image to generalize the features, and the decoding part
which up-samples the image back to the original size. Between encoder and decoder, there
are skip connections, which copy information between different levels of features. The
architecture of the network is shown in Figure 4.
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The Adam optimizer [34] is used for fitting the model. During training, if the moni-
tored validation metric does not improve for a specified number of epochs, the learning
rate is reduced. To avoid overfitting, the training is stopped when the validation loss does
not improve for a specified number of epochs.

In our initial experiments, we used categorical cross entropy loss, which is commonly
used for CNN-based cloud mask methods [11–13,19,20]. However, we found that lower
validation loss does not necessarily mean better segmentation results and the F1 score still
increased when the model was already overfitted. Due to this, we are using dice coefficient
loss [35] which shows better results for the current setup.

2.4. Inference

Once the network has been trained (the optimal values for model weights have been
determined), inference is performed by forward passing an image through the network.
The Sentinel-2 L1C or L2A product folder is an input to the inference tool [20]. The product
is cropped into 512 × 512 pixel sub-tiles with overlapping (the overlapping size that we
used in our experiments is 32 pixels) and the model generates the prediction for each
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individual crop. In the next step the whole product output classification mask is combined
from individual crops. The process of sub-tiling and final mask generation is illustrated in
Figure 5.
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3. Results

Once U-Net model was trained over the “Sentinel-2 Cloud Mask Catalogue” Fran-
cis [27] dataset, the network was finetuned on Northern European terrestrial dataset that
we labelled using the active learning methodology. As mentioned in Section 2.1, the test
dataset was comprehensively selected to showcase different kinds of errors over Northern
Europe and consisted of 15 Sentinel-2 products. The test products were predicted by the
pre-trained model, and the least performing sub-tiles were selected, based on a visual
comparison between prediction mask and original image. However, these test images were
not used in training or validation at any stage.

The results section is structured as follows. The first subsection provides KappaMask
L1C and L2A comparison with rule-based methods—Sen2Cor, Fmask and MAJA. After-
wards, KappaMask performance is compared to machine learning methods—S2cloudless
that uses tree algorithm with LightGBM and deep learning DL_L8S2_UV [21] network.
The next sub-section shows the feature importance analysis of KappaMask L1C and L2A
model, followed by the hyperparameter tuning of network depth and number of filters.
The last sub-section presents the comparison of the time spent by KappaMask on CPU and
GPU, Fmask, S2cloudless and DL_L8S2_UV networks.

3.1. KappaMask L1C and L2A Comparison with Rule-Based Methods

Figure 6 presents individual sub-tile output for L2A model in comparison to label,
Sen2Cor, Fmask and MAJA classification mask and Figure 7 showcases individual sub-tile
prediction for L1C model. Overall, KappaMask is performing better on cloud and cloud
shadow on both figures, while Sen2Cor is under-segmenting cloud and Fmask and MAJA
are under-segmenting cloud shadows. As a multi-temporal algorithm, MAJA relies on
the quality of the time-series, where the “backward mode” is used to obtain better quality
results for the first product of a time-series. For this, at least one product in the time-series
tiles should be considered as valid in the period of 45 days, which means that it has less
than 90% of cloudy area. Otherwise, the result of the processing will be empty. These
constrains may affect MAJA output results, since North European weather conditions for
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some locations might not have cloud-free images for the required length of the time series
as it happened for the L1C example. The performance comparison of KappaMask, Sen2Cor
and Fmask can be checked at [36]. Examples of full S-2 product classification maps can be
seen in Appendix A (Figures A1–A3).

Table 2 shows the comparison of dice coefficients for KappaMask L2A, KappaMask
L1C, Sen2Cor, Fmask and MAJA on the test dataset. The results were obtained from the
same challenging test set for all methods. The greatest improvement in the dice coefficient
of KappaMask L2A in comparison to other cloud mask methods is cloud shadow detection
for which L2A is 20% more accurate than the closest competitor, Sen2Cor. The performance
of cloud classification is also superior, with a dice coefficient of 86% against the closest
result (62% for Sen2Cor). KappaMask L2A has the highest dice coefficient on the semi-
transparent class, which is 29% higher than Sen2Cor. Finally, clear class KappaMask 82% is
7% higher than the closest result of Fmask. The total dice coefficient average over all classes
for both KappaMask L2A and KappaMask L1C is bigger than Sen2Cor, Fmask, and MAJA
with 80% and 76% against 59%, 61%, and 51%, respectively. Overall, the performance
of KappaMask L2A is 4% better than performance of the KappaMask L1C which can
be explained by the focus of the training. The choice of the architecture in Table 2 for
the L2A model was influenced by the initial priority of applicability for agricultural use
and therefore needed the availability of the atmospheric correction. Regarding this, we
believe that the performance of KappaMask L1C can be further improved in the future.
Precision, recall and accuracy in Tables 3–5, respectively, are presented to provide a deeper
understanding of each model’s performance.
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Table 2. Dice coefficient evaluation performed on the test dataset for KappaMask Level-2A, Kappa-
Mask Level-1C, Sen2Cor, Fmask and MAJA cloud classification maps. Evaluation is performed for
clear, cloud shadow, semi-transparent and cloud classes.

Dice Coefficient KappaMask
L2A

KappaMask
L1C Sen2Cor Fmask MAJA

Clear 82% 75% 72% 75% 56%

Cloud shadow 72% 69% 52% 49% -

Semi-transparent 78% 75% 49% - -

Cloud 86% 84% 62% 60% 46%

All classes 80% 76% 59% 61% 51%

Table 3. Precision evaluation performed on the test dataset for KappaMask Level-2A, KappaMask
Level-1C, Sen2Cor, Fmask and MAJA cloud classification maps. Evaluation is performed for clear,
cloud shadow, semi-transparent and cloud classes.

Precision KappaMask
L2A

KappaMask
L1C Sen2Cor Fmask MAJA

Clear 75% 79% 60% 66% 64%

Cloud shadow 82% 79% 87% 51% -

Semi-transparent 83% 71% 78% - -

Cloud 85% 83% 57% 44% 35%

All classes 81% 78% 71% 54% 50%
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Table 4. Recall evaluation performed on the test dataset for KappaMask Level-2A, KappaMask
Level-1C, Sen2Cor, Fmask and MAJA cloud classification maps. Evaluation is performed for clear,
cloud shadow, semi-transparent and cloud classes.

Recall KappaMask
L2A

KappaMask
L1C Sen2Cor Fmask MAJA

Clear 91% 71% 90% 86% 50%

Cloud shadow 64% 61% 37% 48% -

Semi-transparent 74% 80% 36% - -

Cloud 87% 85% 67% 60% 65%

All classes 79% 74% 58% 65% 58%

Table 5. Overall accuracy evaluation performed on the test dataset for KappaMask Level-2A, Kappa-
Mask Level-1C, Sen2Cor, Fmask and MAJA cloud classification maps. Evaluation is performed for
clear, cloud shadow, semi-transparent and cloud classes.

Overall Accuracy KappaMask
L2A

KappaMask
L1C Sen2Cor Fmask MAJA

Clear 89% 86% 81% 84% 79%

Cloud shadow 96% 95% 95% 92% -

Semi-transparent 85% 79% 72% - -

Cloud 92% 91% 78% 67% 63%

All classes 91% 88% 82% 81% 71%

Figure 8 shows the confusion matrices for KappaMask L2A, KappaMask L1C, Sen2Cor
and Fmask. The highest recall for the clear class is 91% for KappaMask L2A (Figure 8a).
Moreover, the cloud shadow has the highest recall of 63% for KappaMask L2A. The semi-
transparent cloud class recall is the highest compared to Sen2Cor and Fmask (80% for
KappaMask L1C, Figure 8b), being over two times more accurate than Sen2Cor semi-
transparent class with 36% in Figure 8c. Fmask (Figure 8d) has the highest recall for
the cloud class with 94%; however, 5% of the clear area in Fmask is falsely predicted as
cloud, while for KappaMask it is only 2% for L1C and L2A. Fmask does not have a semi-
transparent class; thus, if we respectively add confusion with the semi-transparent class for
KappaMask, it will be 98% for L2A and 95% for L1C models, outperforming Fmask.

False negatives are crucial in agricultural applications, since the area treated as clear
would propagate to the higher-level products, such as NDVI. The result of false negatives
for the clear class with KappaMask L1C is 23%, while false negatives for the clear class in
Fmask and Sen2Cor are 60% and 88%, respectively. The pixels that are falsely predicted as
clear cause the biggest disturbances when used for applications. We find that 16% out of
37% false negative errors in KappaMask L2A output appear with semi-transparent clouds.
However, semi-transparent clouds are often very thin and their borders often not visible
with human eye, making them difficult to delineate. The more accurate classification for
KappaMask L1C for semi-transparent clouds is explained by the availability of cirrus B10
band in Level-1C product which is missing for Level-2A input.

At the end of the classification run on a Sentinel-2 product, the overlapping cloud
mask sub-tiles are mosaicked together into a georeferenced .tiff file. Figures A1–A3 show
examples of the final output for one of the test products.
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Figure 8. Confusion matrices on test set for (a) KappaMask Level-2A; (b) KappaMask Level-1C; (c) Sen2Cor; (d) Fmask.
Confusion matrix consists of clear, cloud shadow, semi-transparent cloud, cloud and missing class; however, the last one is
removed from this comparison to make matrices easier to read.

3.2. KappaMask L1C and L2A Comparison with AI-Based Methods

A comparison between KappaMask L1C, KappaMask L2A, machine learning S2cloud
less trained using tree algorithms with LightGBM and deep learning model DL_L8S2_UV
is performed. In order to generate the S2cloudless mask at 10 m resolution, we contacted
researchers to provide coefficients for 10 m run. DL_L8S2_UV outputs 10 m resolution
mask by design. Figures 9 and 10 presents the comparison of one sub-tile prediction with
S2cloudless and DL_L8S2_UV, respectively. A visual inspection shows that S2cloudless
can miss smaller clouds or make their shapes inaccurate, while DL_L8S2_UV has more
accurate shapes, but under-segments parts of clouds. Meanwhile, KappaMask segments
cloud shape accurately, does not miss smaller clouds and tends to over-segment clouds.
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Figure 8. Comparison of L2A prediction output for a 512 × 512 pixels sub-tile in the test dataset. (a) Original Sentinel-2 
L2A True-Colour Image; (b) KappaMask classification map; (c) Segmentation mask prepared by a human labeller; (d) 
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Figure 9. Comparison of L2A prediction output for a 512 × 512 pixels sub-tile in the test dataset. (a) Original Sentinel-2 L2A
True-Colour Image; (b) KappaMask classification map; (c) Segmentation mask prepared by a human labeller; (d) S2cloudless
classification map; (e) DL_L8S2_UV classification map.
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Figure 10. Comparison of L1C prediction output for a 512 × 512 pixels sub-tile in the test dataset. (a) Original Sentinel-2
L1C True-Colour Image; (b) KappaMask classification map; (c) Segmentation mask prepared by a human labeller; (d)
S2cloudless classification map; (e) DL_L8S2_UV classification map.
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Since both comparison methods output only clear versus clouds classification map,
the metric comparison in Tables 6–9 is also presented for these two classes for KappaMask.
Overall, KappaMask L2A outperforms both methods for two classes for all presented
metrics with 21% difference for both classes average in dice coefficient with S2cloudless
and 22% difference with DL_L8S2_UV. Both S2cloudless and DL_L8S2_UV have a recall
close to KappaMask, but significantly lower precision and accuracy, confirming the obser-
vation from images examples that KappaMask detects more smaller clouds than the other
methods.

Table 6. Dice coefficient evaluation performed on the test dataset for KappaMask Level-2A, Kappa-
Mask Level-1C, S2cloudless and DL_L8S2_UV cloud classification maps. Evaluation is performed for
clear, cloud shadow, semi-transparent and cloud classes.

Dice Coefficient KappaMask
L2A

KappaMask
L1C S2cloudless DL_L8S2_UV

Clear 82% 75% 69% 56%

Cloud 86% 84% 57% 67%

All classes 84% 80% 63% 62%

Table 7. Dice coefficient evaluation performed on the test dataset for KappaMask Level-2A, Kappa-
Mask Level-1C, S2cloudless and DL_L8S2_UVcloud classification maps. Evaluation is performed for
clear, cloud shadow, semi-transparent and cloud classes.

Precision KappaMask
L2A

KappaMask
L1C S2cloudless DL_L8S2_UV

Clear 75% 79% 59% 41%

Cloud 85% 83% 41% 59%

All classes 81% 76% 50% 50%

Table 8. Dice coefficient evaluation performed on the test dataset for KappaMask Level-2A, Kappa-
Mask Level-1C, S2cloudless and DL_L8S2_UVcloud classification maps. Evaluation is performed for
clear, cloud shadow, semi-transparent and cloud classes.

Recall KappaMask
L2A

KappaMask
L1C S2cloudless DL_L8S2_UV

Clear 91% 71% 84% 90%
Cloud 87% 85% 93% 77%

All classes 89% 78% 89% 84%

Table 9. Dice coefficient evaluation performed on the test dataset for KappaMask Level-2A, Kappa-
Mask Level-1C, S2cloudless and DL_L8S2_UVcloud classification maps. Evaluation is performed for
clear, cloud shadow, semi-transparent and cloud classes.

Overall
accuracy

KappaMask
L2A

KappaMask
L1C S2cloudless DL_L8S2_UV

Clear 89% 86% 80% 61%
Cloud 92% 91% 62% 79%

All classes 91% 89% 71% 73%

3.3. KappaMask Feature Importance Analysis

The KappaMask L2A model uses 14 features including 12 bands and AOT and WVP
indexes as the input. Figure 11a illustrates the importance of each feature for each class
during the inference. The importance score is obtained by filling the selected feature with
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0 values and calculating the error as an inverse dice coefficient for each class, so 0 means
the highest performance and 1 means the worst dice coefficient. This method is called
permutation feature importance, suggested by Fisher et al. in 2019 [37]. The importance
score per class is summed up in Figure 11b. Except for Aerosol Optical Thickness (AOT)
and B02, the rest of the features contribute to model output almost equally. The network
was retrained discarding the least important B07, the total dice coefficient metric decreased
by 0.5%. Therefore, to reduce the network size, it is possible to discard some of the input
features; however, there is a trade-off between accuracy and the input size. The feature
importance analysis was also performed for the L1C model (Figure 11c,d). The highest
importance features for clear class detection according to Figure 11c are B08 and B8A, B01
for cloud shadow and B02 for clouds. In conclusion, B02, B01, B08, B8A, B11, B09 are the
most significant input features for the KappaMask L1C model.
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Figure 11. Feature importance obtained by deleting input features during inference for L2A model: (a) feature importance
per class; (b) sorted feature importance, summed up for all the classes, and for L1C model: (c) feature importance per class;
(d) sorted feature importance, summed up for all the classes.

3.4. Parameter Tuning

A 5-level U-Net [33] proved to be the most accurate, yet light-weight network for
our purpose. U-Net with 6 or 7 levels overfit more quickly without an improvement
in accuracy. Additionally, the impact of the number of input filters (32, 64 or 128) was
analysed on the performance of U-Net with different depths (5, 6 or 7 levels), listen in
Table 10. For U-Net with 5 levels, the performance was similar with 32, 64 and 128 input
filters, whereas 64 filters offered only a small improvement. All other combinations of
U-Net depths and input filters performed worse on the validation dataset. Furthermore,
the performance of Unet++ [38] architecture with a nested skip connection structure was
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analysed. However, due to the high memory consumption of the multi-spectral input, the
model was trained with a smaller batch size than the original U-Net and with an enhanced
capability for generalization [39]. The architecture of the best performing model setup is
shown in Figure 4.

Table 10. Training experiments for different model architectures for the L2A model.

Architecture U-Net Level of Depth Number of Input
Filters

Max Dice Coefficient on
Validation Set

U-Net

5
32 83.9%

64 84.0%

128 84.1%

6
32 80.7%

64 80.8%

128 82.9%

7
32 75.1%

64 83.1%

U-Net++ 5 64 75.9%

3.5. KappaMask Time Usage Comparison with Other Methods

The processing time for KappaMask prediction was measured in comparison to Fmask
and S2cloudless on the same hardware in Table 11. Sen2Cor was not measured, since it is
already precalculated as part of L2A product. The results were obtained on a test computer
with the following hardware and software characteristics: CPU – Intel Core i7-8700K, 64GB
of RAM, GPU – NVIDIA GeForce GTX 1070 with 8GB of VRAM, Linux Ubuntu 18.04.5
LTS (Bionic Beaver). The models were trained using University of Tartu High Performance
Computing Center [40]. The code for running the KappaMask predictor is available open
source [20].

Table 11. Time comparison performed on one whole Sentinel-2 Level-1C product inference. Kap-
paMask Level-1C with GPU and CPU, Fmask, S2cloudless and DL_L8S2_UV on generating 10 m
resolution classification mask.

KappaMask on
GPU

KappaMask on
CPU Fmask S2cloudless DL_L8S2_UV

Running time 03:57 10:08 06:32 17:34 03:33

4. Discussion

The KappaMask L1C and L2A models were trained on a dataset that represents
various global and temporal conditions, but were later fine-tuned and validated on a
dataset that covers Northern European terrestrial April-October conditions as showed in
Figure 3. The model has not been tested outside of this scope. Both models outperformed
Sen2Cor, Fmask, MAJA and S2cloudless in dice coefficient on created test set. Initially, the
main emphasis was on Level-2A training since atmospherically corrected products are
directly used in agricultural applications. Therefore, we believe that KappaMask Level-1C
model can be further improved to get comparable results with the Level-2A model.

We highlight the importance of false negatives for agricultural applications, since
falsely predicted clear area propagate into NDVI calculation for parcel time series, affecting
the performance of end user applications (e.g., mowing detection, crop classification, etc.).
We managed to reduce the number of false negatives for Level-2A model significantly; while
Sen2Cor produced 60% false negatives for the clear class on our test dataset, our model’s
total false negatives for the clear class were 23%. The highest per class improvement was
for cloud shadow with 20% better dice coefficient than Sen2Cor.
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Besides the accuracy, the processing time for cloud mask generation is equally impor-
tant to make it practical for operational applications. We measured the time needed for
10 m mask generation on GPU and CPU for KappaMask, which was shown to be 3:57 and
10:08 min, respectively. We compared processing time with other methods, such as rule-
based Fmask and machine-learning based S2cloudless; the results were 6:32 and 17:34 min,
respectively. Another deep learning algorithm produces a more efficient processing time
of 3:33; however, it has a simpler two class classification map which results in a lighter
and more efficient network. Considering that KappaMask is a CNN-based algorithm,
the biggest concern with the deep learning methods is the processing time. We proved
that CNN-based methods can be fast enough for practical applications. All results were
obtained and compared on 10 m resolution. Sen2Cor, Fmask and MAJA 20 m masks was
oversampled to 10 m resolution and S2cloudless output already had a 10 m resolution.
Cloud mask output at 10 m is preferred, since it is the native spatial resolution of Sentinel-2
RGB and NIR spectral bands. A finer delineation helps to increase the amount of usable
data for a large variety of higher-level products generation.

In future work, we will address the limitations of our current L1C and L2A models,
extending the models’ scope into the global area and including winter conditions. Another
avenue would be to further improve the performance of Level-1C model. A comparison
with other 10 m reference datasets, if there will be any, is planned as well.

5. Conclusions

KappaMask provides an accurate 10 m classification map for Sentinel-2 Level-2A
and Level-1C products. It was trained on an open-source dataset and fine-tuned on
a Northern European terrestrial dataset which was labelled manually using the active
learning methodology. The dataset was split into training, validation and test sets, where
test set consisted of unique S-2 products that were not overlapping with model training
products but had the same spatio-temporal distribution. The test set covered the Northern
European terrestrial region and included sub-tiles of 512 × 512 pixels size that were selected
with the active learning approach. A comparison with Sen2Cor, Fmask, MAJA, S2cloudless
and DL_L8S2_UV networks was carried out on the test set. The total dice coefficient on
the test set for KappaMask L2A is 21% higher than Sen2Cor and 19% higher than Fmask.
MAJA comparison was performed for clear and cloud classes and the dice coefficient is 29%
behind KappaMask L2A. The closest machine learning open-source cloud mask that uses
machine learning is S2cloudless with a 21% lower dice coefficient. S2cloudless, however,
only provides cloud and clear classes. Another deep learning model, DL_L8S2_UV, has
a 62% dice coefficient against 84% KappaMask L2A if we compare the clear and cloud
output classes. KappaMask classifies pixels into clear, cloud shadow, semi-transparent and
cloud classes and supports both L1C and L2A S-2 products. The total dice coefficient of
KappaMask L2A model is 80%, KappaMask L1C model is 76%, while Fmask and Sen2Cor
are 61% and 59%, respectively.

Author Contributions: Conceptualization M.D., K.V., I.S.; Data annotation O.W, F.H.; Model devel-
opment M.D.; Software I.S., H.T., A.K., M.V., T.T.; Writing—original draft M.D.; Writing—review
and editing I.S., O.W., A.O., M.J., E.G.C., N.L., T.T.; Project administration M.D., K.V., M.J., V.B.,
Supervision—V.B., N.L., E.G.C., Resources—T.T., E.G.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by European Space Agency, Contract No. 4000132124/20/I-DT.

Data Availability Statement: The data presented in this study is publicly available from https:
//zenodo.org/record/5095024#.YWVuuhpByUk, accessed on 7 October 2021.

Acknowledgments: We would like to thank European Space Agency for their directional support,
review and suggestions. We also thank Gholamreza Anbarjafari at the University of Tartu for
the feedback and directions. The project was funded by European Space Agency, Contract No.
4000132124/20/I-DT.

https://zenodo.org/record/5095024#.YWVuuhpByUk
https://zenodo.org/record/5095024#.YWVuuhpByUk


Remote Sens. 2021, 13, 4100 18 of 22

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A
Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 23 
 

 

 550 

 551 
Figure A1. The entire Sentinel-2 L2A product classification map at 10 m resolution output (S-2 product 552 
S2A_MSIL2A_20200824T093041_N0214_R136_T35VND_20200824T121941). 553 

 

Figure A1. The entire Sentinel-2 L2A product classification map at 10 m resolution output (S-2 product
S2A_MSIL2A_20200824T093041_N0214_R136_T35VND_20200824T121941).



Remote Sens. 2021, 13, 4100 19 of 22
Remote Sens. 2021, 13, x FOR PEER REVIEW 20 of 23 
 

 

 
(a) S2B_MSIL1C_20200603T094029_N0209_R036_T35ULA_20200603T124101 

 

 
(b) S2A_MSIL1C_20200627T101031_N0209_R022_T33UWV_20200627T111749 

 
Figure A2. Cont.



Remote Sens. 2021, 13, 4100 20 of 22
Remote Sens. 2021, 13, x FOR PEER REVIEW 21 of 23 
 

 

 
(c) S2B_MSIL1C_20200426T101549_N0209_R065_T33VWF_20200426T131809 

 554 

Figure A2. The whole Sentinel-2 L1C product (left) and its classification map (right) at 10 m resolution. 555 

 

 
(a) S2B_MSIL2A_20200824T101559_N214_R065_T32UQA_20200824T135410 

Figure A2. The whole Sentinel-2 L1C product (left) and its classification map (right) at 10 m resolution.

Remote Sens. 2021, 13, x FOR PEER REVIEW 21 of 23 
 

 

 
(c) S2B_MSIL1C_20200426T101549_N0209_R065_T33VWF_20200426T131809 

 554 

Figure A2. The whole Sentinel-2 L1C product (left) and its classification map (right) at 10 m resolution. 555 

 

 
(a) S2B_MSIL2A_20200824T101559_N214_R065_T32UQA_20200824T135410 

Figure A3. Cont.



Remote Sens. 2021, 13, 4100 21 of 22Remote Sens. 2021, 13, x FOR PEER REVIEW 22 of 23 
 

 

 
(b) S2B_MSIL2A_20200905T092029_N0214_R093_T35ULR_20200905T113748 

Figure A3. The complete Sentinel-2 L2A product S2B_MSIL2A_20200905T092029_N0214_R093_T35ULR_20200905T113748 (left) 556 
and its classification map (right) at 10 m resolution. 557 

References 558 
1. Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. 2017, 559 

https://doi.org/10.1117/12.2278218. 560 
2. Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote. 561 

Sens. Environ. 2019, 231, 111205, https://doi.org/10.1016/j.rse.2019.05.024. 562 
3. O.; Hagolle, M.; Huc, D. Villa Pascual, G. Dedieu,  ‘MAJA’. Available online: https://github.com/CNES/MAJA (accessed on 10 563 

October 2021). 564 
4. Zupanc, A. Improving Cloud Detection with Machine Learning. 2017. Available online: https://medium.com/sentinel-hub/im- 565 

proving-cloud-detection-with-machine-learning-c09dc5d7cf13 (accessed on 18 November 2020). 566 
5. FastAI. Available online: https://github.com/fastai/fastai (accessed on 22 November 2020). 567 
6. LightGBM. Available online: https://lightgbm.readthedocs.io/en/latest/ (accessed on 10 October 2021). 568 
7. Drönner, J.; Korfhage, N.; Egli, S.; Mühling, M.; Thies, B.; Bendix, J.; Freisleben, B.; Seeger, B. Fast Cloud Segmentation Using 569 

Convolutional Neural Networks. Remote. Sens. 2018, 10, 1782, https://doi.org/10.3390/rs10111782. 570 
8. Wieland, M.; Li, Y.; Martinis, S. Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network. Re- 571 

mote. Sens. Environ. 2019, 230, 111203, https://doi.org/10.1016/j.rse.2019.05.022. 572 
9. Jeppesen, J.H.; Jacobsen, R.; Inceoglu, F.; Toftegaard, T.S. A cloud detection algorithm for satellite imagery based on deep learn- 573 

ing. Remote. Sens. Environ. 2019, 229, 247–259, https://doi.org/10.1016/j.rse.2019.03.039. 574 
10. Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.; Hughes, M.J.; Laue, B. Cloud 575 

detection algorithm comparison and validation for operational Landsat data products. Remote. Sens. Environ. 2017, 194, 379–390, 576 
https://doi.org/10.1016/j.rse.2017.03.026. 577 

11. L8 SPARCS Cloud Validation Masks, 2016. Available online: https://www.usgs.gov/core-science-systems/nli/landsat (accessed 578 
on 10 October 2021). 579 

12. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmen- 580 
tation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495, https://doi.org/10.1109/tpami.2016.2644615. 581 

13. Li, Z.; Shen, H.; Cheng, Q.; Liu, Y.; You, S.; He, Z. Deep learning based cloud detection for medium and high resolution remote 582 
sensing images of different sensors. ISPRS J. Photogramm. Remote. Sens. 2019, 150, 197–212, https://doi.org/10.1016/j.is- 583 
prsjprs.2019.02.017. 584 

14. Yan, Z.; Yan, M.; Sun, H.; Fu, K.; Hong, J.; Sun, J.; Zhang, Y.; Sun, X. Cloud and cloud shadow detection using multilevel feature 585 
fused segmentation network. IEEE Geosci. Remote. Sens. Lett. 2018, 15, 1600–1604, https://doi.org/10.1109/lgrs.2018.2846802. 586 

15. Tuia, D.; Ratle, F.; Pacifici, F.; Kanevski, M.; Emery, W. Active Learning Methods for Remote Sensing Image Classification. IEEE 587 
Trans. Geosci. Remote. Sens. 2009, 47, 2218–2232, https://doi.org/10.1109/tgrs.2008.2010404. 588 

Figure A3. The complete Sentinel-2 L2A product S2B_MSIL2A_20200905T092029_N0214_R093_T35ULR_20200905T113748
(left) and its classification map (right) at 10 m resolution.

References
1. Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the

Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 4 October 2017. [CrossRef]
2. Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote

Sens. Environ. 2019, 231, 111205. [CrossRef]
3. Hagolle, O.; Huc, M.; Pascual, D.V.; Dedieu, G. MAJA. Available online: https://github.com/CNES/MAJA (accessed on 10

October 2021).
4. Zupanc, A. Improving Cloud Detection with Machine Learning. 2017. Available online: https://medium.com/sentinel-hub/

improving-cloud-detection-with-machine-learning-c09dc5d7cf13 (accessed on 18 November 2020).
5. FastAI. Available online: https://github.com/fastai/fastai (accessed on 22 November 2020).
6. LightGBM. Available online: https://lightgbm.readthedocs.io/en/latest/ (accessed on 10 October 2021).
7. Drönner, J.; Korfhage, N.; Egli, S.; Mühling, M.; Thies, B.; Bendix, J.; Freisleben, B.; Seeger, B. Fast Cloud Segmentation Using

Convolutional Neural Networks. Remote Sens. 2018, 10, 1782. [CrossRef]
8. Wieland, M.; Li, Y.; Martinis, S. Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network. Remote

Sens. Environ. 2019, 230, 111203. [CrossRef]
9. Jeppesen, J.H.; Jacobsen, R.; Inceoglu, F.; Toftegaard, T.S. A cloud detection algorithm for satellite imagery based on deep learning.

Remote Sens. Environ. 2019, 229, 247–259. [CrossRef]
10. Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.; Hughes, M.J.; Laue, B. Cloud

detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390.
[CrossRef]

11. L8 SPARCS Cloud Validation Masks. 2016. Available online: https://www.usgs.gov/core-science-systems/nli/landsat (accessed
on 10 October 2021).

12. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

13. Li, Z.; Shen, H.; Cheng, Q.; Liu, Y.; You, S.; He, Z. Deep learning based cloud detection for medium and high resolution remote
sensing images of different sensors. ISPRS J. Photogramm. Remote Sens. 2019, 150, 197–212. [CrossRef]

14. Yan, Z.; Yan, M.; Sun, H.; Fu, K.; Hong, J.; Sun, J.; Zhang, Y.; Sun, X. Cloud and cloud shadow detection using multilevel feature
fused segmentation network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1600–1604. [CrossRef]

15. Tuia, D.; Ratle, F.; Pacifici, F.; Kanevski, M.; Emery, W. Active Learning Methods for Remote Sensing Image Classification. IEEE
Trans. Geosci. Remote Sens. 2009, 47, 2218–2232. [CrossRef]

16. Baetens, L.; Desjardins, C.; Hagolle, O. Validation of copernicus Sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and
FMask processors using reference cloud masks generated with a supervised active learning procedure. Remote Sens. 2019, 11, 433.
[CrossRef]

http://doi.org/10.1117/12.2278218
http://doi.org/10.1016/j.rse.2019.05.024
https://github.com/CNES/MAJA
https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13
https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13
https://github.com/fastai/fastai
https://lightgbm.readthedocs.io/en/latest/
http://doi.org/10.3390/rs10111782
http://doi.org/10.1016/j.rse.2019.05.022
http://doi.org/10.1016/j.rse.2019.03.039
http://doi.org/10.1016/j.rse.2017.03.026
https://www.usgs.gov/core-science-systems/nli/landsat
http://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://doi.org/10.1016/j.isprsjprs.2019.02.017
http://doi.org/10.1109/LGRS.2018.2846802
http://doi.org/10.1109/TGRS.2008.2010404
http://doi.org/10.3390/rs11040433


Remote Sens. 2021, 13, 4100 22 of 22

17. Baetens, L.; Hagolle, O. Sentinel-2 Reference Cloud Masks Generated by an Active Learning Method. Available online: https:
//zenodo.org/record/1460961#.YWMSJ9pByUk (accessed on 18 November 2020).

18. Li, J.; Wu, Z.; Hu, Z.; Jian, C.; Luo, S.; Mou, L.; Zhu, X.X.; Molinier, M. A Lightweight Deep Learning-Based Cloud Detection
Method for Sentinel-2A Imagery Fusing Multiscale Spectral and Spatial Features. IEEE Trans. Geosci. Remote Sens. 2021, 1–19.
[CrossRef]

19. Wu, Z.; Li, J.; Wang, Y.; Hu, Z.; Molinier, M. Self-Attentive Generative Adversarial Network for Cloud Detection in High
Resolution Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1792–1796. [CrossRef]

20. KappaMask Predictor. Available online: https://github.com/kappazeta/cm_predict (accessed on 10 October 2021).
21. López-Puigdollers, D.; Mateo-García, G.; Gómez-Chova, L. Benchmarking Deep Learning Models for Cloud Detection in

Landsat-8 and Sentinel-2 Images. Remote Sens. 2021, 13, 992. [CrossRef]
22. CREODIAS. Available online: https://creodias.eu/data-offer (accessed on 19 November 2020).
23. Data and Information Access Services (DIAS). Available online: https://www.copernicus.eu/en/access-data/dias (accessed on

18 January 2021).
24. Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 10 October 2021).
25. PEPS: French Access to the Sentinel Products. Available online: https://peps.cnes.fr/rocket/#/home (accessed on 19 November

2020).
26. The Finnish Data Hub. Available online: https://nsdc.fmi.fi/services/service_finhub_overview (accessed on 19 November 2020).
27. Francis, A. Sentinel-2 Cloud Mask Catalogue. Available online: https://zenodo.org/record/4172871#.X6popcgzZaR (accessed on

7 March 2021).
28. Sentinel-2 KappaZeta Cloud and Cloud Shadow Masks. Available online: https://zenodo.org/record/5095024#.YQTuzI4zaUk

(accessed on 10 October 2021).
29. Computer Vision Annotation Tool. Available online: https://cvat.org/ (accessed on 10 October 2021).
30. Segments.ai Dataset Tool. Available online: https://segments.ai/ (accessed on 10 October 2021).
31. Francis, A. ‘IRIS Toolkit’. Available online: https://github.com/ESA-PhiLab/iris (accessed on 10 October 2021).
32. CEOS-WGCV ACIX II CMIX Atmospheric Correction Inter-Comparison Exercise Cloud Masking Inter-Comparison Exercise 2nd

Workshop. Available online: https://earth.esa.int/eogateway/events/ceos-wgcv-acix-ii-cmix-atmospheric-correction-inter-
comparison-exercise-cloud-masking-inter-comparison-exercise-2nd-workshop (accessed on 10 October 2021).

33. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

34. Kingma, D.P.; Ba, J. ‘Adam: A Method for Stochastic Optimization’. 2017. Available online: https://arxiv.org/abs/1412.6980
(accessed on 10 October 2021).

35. Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised Dice Overlap as a Deep Learning Loss Function
for Highly Unbalanced Segmentations. In BT—Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision
Support; Springer: Cham, Switzerland, 2017; pp. 240–248.

36. KappaMask Comparison with Rule-Based Methods. Available online: https://kappazeta.ee/cloudcomparison (accessed on 10
October 2021).

37. Fisher, A.; Rudin, C.; Dominici, F. All Models are Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an
Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res. 2019, 20, 1–81.

38. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. Unet++: Redesigning skip connections to exploit multiscale features in
image segmentation. IEEE Trans. Med. Imaging 2019, 39, 1856–1867. [CrossRef] [PubMed]

39. Hoffer, E.; Hubara, I.; Soudry, D. Train Longer, Generalize Better: Closing the Generalization Gap in Large Batch Training of
Neural Networks. May 2017. Available online: http://arxiv.org/abs/1705.08741 (accessed on 10 October 2021).

40. University of Tartu. “UT Rocket”. share.neic.no. Available online: https://share.neic.no/marketplace-public-offering/c8107e145
e0d41f7a016b72825072287/ (accessed on 10 October 2021).

https://zenodo.org/record/1460961#.YWMSJ9pByUk
https://zenodo.org/record/1460961#.YWMSJ9pByUk
http://doi.org/10.1109/tgrs.2021.3069641
http://doi.org/10.1109/LGRS.2019.2955071
https://github.com/kappazeta/cm_predict
http://doi.org/10.3390/rs13050992
https://creodias.eu/data-offer
https://www.copernicus.eu/en/access-data/dias
https://scihub.copernicus.eu/
https://peps.cnes.fr/rocket/#/home
https://nsdc.fmi.fi/services/service_finhub_overview
https://zenodo.org/record/4172871#.X6popcgzZaR
https://zenodo.org/record/5095024#.YQTuzI4zaUk
https://cvat.org/
https://segments.ai/
https://github.com/ESA-PhiLab/iris
https://earth.esa.int/eogateway/events/ceos-wgcv-acix-ii-cmix-atmospheric-correction-inter-comparison-exercise-cloud-masking-inter-comparison-exercise-2nd-workshop
https://earth.esa.int/eogateway/events/ceos-wgcv-acix-ii-cmix-atmospheric-correction-inter-comparison-exercise-cloud-masking-inter-comparison-exercise-2nd-workshop
https://arxiv.org/abs/1412.6980
https://kappazeta.ee/cloudcomparison
http://doi.org/10.1109/TMI.2019.2959609
http://www.ncbi.nlm.nih.gov/pubmed/31841402
http://arxiv.org/abs/1705.08741
https://share.neic.no/marketplace-public-offering/c8107e145e0d41f7a016b72825072287/
https://share.neic.no/marketplace-public-offering/c8107e145e0d41f7a016b72825072287/

	Introduction 
	Materials and Methods 
	Data Processing 
	Output Classification Classes 
	Model Fitting 
	Inference 

	Results 
	KappaMask L1C and L2A Comparison with Rule-Based Methods 
	KappaMask L1C and L2A Comparison with AI-Based Methods 
	KappaMask Feature Importance Analysis 
	Parameter Tuning 
	KappaMask Time Usage Comparison with Other Methods 

	Discussion 
	Conclusions 
	
	References

