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Abstract: Wetland ecosystems contain large amounts of soil organic carbon. Their natural environ-
ment is often both at the junction of land and water with good conditions for carbon sequestration.
Therefore, the study of accurate prediction of soil organic carbon (SOC) density in coastal wetland
ecosystems of flat terrain areas is the key to understanding their carbon cycling. This study used re-
mote sensing data to study SOC density potentials of coastal wetland ecosystems in Northeast China.
Eleven environmental variables including normalized difference vegetation index (NDVI), difference
vegetation index (DVI), soil adjusted vegetation index (SAVI), renormalization difference vegetation
index (RDVI), ratio vegetation index (RVI), topographic wetness index (TWI), elevation, slope aspect
(SA), slope gradient (SG), mean annual temperature (MAT), and mean annual precipitation (MAP)
were selected to predict SOC density. A total of 193 soil samples (0–30 cm) were divided into two
parts, 70% of the sampling sites data were used to construct the boosted regression tree (BRT) model
containing three different combinations of environmental variables, and the remaining 30% were
used to test the predictive performance of the model. The results show that the full variable model is
better than the other two models. Adding remote sensing-related variables significantly improved
the model prediction. This study revealed that SAVI, NDVI and DVI were the main environmental
factors affecting the spatial variation of topsoil SOC density of coastal wetlands in flat terrain areas.
The mean (±SD) SOC density of full variable models was 18.78 (±1.95) kg m−2, which gradually
decreased from northeast to southwest. We suggest that remote sensing-related environmental
variables should be selected as the main environmental variables when predicting topsoil SOC
density of coastal wetland ecosystems in flat terrain areas. Accurate prediction of topsoil SOC density
distribution will help to formulate soil management policies and enhance soil carbon sequestration.

Keywords: remote sensing; soil organic carbon; coastal wetland; digital soil mapping; boosted
regression tree

1. Introduction

Coastal wetlands are a unique ecosystem between terrestrial and marine ecosystems,
which plays an irreplaceable role in maintaining biodiversity, adjusting and improving
climate and providing habitat. Because of their unique ecosystem function, they are
known as the kidneys of the Earth [1–3]. Coastal wetlands generally have high primary
productivity. Their surface is often submerged by water, resulting in poor sediment
ventilation and low surface temperature compared with unflooded surfaces, which is
conducive to the preservation of organic matter and often leads to the accumulation of a
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large amount of organic carbon [3,4]. In estuarine areas, their accumulated organic carbon
is occasionally buried by minerals brought by river flooding, so that the accumulated
organic carbon of coastal wetlands is usually higher than that of other freshwater wetlands
in the world [2]. Therefore, coastal wetlands play an important role in the global carbon
cycle and are considered to be one of the main burial areas of organic carbon [5–7].

In recent years, many studies have shown that digital soil mapping (DSM) can eval-
uate the spatial and dynamic changes of soil organic carbon (SOC), which is helpful to
analyze and understand the carbon cycle in ecosystems [8–10]. However, the quantitative
prediction mapping of SOC usually needs a large number of measured sample data and
multi-source environmental variable data [9,11]. Therefore, SOC mapping is often limited
by the cost and accuracy of data acquisition. Because of its low cost and wide spatial cover-
age, remote sensing technology has gradually become a key means to obtain the spatial
distribution of SOC [10,12]. It is difficult to accurately predict the spatial distribution of
SOC density through a single terrain variable, particularly in coastal wetland areas with flat
terrain [5,7,11]. The rapid development of satellite remote sensing has enabled large-scale
SOC density mapping in coastal wetland areas with flat terrain.

For coastal wetlands with wide area and inconvenient sampling, traditional large-scale
data collection is undoubtedly expensive, time-consuming, and unrealistic. It is necessary
to combine classical soil survey with advanced remote sensing technology to study their
spatial distribution of SOC. Satellite remote sensing technology has proven to be efficient
at developing data regarding the spatial distribution of soil [13–17]. The quantitative
relationship between reflectance spectra and SOC has long been revealed [18,19]. There
are many available remote sensing information sources at various resolutions, such as
IKONOS with 4 m resolution [20], SPOT with 10 m and 20 m resolution [19], or Landsat
TM/ETM with 15 m and 30 m resolution [10,18]. In addition, there are many quantitative
analysis techniques, such as multivariate linear regression models (MLR) [18], partial least
squares regression (PLSR) [21], artificial neural network (ANN) [22], or boosted regression
tree (BRT) [10].

Different from other DSM methods, BRT is a model developed by tree-based algo-
rithm [10], which can combine multiple simple tree models into a tree model with better
performance [23]. In addition, BRT relies on stochastic gradient propulsion technology,
which can make the model more accurate and faster through numerical optimization and
regularization. Therefore, the BRT model can deal with linear, nonlinear, polynomial, and
other problems flexibly, and the over-fitting and merging of the model can effectively
improve the prediction performance of the model [23]. Based on the above advantages,
BRT is widely used in soil science [24], ecology [25], medicine [26], and remote sensing
science [24].

In this study, DSM technology and remote sensing data were combined to predict
the topsoil SOC density in the coastal wetland area with flat terrain of Liaohe Delta. The
specific research objectives included:

(1) To construct the best model for predicting topsoil SOC density of coastal wetlands
based on 193 sample data and 9 environmental variables;

(2) To discuss the importance of using remote sensing data in predicting topsoil SOC
density of coastal wetlands;

(3) To analyze the uncertainty of our method and results.

2. Materials and Methods
2.1. Description of the Study Area

Liaohekou coastal wetlands (40.65◦–41.62◦ N, 121.42◦–121.52◦ E) is located in the
Southwest of Liaoning Province, Northeast China, with a total of 4071 km2 (Figure 1). It is
the largest coastal reed swamp in the Chinese high latitude area, with a large area of Suaeda
salsa, tidal flat and shallow sea area, which is a very sensitive wetland ecosystem. This
region has a warm temperate, continental, sub-humid monsoon climate, with an average
annual temperature of about 9.2 ◦C and an average annual precipitation of 651 mm. It
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is characterized by four distinct seasons, the same period of rain and heat, appropriate
temperature, and sufficient illumination. There are 21 rivers in the study area, with a
drainage area of 3570 km2. The terrain is flat, and the average ground elevation is about
4 m. The flora are North China flora, which have fast growth and a high density of
wild plants. There are 242 species of wild plants in 70 families. Among them, there are
119 species in 33 families of forest trees, while there are 123 species of weeds in 37 families.
In this study, the dominant soil types are Luvisols (16%), Cambisols (33%), Gleysols (14%),
Solonchaks (26%), and Leptisols (11%) according to the classification of the World Reference
Base for Soil Resources (WRB) [27].
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2.2. Soil Sampling and Laboratory Analysis

In order to reduce cost and time, we chose a purposive sampling method to design the
sampling scheme of this study [28]. This method is based on the soil landscape model and
assumes that the soil has high similarity under similar environmental conditions [29,30].
First, the climate, terrain and biological factors covering the whole study area were clustered
by a fuzzy C-means clustering method, and a total of 38 clustering units were obtained.
Second, in each cluster unit, experts familiar with local conditions were invited to select
5–10 representative points for soil sample collection according to different terrain and
road accessibility, and the point information was recorded by a handheld GPS. Finally, we
collected about 1 kg soil samples at each selected point, and a total of 193 topsoil (0–30 cm)
samples were obtained. The sampling points are shown in Figure 1. In the Central
Laboratory of Shenyang Agricultural University, we dried the soil samples naturally,
removed litter, ground them, and passed them through a 2 mm diameter nylon sieve and
measured for SOC content using a wet oxidation method (Walkley–Black method) [31]. In
order to estimate the dry bulk density, a 100 cm3 undisturbed core was collected from the
topsoil and dried at 105 ◦C for 48 h for bulk density measurement.

2.3. Calculation of SOC Density

This study analyzed the spatial distribution of SOC density in Liaohekou coastal
wetlands. For a single profile with K layers (within the first meter), Batjes [32] equation
was used to calculate the density of soil organic carbon (SOC) in the whole soil profile:

SOC density =
k

∑
i=1

SOCcontent =
k

∑
i=1

SOCconcentration × BDi × Di × (1− Si) (1)

where SOC density, SOCcontent and SOCconcentration are SOC density of whole soil profile
(kg m−2), SOC content and SOC concentration; i represents a specific soil layer; BDi
(g cm−3), Di (m) and Si are the bulk density, the soil thickness, and the volume fraction of
fragments‘> 2 mm, respectively.

2.4. Environmental Variables

In this study, the environmental variables involved include two categories of remote
sensing-related variables and topographic variables, a total of 11 environmental variables,
namely normalized difference vegetation index (NDVI), difference vegetation index (DVI),
soil adjusted vegetation index (SAVI), renormalization difference vegetation index (RDVI),
ratio vegetation index (RVI), topographic wetness index (TWI), elevation, slope aspect
(SA), slope gradient (SG), mean annual temperature (MAT), and mean annual precipitation
(MAP) were selected. Since these variables come from different platforms and have different
resolutions, these data were resampled to 30 m × 30 m spatial resolution in ArcGIS 10.2,
and the projection system was unified to “krasovsky-1940-albers” for subsequent modeling.

2.4.1. Remote Sensing Related Variables

Five remote sensing-related environmental variables were derived from Landsat
8 satellite. The data (four images) were downloaded from the United States Geological Sur-
vey (USGS) (accessed on 2 March 2020, https://www.usgs.gov) between July to September
in 2015 with cloud cover less than 10%. The spatial resolution of remote sensing data
is 30 m and the data level was L1T, which had been corrected for geometric accuracy.
Therefore, there was no need to use ground control points or digital elevation model (DEM)
data for geometric accuracy correction again. The following steps were taken to process the
data: Firstly, the homomorphic filtering method [33] was selected to remove the cloud from
remote sensing data in MATLAB software; secondly, previous studies had revealed that
bottom of atmosphere (BOA) reflectance was the most appropriate remote sensing-related
variable to predict the spatial distribution of SOC density [10]. However, in order to obtain
the BOA reflectance, the remote sensing data should be atmospheric corrected. In this study,
we used the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) at-

https://www.usgs.gov
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mospheric correction method [34] to calibrate the atmospheric in ENVI 5.1 software; thirdly,
due to the height angle of the sun, some remote sensing images seem to have mountain
shadow, so we used the ratio method [35] in ENVI 5.1 software to eliminate it. In addition,
since the study area was plain, we did not carry out topographic correction. Finally, the
region of interest (ROI) (the boundary vector layer of Liaohekou coastal wetlands obtained
from the Department of Natural Resources of Liaoning Province, China) was used to crop
the remote sensing image data in ENVI 5.1. Ultimately, we could obtain remote sensing
image data covering different bands of the whole study area for calculating remote sensing
related variables. Among all vegetation indices, NDVI is recognized as the best index to
characterize plant growth and is widely used in the prediction of crop yield and growth
status [24,36]. Compared with NDVI, SAVI is able to add the soil regulation coefficient “L”,
determined according to the actual situation, with a value range of 0–1 [37]. When L is 0, it
means that the vegetation coverage is zero; When L is 1, the vegetation coverage is very
high which means that the influence of soil background is zero. This situation can only
occur where there is sufficient coverage of tall trees with dense canopy. Huete’s study was
conducted in areas with good vegetation [37]. It was found that SAVI can better eliminate
the influence of soil reflectance when the L coefficient of soil regulation is 0.5. RDVI, can
better identify water bodies, and that its value will increase with the increase of vegetation
coverage [38]. Previous studies have shown that, especially in the case of medium or low
vegetation coverage. RVI has high performance in areas with strong vegetation growth and
high coverage, which can better reflect the difference of vegetation coverage and growth
status [39]. The calculation formula of these indicators is as follows:

SAVI = (BNIR − BRED)(1 + L)/(BNIR + BRED + L) L = 0.5 (2)

NDVI = (BNIR − BRED)/(BNIR + BRED) (3)

RVI = BNIR/BRED (4)

DVI = BNIR − BRED (5)

RDVI =
√

NDVI × DVI (6)

where BNIR and BRED represent Landsat 8 OLI near-infrared band and red band, respec-
tively; L represents the soil adjustment coefficient, and its value range is 0–1. In Huete’s
study, they found that the best setting is 0.5 in wetland areas. In this study, we set it to 0.5.

2.4.2. Topographic Variables

Topography is the most widely used environmental factor among the five soil forming
factors, and is widely used in the research of spatial prediction of SOC density [10,17,40].
In this study, we selected four topographic variables including elevation, slope aspect (SA),
slope gradient (SG) and topographic wetness index (TWI), which were derived from the
30 m spatial resolution digital elevation model (DEM) downloaded from the geospatial
data cloud site (accessed on 7 October 2020, http://www.gscloud.cn). Elevation, SG and
SA were derived by ArcGIS 10.2 software, and TWI was derived using SAGA GIS [41].

2.4.3. Climatic Variables

Climatic variables involved in this study were downloaded from the Resource and
Environmental Science and Data Center of the Chinese Academy of Sciences (accessed on
18 January 2020, https://www.resdc.cn/Default.aspx). In this study, MAT and MAP were
selected to represent climate factors. The data were generated through sorting, calculation
and spatial interpolation based on the daily observation data of more than 2400 meteorolog-
ical stations in China since 1980. The interpolation application is ANUSPLIN interpolation
software from Australia. ANUSPLIN is a tool for analyzing and interpolating multivariable
data by using smooth spline function, that is, a method of using function to approximate
surface [42]. It can carry out reasonable statistical analysis and data diagnosis, analyze
the spatial distribution of data, and then realize the function of spatial interpolation. The

http://www.gscloud.cn
https://www.resdc.cn/Default.aspx
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downloaded data are a 1-km grid layer, which was reduced to 30 m grid in ArcGIS 10.2
for research.

2.5. Prediction Model

The boosted regression tree (BRT) was selected as the prediction model for SOC
density of Liaohekou coastal wetlands in northeast China. The BRT model was proposed
by Friedman et al. [43], who improved the performance of the model by training and
combining multiple models. This model consists of two algorithms: a regression tree
and gradient [23]. After several rounds of parameterization, the parameter error of the
model is minimized, and the final BRT model is obtained to predict the unknown area. We
use “dismo” R package version 0.8–17 [44] to conduct the BRT model in an R language
environment [45]. In the BRT model the user needs to set a four parameters-learning rate
(LR), tree complexity (TC), bag fraction (BF) and tree number (NT). LR represents the
contribution of each tree to the final fitting [26]. TC is the complexity of the tree and the
maximum level of interaction between predictors [10]. BF represents the proportion of
data used in the modeling dataset [46]. Although the BRT model can avoid over fitting by
extending the operation of the model, it is still necessary to set NT. NT can be determined
by the combination of LR and TC [24]. A 10-fold cross-validation was used to optimize the
model parameters to obtain the best prediction. The optimal values of LR, TC, BF and NT
were 0.025, 9, 0.55 and 1200, respectively

2.6. Model Validation

In order to obtain the best prediction model of coastal plain wetland area, we made
different combinations of topographic and remote sensing related variables to build the
model (only topographic variable, MA; only topographic and climatic variable, MB; to-
pographic, climatic, and remote sensing related variables, MC). Each model was iterated
100 times and their average prediction results were calculated as the final prediction results
to ensure the stability of the model prediction. We randomly divided the data into two
parts, 70% sampling sites data (135) for constructing the model and the other 30% sampling
sites data (58) for testing the performance of the model. Four popular indicators: mean
absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2) and
Lin’s consistency correlation coefficient (LCCC) [47] to evaluate the prediction performance
of the three BRT model. The specific calculation formula is as follows:

MAE =
1
n

n

∑
i=1
|Pi −Oi| (7)

RMSE =

√
1
n

n

∑
i=1

(Pi −Oi)
2 (8)

R2 =

n
∑

i=1

(
Pi −Oi

)2

n
∑

i=1
(Oi −Oi)

2
(9)

LCCC =
2r∂P∂O

∂2
P + ∂2

O +
(

P + O
)2 (10)

where P, O, P, O represent the predicted value, observed value, average value of pre-
dicted and average value of observed, respectively; i represents the sampling point; ∂P
and ∂O represent the change between the predicted value and the observed value, re-
spectively; n represents the number of sampling points; and r represents the Pearson
correlation coefficient.
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3. Results
3.1. Descriptive Statistics

Table 1 presented the descriptive statistics of SOC density in topsoil (0–30 cm) of
Liaohekou coastal wetlands, as well as the environmental variables at the sampling sites.
SOC density ranged from 0.33 to 28.31 kg m−2, with an average of 11.14 kg m−2 (±0.47).
The skewness coefficient was 0.56 kg m−2, indicating that SOC density had a slightly
skewed distribution. Therefore, we conducted Ln-transformation for SOC density data for
future modeling. Pearson correlation analysis between observed Ln-transformation SOC
density (0–30 cm) with environmental variables sample sites is shown in Table 2. SAVI
(r = 0.31), NDVI (r = 0.43), DVI (r = 0.21), and elevation (r = 0.19) were positively correlated
with SOC density. Accordingly, SOC stock was negatively correlated with TWI (r = −0.23),
RDVI (r = −0.29), and RVI (r = 0.16). Surprisingly, SOC density was significantly correlated
with the selected remote sensing-related variables, while climatic variables (MAT and
MAP), considered as efficient predictors, showed no significant results with SOC density
in this study.

Table 1. Descriptive statistics of soil organic carbon (SOC) density (kg m−2) (0–30 cm) with environ-
ment variables at sample sites.

Property Unit Min. Mean Max. SD Skewness Kurtosis

SOC density kg m−2 0.33 11.14 28.31 0.47 0.56 2.43
SAVI 0.07 0.14 0.35 0.27 −0.47 1.61
NDVI 0.02 0.08 0.33 0.04 −0.31 1.73
RVI 0.36 0.76 1.12 0.34 −1.24 1.22
DVI 12.76 39.43 57.23 7.72 0.39 2.33

RDVI 21.17 42.05 60.09 8.10 0.53 3.27
Elevation m 1 2.87 12 1.12 1.13 3.24

SG degree 0 0.05 2.16 0.11 0.93 0.32
SA degree 0 174.62 360 92.65 −0.42 −0.89

TWI 7.30 10.70 10.95 0.54 0.96 1.12
MAT degree Celsius 9.33 9.53 9.67 0.38 −1.21 2.16
MAP mm 648.7 650.6 652.3 1.31 0.84 0.93

Note: Min., minimum; Max., maximum; SD, standard deviation.

Table 2. Pearson correlation analysis between observed Ln-transformation SOC density (0–30 cm) with environmental
variables sample sites.

Property SOC Density Elevation SG SA TWI SAVI NDVI RVI DVI MAT

Elevation 0.19 *
SG 0.13 0.33 **
SA 0.15 0.15 0.27 **

TWI −0.23 ** −0.23 ** −0.40 ** −0.22 **
SAVI 0.31 ** 0.19 * 0.07 0.13 −0.07
NDVI 0.43 ** 0.21 * 0.08 0.09 −0.05 0.42 **
RVI −0.16 * −0.16 * −0.11 −0.14 0.15 −0.17 ** −0.28 **
DVI 0.21 * 0.28 ** 0.17 0.17 −0.08 0.17 * 0.26 ** −0.32 **

RDVI −0.29 ** −0.25 * −0.09 −0.13 0.06 0.33 ** 0.37 ** −0.05 0.36 **
MAT 0.09 0.12 −0.06 −0.07 0.13 * −0.15 * −0.10 0.06 0.13
MAP 0.11 −0.13 * 0.08 0.06 −0.12 * 0.17 * 0.19 * −0.09 0.16 0.22 **

Note: p < 0.05 shown in “*”; p < 0.01 shown in “**”.

3.2. Model Performance and Uncertainty

To accurately predict the topsoil SOC density of Liaohekou coastal wetlands, we
constructed three BRT models composed of different variables. The predicted performance
of the three BRT models is showed in Table 3. Compared with MA and MB, the MC model
presented the best prediction performance, which could explain 57% of the spatial variation
of SOC density in this region. The results show that the MC model had lower MAE and
RMSE, but higher R2 and LCCC than the MA and MB models. In order to further evaluate
the performance and uncertainty of the model, we also calculated a coefficient of variation
(CV) map of 100 iterations of the three BRT models. As can be seen from Figure 2, three
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models produced lower CV. The average CV of MA, MB and MC were 2.81%, 3.00% and
3.14%, respectively.

Table 3. Summary statistics of the predictive performance of three BRT in the prediction of SOC
density (kg m−2) based on testing set.

Model Index Min. Median Mean Max.

MA

MAE 1.38 1.39 1.40 1.41
RMSE 1.51 1.52 1.52 1.54

R2 0.24 0.26 0.27 0.31
LCCC 0.33 0.34 0.34 0.35

MB

MAE 1.27 1.31 1.32 1.33
RMSE 1.47 1.48 1.49 1.50

R2 0.31 0.33 0.34 0.36
LCCC 0.37 0.38 0.39 0.40

MC

MAE 0.87 0.88 0.89 0.91
RMSE 0.96 0.97 0.97 0.98

R2 0.53 0.55 0.57 0.59
LCCC 0.53 0.54 0.55 0.57

Note: MA, included only topography variables; MB, included all predictors (topography and climate variables);
MC, included all predictors (topography, climate, and remote sensing related variables).
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3.3. Importance of Environmental Variables

In order to obtain the relative importance (RI) of each environmental variable in
predicting the topsoil SOC density in coastal plain wetland area, we iterated the three
BRT models 100 times and calculated the average RI of each environmental variable. To
make each variable comparable, we standardized it to 100%. In Figure 3c, the environment
variables show different RI in the MB model. Among the nine environmental variables,
NDVI (16.36%), SAVI (19.32%), DVI (15.37%), RDVI (11.41%), RVI (9.41%), and TWI (7.56)
were the main environmental variables affecting the spatial variation of SOC density. In the
MC model, we found that remote sensing-related environmental variables played a more
important role, with RI accounting for about 71.87%, while the corresponding topographic
and climatic variables account for 19.93% and 8.20%, respectively.Figure 3 

 

 

 

 

 

Figure 3. Relative importance of each variable as determined from 100 runs of the three BRT models
in SOC density. (a) MA model included only topography variables; (b) MB model included only
topography and climatic variables; and (c) MC model included all predictors (topography, climatic
and remote sensing related variables).

3.4. Spatial Prediction of SOC Density

MA, MB, and MC models were constructed to predict the spatial distribution of topsoil
(0–30 cm) SOC density in Liaohekou coastal wetlands, and the prediction maps are shown
in Figure 4. The mean (±SD) SOC density of MA, MB, and MC models were 17.87(±2.35)
kg m−2, 17.97(±1.87) kg m−2 and 18.41(±1.94) kg m−2, respectively. The distribution
characteristics of SOC density in the three maps were similar, and gradually decreased
from northeast to southwest. In order to contrast the difference between MB and MC, we
generated a difference map of SOC density predicted by the two models (Figure 5). The
average SOC density difference between maps was 0.44 kg m−2 and the predicted SOC
density of MC model was lower than that of MB model in most study areas.
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4. Discussion
4.1. Importance of Remote Sensing-Related Variables in Predicting SOC Density

In coastal plain wetland ecosystems, adding remote sensing related data could bet-
ter predict topsoil SOC density (Table 3), which would be consistent with previous re-
search [21,48–51]. In the Ebinur Lake Wetland National Nature Reserve of northwest China,
Wang et al. [50] used a fractional derivative algorithm, the subsection of spectral band
method, and the optimal remote sensing index to accurately predict soil organic matter
content. They concluded that remote sensing-related variables helped predict soil organic
matter in the topsoil of wetlands. Previous studies had also found that vegetation was
associated with topsoil SOC. Kim and Grunwald [49] developed a random forest model
to predict SOC density using field observation data, environmental ancillary data, and
spectral data derived from remote sensing images. They concluded that vegetation indices
should be major predictors in soil carbon models. The spectral reflectance of remote sens-
ing data and the derived vegetation index reflect the vegetation coverage that is strongly
related to SOC density.

In this study, we found that NDVI, DVI and SAVI were the most powerful environ-
mental variables affecting the variation of SOC density (Figure 3). Similar conclusions
have been obtained in previous studies [7,24,27,52]. Gomez et al. [21] selected four models
(cubism model, generalized linear model, support vector machine and random forest) and
collected 8227 soil profiles to map SOC stock in Brazil, and pointed out that NDVI was an
effective environmental variable. In a forest ecosystem of northeast China, Wang et al. [24]
selected 9 remote sensing related environmental variables (NDVI, SAVI, DVI, RVI, RDVI,
BNIR, BRED, and BBLUE) combined with a BRT model to predict the topsoil SOC density.
Qi et al. [27] concluded SAVI and NDVI should be important remote sensing variables
to predict topsoil SOC density in the coastal forest region of northeast China. Jobbágy
and Jackson [53] insisted that SOC presents different distribution patterns under different
vegetation types. In addition, NDVI could also reflect vegetation productivity and biomass,
which has been widely used in previous spatial predictions of SOC density. In MC (full
variables) model, SAVI was the most important variable, and its RI was 19.23%. This
finding was similar to previous studies [24,48,51]. These studies showed that SAVI was one
of the main variables. Wang et al. [24] considered that SAVI was the main environmental
variable controlling the change of SOC density. Because it was sensitive to the change of
soil background, DVI could better identify the water body, and its value could change with
the change of vegetation density. RVI was widely used in relevant research in densely
vegetated areas due to it potentially being able to better counter the difference of vegetation
coverage and growth. Therefore, DVI and RVI were introduced into the study of SOC
density mapping in coastal plain wetland ecosystem.

This study showed that combining remote sensing-related variables with other envi-
ronmental variables as SOC density predictors could significantly improve the prediction
of topsoil SOC density in coastal wetlands. We found that remote sensing related variables
should be considered in future SOC density modeling studies, especially in coastal plain
wetlands areas.

4.2. SOC Distribution and Associated Predictors

The spatial variation of SOC content predicted by three BRT models composed of dif-
ferent combinations of environmental variables showed a comparable spatial distribution
pattern or trend (Figure 4). Overall, SOC density showed a downward trend from southeast
to northwest. The highest SOC density in the southern coastal area of the study area was
mainly due to the main vegetation type of reed. The geographical location was in the north
of China where winter is cold and long, causing the high input and low output of SOC
in this area [10]. In the southeast region, with the increase of cultivated land reclamation
time and human activities, the organic carbon loss rate in the region is accelerating rapidly,
which has been confirmed by many previous studies [10,24].
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Topographic variables were widely used in the prediction of SOC density, especially
in the areas with large terrain changes [9,11,24,42,54]. In previous studies, elevation
was closely related to the spatial distribution pattern of SOC density, especially in the
mountainous terrain. It was attributed to the influence of elevation on microclimate,
which indirectly affected the distribution of SOC density. However, in the Liaohekou
coastal wetlands, the ground is flat, there are no mountains, and the slope is less than 2◦.
Therefore, the RI of topographic variables was relatively low in MB, accounting for only
19.89%. Among all topographic variables, TWI had the highest RI, followed by SA, SG, and
elevation. This result was surprising, elevation showed the lowest RI, while TWI showed
the highest RI. In our analysis, this was mainly because the study area was a coastal wetland
with flat and dense rivers. The distribution of soil nutrients is controlled by the discharge
and flow direction of water. To a certain extent, TWI could reflect and identify the rainfall
runoff pattern, potential soil water content increase and ponding area, and could indirectly
reflect the influence of soil leaching, erosion, deposition, decomposition, and horizontal
distribution. We found that adding remote sensing-related variables into BRT models can
significantly improve their prediction accuracy for SOC density in coastal wetlands.

Precipitation and temperature were considered to be important climate variables
affecting the spatial variation of SOC density [10,14]. However, different from previous
studies [9,10,16], we found that the spatial variation of climate variables in SOC density in
this region was not obvious. Our analysis suggested that this might be due to the small
area of the study area, so that climate changes across the area were not significant, and the
spatial variation characteristics of SOC density variables could not be accurately captured
in the area. Therefore, although climate variables were considered effective environmental
factors in other studies [9,16], this was not the case in this study. However, due to the
high decomposition rate of SOC and high precipitation in coastal areas, it was necessary to
develop an environmental variable that can reflect the spatial variability of SOC density in
coastal plain areas.

4.3. Uncertainty in Current Research

Although the results of this study show that the MC model (full variables) could well
predict the spatial distribution of topsoil SOC density in coastal plain wetland areas, there
were still some other uncertainties in this study. First, due to the tight time and heavy tasks,
we divided into different groups for sample collection and sample analysis, which might
have caused sampling or experimental errors. Second, we used ArcGIS 10.2 to resample
environmental variables to produce 30 m spatial resolution, which might have caused
data error. Thirdly, environment variables were obtained from different platforms and the
accuracy and scale of data were different, leading to subsequent modeling errors. Fourth,
because a large number of artificial surface layers are distributed in the study area, but we
have not sampled samples in such areas, thus, there may be some biases in our estimation
of the SOC density. Finally, this study estimated SOC density in the topsoil (0–30 cm) of
coastal wetlands, which may underestimate the SOC density in this area.

5. Conclusions

In the coastal plain wetland area, due to the relatively flat terrain, the typical environ-
mental variables do not adequately reflect the spatial variability of soils, so it is difficult
to accurately estimate soil organic carbon density in this area. With advanced remote
sensing information technology, this study took advantage of available high-resolution
remote sensing data of the land surface including vegetation information to construct
predictive models of soil carbon density. This study provides a sound method for wetland
C density mapping, which shall help mapping soil C density for other coastal wetland flat
areas in the future. Specifically, based on three BRT models with different combinations
of environmental variables, SOC density in the topsoil (0–30 cm) of Liaohekou coastal
wetlands in northeast China were predicted. Compared with the MA model excluding
remote sensing variables, the MB model with remote sensing variables as SOC density



Remote Sens. 2021, 13, 4106 13 of 15

predictors significantly improves the prediction. The R2 and LCCC of MB model were
higher, MAE and RMSE were lower. The average SOC density predicted by MA and
MB model was 18.67 (±2.49) kg m−2 and 18.78 (±1.95) kg m−2, respectively. Among
the remote sensing variables, NDVI, DVI and SAVI were the most powerful important
environmental variables affecting the distribution of topsoil SOC density in coastal plain
wetland areas. These variables directly reflect the SOC footprint. Therefore, we found that
remote sensing-related variables should be considered as potential predictors in future
SOC density mapping, especially in coastal plain wetland areas. We believe that our SOC
density map will have a positive impact on land use decision-making and agricultural
management in this study area.

Author Contributions: S.W. and L.G. conceived the design of research ideas. M.Z. and L.G. under-
took sample collection, the experiment, and data analysis. S.W. and M.Z. wrote the manuscript.
Q.Z. made professional modifications to the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Doctoral Research Start-up Fund Project of Liaoning
Province (2021-BS-136); China Postdoctoral Science Foundation (Grant No. 2019M660782), National
Key R&D Program of China (2019YFC1407700), Agricultural Science and Technology Innovation
Program of Chinese Academy of Agricultural Sciences, and Young scientific and Technological
Talents Project of Liaoning Province (Grant No. LSNQN201910 and LSNQN201914).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data that support the findings of this study are available from the
author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bastviken, D.; Tranvik, L.J.; Downing, J.A.; Crill, P.M.; Enrich-Prast, A. Freshwater methane emissions offset the continental

carbon sink. Science 2011, 331, 50. [CrossRef] [PubMed]
2. Yu, J.; Wang, Y.; Li, Y.; Dong, H.; Zhou, D.; Han, G.; Wu, H.; Wang, G.; Mao, P.; Gao, Y. Soil organic carbon storage changes in

coastal wetlands of the modern yellow river delta from 2000 to 2009. Biogeosciences 2012, 9, 2325–2331. [CrossRef]
3. Ricker, M.C.; Lockaby, B.G. Soil organic carbon stocks in a large eutrophic floodplain forest of the southeastern atlantic coastal

plain, USA. Wetlands 2015, 35, 291–301. [CrossRef]
4. Twilley, R.R.; Chen, R.H.; Hargis, T. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal

ecosystems. Water Air Soil Poll. 1992, 64, 265–288. [CrossRef]
5. Steinmuller, H.E.; Chambers, L.G. Characterization of coastal wetland soil organic matter: Implications for wetland submergence.

Sci. Total Environ. 2019, 677, 648–659. [CrossRef]
6. Yang, R. Interacting effects of plant invasion, climate, and soils on soil organic carbon storage in coastal wetlands. J. Geophys.

Res-Biogeo. 2019, 124, 2554–2564. [CrossRef]
7. Rogers, K.; Kelleway, J.J.; Saintilan, N.; Megonigal, J.P.; Adams, J.B.; Holmquist, J.R. Wetland carbon storage controlled by

millennial-scale variation in relative sea-level rise. Nature 2019, 567, 91–95. [CrossRef]
8. McBratney, A.B.; Santos, M.L.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [CrossRef]
9. Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital mapping of soil carbon. Adv. Agron. 2013, 118, 4.
10. Wang, S.; Zhuang, Q.; Wang, Q.; Jin, X.; Han, C. Mapping stocks of soil organic carbon and soil total nitrogen in Liaoning Province

of China. Geoderma 2017, 305, 250–263. [CrossRef]
11. Malone, B.P.; McBratney, A.B.; Minasny, B.; Laslett, G.M. Mapping continuous depth functions of soil carbon storage and available

water capacity. Geoderma 2009, 154, 138–152. [CrossRef]
12. Martin, M.P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D. Spatial distribution of soil organic

carbon stocks in France. Biogeosciences 2011, 8, 1053–1065. [CrossRef]
13. Mulder, V.L.; De Bruin, S.; Schaepman, M.E. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011,

162, 1–19. [CrossRef]
14. Minasny, B.; McBratney, A.B. Digital soil mapping: A brief history and some lessons. Geoderma 2016, 264, 301–311. [CrossRef]
15. Mirzaee, S.; Ghorbani-Dashtaki, S.; Mohammadi, J. Spatial variability of soil organic matter using remote sensing data. Catena

2016, 145, 118–127. [CrossRef]

http://doi.org/10.1126/science.1196808
http://www.ncbi.nlm.nih.gov/pubmed/21212349
http://doi.org/10.5194/bg-9-2325-2012
http://doi.org/10.1007/s13157-014-0618-y
http://doi.org/10.1007/BF00477106
http://doi.org/10.1016/j.scitotenv.2019.04.405
http://doi.org/10.1029/2019JG005190
http://doi.org/10.1038/s41586-019-0951-7
http://doi.org/10.1016/S0016-7061(03)00223-4
http://doi.org/10.1016/j.geoderma.2017.05.048
http://doi.org/10.1016/j.geoderma.2009.10.007
http://doi.org/10.5194/bg-8-1053-2011
http://doi.org/10.1016/j.geoderma.2010.12.018
http://doi.org/10.1016/j.geoderma.2015.07.017
http://doi.org/10.1016/j.catena.2016.05.023


Remote Sens. 2021, 13, 4106 14 of 15

16. Xu, L.; Yu, G.R.; He, N.P. Increased soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s. J.
Geogr. Sci. 2019, 29, 49–66. [CrossRef]

17. Peng, J.; Biswas, A.; Jiang, Q. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China.
Geoderma 2019, 337, 1309–1319. [CrossRef]

18. Coleman, T.L.; Agbu, P.A.; Montgomery, O.L. Spectral differentiation of surface soils and soil properties-is it possible from space
platforms. Soil Sci. 1993, 155, 283–293. [CrossRef]

19. Vaudour, E.; Bel, L.; Gilliot, J.M. Potential of SPOT multispectral satellite images for mapping topsoil organic carbon content over
Peri-Urban Croplands. Soil Sci. Soc. Am. J. 2013, 77, 2122–2139. [CrossRef]

20. Sullivan, D.G.; Shaw, J.N.; Rickman, D. IKONOS imagery to estimate surface soil property variability in two Alabama physiogra-
phies. Soil Sci. Soc. Am. J. 2005, 69, 1789–1798. [CrossRef]

21. Gomez, C.; Rossel, R.A.V.; McBratney, A.B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR
spectroscopy: An Australian case study. Geoderma 2008, 146, 403–411. [CrossRef]

22. Farifteh, J. Interference of salt and moisture on soil reflectance spectra. Int. J. Remote Sens. 2011, 32, 8711–8724. [CrossRef]
23. Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [CrossRef]

[PubMed]
24. Wang, S.; Gao, J.; Zhuang, Q.; Lu, Y.; Gu, H.; Jin, X. Multispectral Remote Sensing Data Are Effective and Robust in Mapping

Regional Forest Soil Organic Carbon Stocks in a Northeast Forest Region in China. Remote Sens. 2020, 12, 393. [CrossRef]
25. Qi, L.; Wang, S.; Zhuang, Q.; Yang, Z.; Bai, S.; Jin, X.; Lei, G. Spatial-temporal changes in soil organic carbon and pH in the

Liaoning Province of China: A modeling analysis based on observational data. Sustainability 2019, 11, 3569. [CrossRef]
26. Yoon, L.C.; Pedro, J.; Leitão, T.L. Assessment of land use factors associated with dengue cases in Malaysia using Boosted

Regression Trees. Spat. Spatio Tempor. Epidemiol. 2014, 10, 75–84.
27. IUSS Working Group. World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating

Legends for Soil Maps; FAO: Rome, Italy, 2014.
28. Zhu, A.X.; Yang, L.; Li, B.; Qin, C.; English, E.; Burt, J.E.; Zhou, C. Purposive sampling for digital soil mapping for areas with

limited data. In Digital Soil Mapping with Limited Data; Hartemink, A.E., Ed.; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 33–245.

29. Yang, L.; Zhu, A.; Qin, C.; Li, B.; Pei, T.; Liu, B. Soil property mapping using fuzzy membership-a case study of a study area in
Heshan Farm of Heilongjiang Province. Acta Pedol. Sin. 2009, 46, 9–15.

30. Yang, L.; Zhu, A.; Qin, C.; Li, B.; Pei, T. A soil sampling method based on representativeness grade of sampling points. Acta Pedol.
Sin. 2011, 48, 938–946.

31. Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2. Chemical and
Microbiological Properties; ASA-SSSA: Madison, WI, USA, 1982; pp. 539–594.

32. Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [CrossRef]
33. Liu, Z.K.; Hunt, B.R. A new approach to removing cloud cover from satellite imagery. Comput. Vis. Graph. Image Process. 1984, 25,

252–256. [CrossRef]
34. Perkins, T.; Adlergolden, S.; Matthew, M.; Berk, A.; Anderson, G.; Gardner, J. Retrieval of atmospheric properties from hyper

and multispectral imagery with the FLAASH atmospheric correction algorithm. In Remote Sensing of Clouds & the Atmosphere X;
International Society for Optics and Photonics: Orlando, FL, USA, 2005.

35. Odebiri, O.; Mutanga, O.; Odindi, J.; Peerbhay, K.; Dovey, S. Predicting soil organic carbon stocks under commercial forest
plantations in KwaZulu-Natal province, South Africa using remotely sensed data. GIScience Remote Sens. 2020, 57, 450–463.
[CrossRef]

36. Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens.
1977, 43, 1541–1552.

37. Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
38. Major, D.J.; Baret, F.; Guyot, G. A ratio vegetation index adjusted for soil brightness. Int. J. Remote Sens. 1990, 11, 727–740.

[CrossRef]
39. Gilabert, M.A.; González-Piqueras, J.; Garcıa-Haro, F.J.; Meliá, J. A generalized soil-adjusted vegetation index. Remote Sens.

Environ. 2002, 82, 303–310. [CrossRef]
40. Moore, I.D.; Gessler, P.E.; Nielsen, G.A.; Peterson, G.A. Soil attributes prediction using terrain analysis. Soil Sci. Soc. Am. J. 1993,

57, 443–452. [CrossRef]
41. Olaya, V.F. A Gentle Introduction to Saga GIS; The SAGA User Group eV: Göttingen, Germany, 2004.
42. Hutchinson, M.F. Interpolation of rainfall data with thin plate smoothing splines—Part i: Two dimensional smoothing of data

with short range correlation. J. Geogr. Inf. Decis. Anal. 1998, 2, 139–151.
43. Friedman, J.H.; Meulman, J.J. Multiple additive regression trees with application in epidemiology. Stat. Med. 2003, 22, 1365–1381.

[CrossRef]
44. Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J. Dismo: Species Distribution Modeling. R Package Version 0. 8–17. 2013. Available

online: http://www.idg.pl/mirrors/CRAN/web/packages/dismo/vignettes/sdm.pdf (accessed on 18 July 2020).
45. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; R

Development Core Team: Vienna, Austria, 2013. Available online: https://www.rproject.org/ (accessed on 18 July 2020).

http://doi.org/10.1007/s11442-019-1583-4
http://doi.org/10.1016/j.geoderma.2018.08.006
http://doi.org/10.1097/00010694-199304000-00007
http://doi.org/10.2136/sssaj2013.02.0062
http://doi.org/10.2136/sssaj2005.0071
http://doi.org/10.1016/j.geoderma.2008.06.011
http://doi.org/10.1080/01431161.2010.549522
http://doi.org/10.1111/j.1365-2656.2008.01390.x
http://www.ncbi.nlm.nih.gov/pubmed/18397250
http://doi.org/10.3390/rs12030393
http://doi.org/10.3390/su11133569
http://doi.org/10.1111/j.1365-2389.1996.tb01386.x
http://doi.org/10.1016/0734-189X(84)90107-5
http://doi.org/10.1080/15481603.2020.1731108
http://doi.org/10.1016/0034-4257(88)90106-X
http://doi.org/10.1080/01431169008955053
http://doi.org/10.1016/S0034-4257(02)00048-2
http://doi.org/10.2136/sssaj1993.03615995005700020026x
http://doi.org/10.1002/sim.1501
http://www.idg.pl/mirrors/CRAN/web/packages/dismo/vignettes/sdm.pdf
https://www.rproject.org/


Remote Sens. 2021, 13, 4106 15 of 15

46. Ishii, Y.; Murakami, J.; Sasaki, K.; Tsukahara, M.; Wakamatsu, K. Efficient folding/assembly in Chinese hamster ovary cells is
critical for high quality (low aggregate content) of secreted trastuzumab as well as for high production: Stepwise multivariate
regression analyses. J. Biosci. Bioeng. 2014, 118, 223–230. [CrossRef]

47. Lin, L. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [CrossRef]
48. Goward, S.N.; Markham, B.; Dye, D.G.; Dulaney, W.; Yang, J. Normalized difference vegetation index measurements from the

Advanced Very High Resolution Radiometer. Remote Sens. Environ. 1991, 35, 257–277. [CrossRef]
49. Kim, J.; Grunwald, S. Assessment of carbon stocks in the topsoil using random forest and remote sensing images. J. Environ. Qual.

2016, 45, 1910–1918. [CrossRef] [PubMed]
50. Wang, X.; Zhang, F.; Kung, H.T.; Johnson, V.C. New methods for improving the remote sensing estimation of soil organic matter

content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China. Remote Sens. Environ.
2018, 218, 104–118. [CrossRef]

51. Zhang, Y.; Guo, L.; Chen, Y.; Shi, T.; Luo, M.; Ju, Q.; Wang, S. Prediction of Soil Organic Carbon based on Landsat 8 Monthly
NDVI Data for the Jianghan Plain in Hubei Province, China. Remote Sens. 2019, 11, 1683. [CrossRef]

52. Payero, J.O.; Neale, C.M.U.; Wright, J.L. Comparison of eleven vegetation indices for estimating plant height of alfalfa and grass.
Appl. Eng. Agric. 2004, 20, 385. [CrossRef]

53. Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl.
2000, 10, 423–436. [CrossRef]

54. Grimm, R.; Behrens, T.; Märker, M.; Elsenbeer, H. Soil organic carbon concentrations and on Barro Colorado Island-Digital soil
mapping using Random Forests analysis. Geoderma 2008, 146, 102–113. [CrossRef]

http://doi.org/10.1016/j.jbiosc.2014.01.013
http://doi.org/10.2307/2532051
http://doi.org/10.1016/0034-4257(91)90017-Z
http://doi.org/10.2134/jeq2016.03.0076
http://www.ncbi.nlm.nih.gov/pubmed/27898790
http://doi.org/10.1016/j.rse.2018.09.020
http://doi.org/10.3390/rs11141683
http://doi.org/10.13031/2013.16057
http://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
http://doi.org/10.1016/j.geoderma.2008.05.008

	Introduction 
	Materials and Methods 
	Description of the Study Area 
	Soil Sampling and Laboratory Analysis 
	Calculation of SOC Density 
	Environmental Variables 
	Remote Sensing Related Variables 
	Topographic Variables 
	Climatic Variables 

	Prediction Model 
	Model Validation 

	Results 
	Descriptive Statistics 
	Model Performance and Uncertainty 
	Importance of Environmental Variables 
	Spatial Prediction of SOC Density 

	Discussion 
	Importance of Remote Sensing-Related Variables in Predicting SOC Density 
	SOC Distribution and Associated Predictors 
	Uncertainty in Current Research 

	Conclusions 
	References

