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Abstract: The survival rate of seedlings is a decisive factor of afforestation assessment. Generally,
ground checking is more accurate than any other methods. However, the survival rate of seedlings
can be higher in the growing season, and this can be estimated in a larger area at a relatively lower
cost by extracting the tree crown from the unmanned aerial vehicle (UAV) images, which provides
an opportunity for monitoring afforestation in an extensive area. At present, studies on extracting
individual tree crowns under the complex ground vegetation conditions are limited. Based on the
afforestation images obtained by airborne consumer-grade cameras in central China, this study
proposes a method of extracting and fusing multiple radii morphological features to obtain the
potential crown. A random forest (RF) was used to identify the regions extracted from the images,
and then the recognized crown regions were fused selectively according to the distance. A low-cost
individual crown recognition framework was constructed for rapid checking of planted trees. The
method was tested in two afforestation areas of 5950 m2 and 5840 m2, with a population of 2418 trees
(Koelreuteria) in total. Due to the complex terrain of the sample plot, high weed coverage, the crown
width of trees, and spacing of saplings vary greatly, which increases both the difficulty and complexity
of crown extraction. Nevertheless, recall and F-score of the proposed method reached 93.29%, 91.22%,
and 92.24% precisions, respectively, and 2212 trees were correctly recognized and located. The
results show that the proposed method is robust to the change of brightness and to splitting up of a
multi-directional tree crown, and is an automatic solution for afforestation verification.

Keywords: individual trees crown; multi-radius extraction; chromatic mapping; feature extraction;
complex environment; spectral index

1. Introduction

The global ecosystem has been seriously threatened with the increase of greenhouse
gas emissions, which will also have a devastating impact on biodiversity [1,2]. The forest
is the largest ecosystem on the land, providing a wide range of economic and social
benefits for humans through various forest products. The forest is also an important
carbon sink system, reducing the concentration of greenhouse gases in the atmosphere [3,4].
Although forests have brought huge benefits, the problem of deforestation still exists,
and the global forest area is declining [5–7]. Therefore, afforestation has been used as an
effective strategy to alleviate global warming, especially in mountainous and hilly areas
with little economic value. It is important to assess afforestation in these regions. Manual
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checking of surviving trees is laborious and costly. With the wide application of UAV
remote sensing in agriculture and forestry, different airborne equipment can be used to
obtain ultrahigh spatial resolution data [8–12]. The efficiency of vegetation monitoring and
environmental parameter acquisition could be improved and the cost of agriculture and
forestry production reduced [13,14]. The image visualization technology can be used to
efficiently assess afforestation. Recognition of individual tree crowns (ITCs) has been the
key method of afforestation assessment in the complex environment [15–18].

Most UAV-based studies have focused on plant detection and counting. The com-
mon method is to use different algorithms to generate the corresponding data structure
according to the data characteristics of the airborne equipment, and analyze the data to
distinguish the number and location of plants. The spectral, spatial, and contextual features
of aerial images taken at different locations are different, and the methods used to extract
image features for identifying ITCs are different. Color is the most important feature for
ITC recognition, and different color indexes are usually used to enhance the recognition
effect. The most commonly used color indexes exist in the red, green, and blue (RGB) color
space, which have different efficiency in identifying plants under various soil, residue, and
light conditions. In a study by Loris, green grass comparison was used to compare and test
the measured data of ten different grassland management methods, and the results showed
that the G-R index of aerial imagery was highly correlated with the ground truth [19,20].
By evaluating the application of high-resolution UAV digital photos in vegetation remote
sensing, the Normalized Green–Red Difference Index (NGRDI) was used to reduce the
changes caused by the difference of irradiance and exposure, and to explore the prediction
of vegetation reflectance through the scattering model of arbitrarily inclined leaves [21].
After studying the optical detection of plants, and discussing the color distribution of
plants and soil in digital images in detail, various color indexes used to identify vegeta-
tion and background were calculated, and several color coordinate indexes were used to
successfully distinguish weeds and non-plant surfaces [22]. The correlation coefficient
between the spectral reflectance and sugar beet diseases was the highest in the visible
light band [23]. Long-term practice has shown that the use of UAV to quickly evaluate
forest regeneration can help reduce the cost of investigation. Through experiments, using a
sampling-based consumer camera shooting method, a decision rule for seedling detection
based on simple RGB and red edge (RE) image processing can be established. The results
have shown that drones can use RGB cameras to detect conifer seedlings [24]. According
to the study, convolutional neural network (CNN), hyper-spectral UAV images and a
watershed algorithm [25], object clustering extraction method, etc. were mainly applied in
structured environments, and are difficult to apply in complex environment. In the case
of high weed coverage, the multi-scale retinex (MSR) method can enhance the distinction
between foreground and background, and the average accuracy of the results obtained by a
fruit tree SVM segmentation model is 85.27% ± 9.43% [16]. Not only that, the Normalized
Excessive Green Index was used to indicate the green vegetation in UAV automatic urban
monitoring [26], and a variety of indices were also used to segment vegetation, estimate
biomass, and guide precision agricultural production [27–30]. All these studies have shown
that the spectral characteristics of UAV images can be used to initially classify vegetation.

At the same time, the International Commission on Illumination (CIE) L*a*b* color
space is also often used to identify vegetation and soil [31]. In L*a*b*, the extraction
accuracy of vegetation coverage is further improved by applying a Gaussian mixture
model [32–34]. K-means and L*a*b* color space have been used to detect individual trees
from the oblique imaging taken by UAV in cities [35]. XGBoost classification algorithm
was used to solve the identification problem of interlacing orchard canopy [15]. Dynamic
segmentation, Hough transform, and generalized linear model have been widely used
in missing plant detection [36,37]. Computer-unified device architecture (CUDA) speeds
up the calculation speed in the process of finding the largest canopy blob area [38], and
light detection and ranging (LiDAR) point cloud analysis method also plays an important
role [39]. Mathematical morphology also plays an important role, combined with elevation
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information to realize automatic counting and geographic positioning of olive crowns [40].
Multispectral images can accurately measure the structure of litchi trees [41]. In addition,
the airborne multispectral laser scanning technology improves the recognition accuracy
of individual trees and dominant trees [42–44]. Deep learning further improves segmen-
tation accuracy [45,46], and is widely used in tree crown contour recognition—using the
convolutional neural network Mask RCNN algorithm for crown contour identification
and rendering, accuracy reached 0.91 [47]. The detection of economic tree species in
high-resolution remote sensing images has always been a consideration. Although palm
crowns in the study area often overlap, with the support of large-scale multi-class samples
collected, the detection accuracy of oil palm trees based on the deep convolutional neural
network DCNN has reached 92–97% [48]. The tree crown in simple scenes can also be
automatically extracted from UAV images using neural networks to estimate biomass [49]
and tree species classification [50].

This paper proposes a simple and effective method to detect and count tree crowns,
multi-radius extraction and fusion based on a chromatic mapping method (MREFCM).
Based on the statistical results of the transformation of multiple color indexes as a reference,
the crown morphology extraction method was tested to obtain the optimized extraction
parameters and a multi-scale extraction fusion method was defined, including a multi-
radius closed filter and the fusion of multiple extraction results. The aims of the study were:
(1) to determine whether the RF classifier shows good performance in crown recognition;
(2) to test if the inclusion of two texture features improves the classification accuracy of
tree crown; (3) to compare the proposed method with other crown extraction methods in a
complex environment to verify the performance.

This study also intended to accurately extract tree crowns as well as further improve
the recognition effect of ITCs and improve the efficiency of monitoring afforestation.
In order to better adapt to the various crown forms of broad-leaved seedlings in new
afforestation, this study used the combination of fusion extraction of multiple radius filters
and an RF was used to recognize ITCs. The proposed method can be used as a supplement
to the research on ITC recognition using color index technology.

2. Materials and Methods
2.1. Study Area

The study area is located in the west of Xichuan County, Nanyang City, Henan
Province, China, 110◦58′ E–111◦53′ E, 32◦55′ N–33◦23′ N (Figure 1). The mountains in the
county are widely distributed, extending from northwest to southeast, and the altitude
gradually decreases, which belongs to the monsoon climate zone of transition from the
northern subtropical to warm temperate zone, including Dashiqiao Township, Maotang
Township, Xihua Township, and Taohe Township, with a total area of 2820 km2. The
annual average temperature is 15.8 ◦C, and the annual rainfall is between 391.3 mm and
1423.7 mm. Two adjacent woodlands on both sides of the ridge in Dashiqiao Township
were selected as the test sites for tree crown extraction and recognition. The sites are pure
forests of Koelreuteria paniculata Laxm, where the crown diameters are between 20–70 cm.
As a common tree species for afforestation in China, the selection of this study area is
helpful to understand the effect of mountain afforestation. It should be noted that the weed
coverage between the trees varies greatly, and the interspersed bushes are very lush, some
of which are larger than the adjacent crown. The average altitude of the study area is 390 m,
with an area of 5900 m2 and 5840 m2, respectively. An overall image of the study sites is
shown in Figure 1.
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Figure 1. Location of two afforestation areas surveyed for this study in the western part of Xichuan
County, Henan Province, China.

2.2. Data Sources

The images were collected in June 2018 using DJI Phantom4 UAV (Shenzhen Dajiang
Innovation Technology Co., Ltd., Shenzhen, China). The image acquisition component
under the quadrotor supports GPS/GLONASS dual-mode positioning system, and the 3-
axis gimbal stabilization provides a steady platform for the attached CMOS digital camera
(Sony Exmor R CMOS 1/2.3-inch).

The flying height of the UAV is 20 m and 35 m, and the ground sampling distance is
0.7 cm and 1.3 cm, respectively, verifying the applicability of the proposed algorithm to
images of different resolutions. These digital images are stored in the red–green–blue (RGB)
color space with JPEG format. Using this color space to store natural scenes is conducive to
transforming each channel of RGB to obtain more specific features in the image [51]. The
specifications of drones and airborne cameras are shown in Table 1.

Table 1. The specifications of the UAV and the airborne camera.

UAV (DJI Phantom4) Specifications Value

Description Quadrotor
Weight (Battery & Propellers Included) 1.38 kg

Max Flight Time 28 min
Max Speed 20 m/s

Camera Sensor 1/2.3′ ′ CMOS
Image Size 12.4 M

Image Dimensions 4000 × 3000
ISO 100

Shutter Speed 1/1000

A total of 180 images were randomly selected for training and 168 images for testing,
and the test dataset comprised 2418 trees. The crown size of broad-leaved seedlings varies
greatly (20–70 cm), therefore, in order to improve the recognition effect, the crown training
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area in the training set was manually marked as a rectangle of 40 × 40~100 × 100 pixels
with a size interval of 20 pixels. At the same time, the soil has no clear “individual”
boundary and clear size, so only training samples of 60 × 60 pixels were collected from
the soil. A total of 1400 areas were randomly selected to form the training set, including
600 positive samples of trees, 500 negative samples of weeds, 200 negative samples of
shrubs, and 100 negative samples of soil (some samples include shadows). The color
features and texture features of samples were used to build feature data pool, which was
used to build RF model. Figure 2 shows some image samples in the training set under
different conditions.

Figure 2. Examples of samples at different sizes. (a) Negative samples of soil with a resolution of 60 × 60 pixels. (b) Positive
samples of trees with a resolution of 40 × 40~100 × 100 pixels. (c) Negative samples of weeds with a resolution of
40 × 40~100 × 100 pixels. (d) Negative samples of shrubs with a resolution of 40 × 40~100 × 100 pixels.

The images were classified according to the fraction vegetation coverage (FVC), flight
height, and brightness. FVC is the percentage of the total image in the HSI color space
where the hue is in [π/2, π]. It shows the growth of vegetation in the image, which is used
to measure the weed coverage under the forest, and indicates the interference degree of tree
crown extraction. The classification of FVC is as follows: LFVC (low FVC), h < 45%; MFVC
(middle FVC), 45% ≤ h < 60%; HFVC (high FVC), h ≥ 60%, where h is the ratio of the
vegetation to the image area. Two flight altitudes were selected: 35 m and 20 m. Two kinds
of brightness intensities were also selected (BI): insufficient brightness (IB) and sufficient
brightness (SB), IB means I < 0.3 in HSI color space and SB means I ≥ 0.3. The images of
the test set were calculated and grouped according to the above classification criteria, as
shown in Table 2. FVC and BI in the table are the average values of the corresponding
groups. Details can be found in the literature [16].

Table 2. Crown statistics of test set. BI: brightness intensity; FVC: fraction vegetation coverage.

Height BI FVC% Actual Crown

20 m
0.25 48 1027

0.24 58 429

35 m
0.25 79 501

0.38 43 461

total 2418
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2.3. Framework of Research

At present, there are many studies that have introduced ITC recognition. For the
detailed introduction of color index and morphological filtering, please refer to the litera-
ture [16,17,22,24].

Figure 3, which is a summarized form of the methodological flowchart, shows the
three main stages of the proposed method in this paper: in the vegetation index selection
stage, the most suitable color mapping method was selected by comparing the statistical
results of the vegetation index. Then, the multi-radius extraction and fusion method
was used to obtain the potential tree crown regions, namely the region of interest (RoI).
Finally, RF was used to identify the extracted regions and fusion was performed selectively
according to the distance.

Figure 3. Flow chart of the proposed individual tree crown count method.

2.4. Spectral Index Selection

As the first step of image processing, the images collected by UAV were prepro-
cessed with an appropriate spectral index to obtain better extraction results, a process that
was confirmed in previous studies [27,52]. The effect of the spectral index depends on
the spectral characteristics of the dataset; the four sample images of different scenes, as
shown in Figure A1a–d (Appendix A), were selected from the training set. These images
were selected by intuitive judgment of vegetation coverage through manual vision, so
the time cost was negligible. Figure A1a–d shows the original images of different scenes.
Figure A1(a1–a7,b1–b7,c1–c7,d1–d7) is the transformation results of Figure A1a–d, respec-
tively. It can be seen intuitively that there were great differences in the transformation
effects of the seven spectral indexes. We manually drew the foreground (tree crown) and
background of the four sample images and used the spectral indexes shown in Table 3 for
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color mapping. Using statistical methods, it was determined that the most suitable spectral
index for this study was GRDI.

Table 3. Image spectral index for extracting target region.

Spectral Index Description Source

Normalized Green Blue Difference Index NGBDI = G−B
G+B [19]

Normalized Green Red
Difference Index NGRDI = G−R

G+R [21]

Green Red Difference Index GRDI = G− R [20]

Normalized Blue Green Vegetation Index NBGVI = B−G
B+G [24]

Normalized Excessive Green Index NEGI = 2G−R−B
2G+R+B [26]

Excess Green ExG = 2G− R− B [29]

Excess Red ExR = 1.4R− G [30]

2.5. Potential Tree Crown Extraction

The image was first transformed using GRDI to enhance the separation of foreground
and background, which means that the crowns in weeds were enhanced and the preliminary
range of tree crowns could be obtained. As shown in Figure A1(a2–d2), there were still some
foreground and background features that were not separated after GRDI transformation.
In order to separate trees from background better, morphological methods were needed for
further processing. Considering that the images of the afforestation area were different in
terms of the shooting height, background weed density and illumination intensity, the radii
of the closed filters were selected as 3, 5, 7, and 9 after the experiment on the sample images.

Firstly, the Otsu method was used to segment the gray image after GRDI transform,
and then four closed filters with different radii were used to process the image to eliminate
the small gaps in the tree crown area, which may have been due to the different reflectance
of leaves in the tree crown. Then, the hole filling method was used to eliminate the
interference caused by the large holes in the image, which may have been caused by the
branches of the tree crown expanding in different directions. Next, an open filter with
a radius of 10 was used to remove the interference caused by isolated spots and small
branches. In addition, there were still some little fragments in the image, usually because
some weeds had similar spectral characteristics with the tree crown, so the region exclusion
method with a threshold of 200 pixels was used to eliminate them, and the minimum crown
area exceeded 400 pixels. Four extraction results of the same image could be obtained by
using the above series processing method. It was obvious that the four extracted maps
collectively represented the multi-scale structure of the target forest. In order to reduce
the loss of crown edge information caused by morphological processing, a convex hull
algorithm was used to fill the edges of extraction regions to improve the accuracy of
crown recognition. Finally, four extraction results were fused to obtain more accurate
crown position.

Given a large radius extraction map and a small radius extraction map, which con-
tained the results of coarse segments and fine segments, one or more small radius extraction
maps could be superimposed by a large radius extraction map, but this was not neatly
suitable for the latter. In this study, the coarse segment and its corresponding fine segment
were fused according to the following steps: (1) All fine segments with more than half of
the area covered by the corresponding coarse segment were searched. (2) If the number of
corresponding fine segments was larger than that of coarse segments, the coarse segments
were replaced with all the selected fine segments; otherwise, we kept the coarse segments.
(3) We kept all coarse segments that did not contain fine segments. The four extraction
maps were fused according to the radius of the closed filter from large to small. The entire
extraction process is shown in Table 4.
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Table 4. The multi-scale filter extraction process of image foreground.

Input The Image Ig Transformed by GRDI

Step 1 Apply the Otsu method to obtain the binary image Ibw
Step 2 Remove patches with area less than 200 pixels
Step 3 Closed filters with radii of 3, 5, 7, and 9 pixels are applied to obtain Ic1-4
Step 4 Apply the holes filling method to obtain Ich1-4
Step 5 Apply an open filter with a 10-pixel radius to obtain Ico1-4
Step 6 Use a convex hull method to obtain Ifc
Step 7 Fuse images Ico1-4 to obtain If

Output The possible foreground region of the extracted image Iroi

2.6. Features for RoIs Recognition

To improve the accuracy of extraction regions classification and tree counting, the sec-
ond part of this study included the use of effective color and texture features to discriminate
trees, bare soil, weeds, and bushes in the extracted region.

The first category is color feature, the values of which were obtained by calculating
the mean and variance of the color components in the RGB and L*a*b* color spaces. Since
the L component in the L*a*b* color space reflects the illumination intensity of the image,
it was not used as the source of the feature to eliminate the interference caused by the
illumination intensity. Therefore, the color feature of samples was a 10-dimensional vector
composed of the mean and variance of R, G, B, a*, and b* components.

The second category is the grey-level co-occurrence matrix (GLCM), which is a matrix
that describes the gray-level relationship between pixels in an image and adjacent pixels
or pixels within a certain distance, and can be used to identify tree species at high resolu-
tion [53]. It can reflect the gray level of the local area or the entire area of the image. The
comprehensive information about the direction, the adjacent interval, and the amplitude
of change is the basis for analyzing the gray level change and texture characteristics of
the image, and usually describes the texture features quantitatively according to different
statistics of GLCM [54]. Thus, the GLCMs of these samples in the feature pool were calcu-
lated, and five texture statistics of the GLCMs were calculated. Where and j represent the
element row and column subscripts of GLCMs.

Energy: it is the sum of squares of the gray level co-occurrence matrix elements,
which reflects the uniformity of gray-level distribution and texture thickness of the image.
Equation (1) can be used for calculation.

Asm = ∑i,j p(i, j)2 (1)

Contrast: Equation (2) reflects the clarity of the image and the depth of the texture groove.
The deeper the texture groove, the greater the contrast and the clearer the visual effect.

Cont = ∑i,j|i− j|2 p(i, j) (2)

Correlation: it reflects the similarity degree of gray level co-occurrence matrix elements
in row or column direction, the equation is shown in (3).

Corr = ∑i,j

(i− µi)
(

j− µj
)

p(i, j)
σiσj

(3)

where µi and σi are the mean and variance of p(i), and µj and σj are the mean and variance
of p(j), respectively.

Entropy: it represents the degree of non-uniformity or complexity of the texture in the
image, which is formulated as:

Ent = −∑k
i=1 ∑k

j=1 p(i, j) log[p(i, j)] (4)
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where k indicates the gray scale of the image, which is usually represented by 16 levels.
Homogeneity: it reflects the homogeneity of image texture and measures the local

change of image texture, which can be mathematically defined as follows:

Hom = ∑k
i=1 ∑k

j=1
p(i, j)

1 + (i− j)2 (5)

Therefore, the texture features of extracted regions are composed of GLCM statistics
in 0◦ , 45◦, 90◦, and 135◦ directions, which constitute a vector of 20 dimensions.

The third category is local binary pattern (LBP), which can be calculated using Equation (6):

LBP(xc, yc) = ∑p−1
p=0 2ps

(
lp − lc

)
(6)

where (xc, yc) is the center pixel, lc is the gray value of the center pixel, lp is the gray value
of the adjacent pixels of the center pixel, s is a sign function, and the expression is

s(x) =
{

1 i f x ≥ 0
0 else

(7)

LBP is an operator used to describe the local texture features of an image. In the uni-
form pattern, 59 dimensional features vector can be calculated according to reference [55],
which has the advantages of rotation invariance and gray invariance.

2.7. RF Model and Accuracy Evaluation

In order to distinguish whether the extracted regions are tree crowns or not, an RF
recognition model based on the above 89 dimensional features was established. RF is a
machine learning method widely used in classification, regression, and other tasks. In this
study, a five-fold cross-validation method was used to evaluate the reliability of the model,
that is, the sample of 1400 training set images were divided into five subsets, one single
subset was retained as the test set, and the other four subsets were used for training. This
process was completed circularly until all subsets were used as the test set once.

In order to evaluate its recognition effect, the number of trees in the study area was first
determined, which was done manually. As the ground truth of the study area, compared
with the machine recognition results of the RF model, its performance determines the
accuracy of the same tree crown fusion in the next step. In order to quantitatively evaluate
the recognition effect, the following indicators were used.

Precision: it means the probability of actual positive samples among all predicted
positive samples. The precision can be calculated using Equation (8).

P = TP/(TP + FP) (8)

where true positive (TP) is the number of correctly identified tree crowns, on the contrary,
false positive (FP) is the number of mistakenly identified tree crowns.

Recall: refers to the probability of being predicted as a positive sample in the actual
positive sample, the equation for this is shown in (9).

R = TP/(TP + FN) (9)

where false negative (FN) is defined as the number of tree crowns not recognized by the
model.

F1 score: this is the weighted harmonic average of precision and recall, as shown
in (10).

F1 = 2× P× R/(P + R) (10)
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2.8. Repeat Count Region Fusion

The above-mentioned multi-scale region extraction method enhances the ability to dis-
tinguish potential regions of crowns, but it should be noted that the shape of the deciduous
tree crown does not present a regular umbrella shape, specifically, the branches in the larger
tree crown are often divided by shadows into separate areas, so some branches are similar
to individual trees. Moreover, the difference in reflectivity of the branches may cause
multiple extractions of the same crown. These factors all reduce the counting accuracy.

As shown in Figure 1, the crown diameters in the test sites were obviously smaller
than the distance between trees, so the average distance could be used to measure whether
different extraction regions belonged to the same crown to eliminate multiple counting.

Therefore, after the tree canopy was identified by the RF method, the distance between
all the identified tree canopies and their nearest neighbors could be calculated to obtain the
average distance between the tree canopies, and finally the threshold L was set to half of
the average distance. The regions whose centroid spacing was less than the threshold L
calculated by (11) were regarded as the same crown and fused.

L = ∑m
n=1|xnxs|/(2 ∗ k) (11)

where n is the current tree crown number, s is the nearest neighbor tree crown number of n,
and m is the total number of identified tree crowns.

3. Results
3.1. Statistical Results of Spectral Indices

The statistical results of four sample images are shown in Figure 4. In Figure A1a,
due to the extremely high FVC and insufficient brightness, only GRDI and ExG indices
were more separable in the foreground and background than other spectral indices, and
GRDI was the best. The statistical results can be visually verified from Figure A1(a1–a7).
In Figure A1b, higher FVC and sufficient brightness, GRDI, NEGI, and ExG showed
higher separability, and NEGI was the highest, which can be compared and observed from
Figure A1(b1–b7). In Figure A1c, GRDI, NEGI, ExG, and ExR all showed high separability,
of which the best was still GRDI, and the lower limit of foreground GRDI was far away from
the median value of the background, which indicates that GRDI still showed good separa-
bility in the case of shrub interference. These results are also shown in Figure A1(c1–c7). In
Figure A1d, under the conditions of medium FVC and insufficient brightness, all indexes ex-
cept GRDI showed low resolution and obvious consistency, as shown in Figure A1(d1–d7).
In conclusion, in this study, the most appropriate index to identify ROI from images was
found to be GRDI.

3.2. Multiple Scale Extraction and Fusion

Figure 5 shows the effect of each stage of morphological extraction and the final fusion
of an image. Figure 5a is the original image under the conditions of IB and HFVC. Figure 5b
shows the grayscale image transformed by GRDI chromatic mapping on Figure 5a, in which
the brightness value at the corresponding position of the tree crown was higher than that
of other parts, which laid the foundation for the next morphological operation. Figure 5c
is a binary image transformation for the area with the non-zero gray value of Figure 5b.
Figure 5d was produced by the morphological method described in Section 2.4 of Figure 5c,
where the radius of the closed filter was 3 pixels. Figure 5e is the result of processing (c)
with a closed filter radius of 5 pixels, and more regions were extracted than Figure 5d.
Figure 5f shows the processing result with a closed filter radius of 7 pixels, from which it
can be seen that the effective range of each region continued to increase. Figure 5g shows
the processing result with a closed filter radius of 9 pixels, as well as the range of each
region. This was further expanded. Figure 5h shows the result of the fusion of Figure 5d–g
according to the method proposed in Section 2.4; that is, if a large region contained several
small RoIs, then these small RoIs were used to replace the corresponding large region.
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As a result, this leads to more effective extraction regions and reduces the background
interference. Figure 5i marks the regions extracted from the original image with numbers.
The numbers in the figure were generated by the fusion process, so the serial numbers were
not arranged in order, but this did not affect the recognition of the region. Among them, No.
2 and No. 3 regions and No. 18 and No. 19 regions corresponded to two overall regions
in Figure 5g, which were a result of the subdivision effects combined with the extraction
results of the small radius filter. Similarly, there were the No. 16 and No. 17 regions. No.
5 and No. 12 regions were extracted in Figure 5g, but were not extracted in the previous
filtering results, and the No. 8 region was not extracted in Figure 5d.

Figure 4. The statistical results of the four transformed sample images by (a) NGBDI, (b) NGRDI,
(c) GRDI, (d) NBGVI, (e) NEGI, (f) ExG, and (g) ExR.
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Figure 5. Tree crown extraction and fusion results of IB and high FVC images based on different radius open filters. (a) An
example image in RGB color space. (b) The transformed result of (a) using GRDI. (c) The result of (b) using binary image
transformation. (d–g) The extracted results of (c) using open filters with different radii (3, 5, 7, and 9 pixels). (h) The result
of fusion of the four images of (d–g). (i) The result of digitally labeling the regions in Figure (h).

Figure 6 shows the results of RoI extraction using MREFCM under different height,
brightness, and FVC conditions, which proves the effectiveness of the method. Figure 6a
shows an image taken at a height of 20 m, with HFVC and SB, while Figure 6b shows the
result of extraction using a filter with a radius of 3 pixels, and Figure 6c shows the result of
fusion of four extraction results with different radii. Figure 6d,g shows images taken at
a height of 20 m, with MFVC and HFVC, respectively, both in low brightness conditions.
Figure 6e,h shows the results of RoI extraction with a radius of 3 pixels, and Figure 6g,i
shows the final extraction results of Figure 6d,g. Compared with the original images in
Figure 6a,d,g, it can be seen that, similarly to Figure 5, the fused binary images contained
more potential crown regions and obtained better results.
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Figure 6. MREFCM results under different conditions. (a) An example image of HFVC and SB. (b) The extracted result
of (a) with a close filter with a 3-pixel radius. (c) The result obtained by fusing the areas extracted of (a) through the four
radius filters. (d) An example image from a 20 m height with MFVC and IB. (e) The extracted result of (d). (f) The fusion
result of (d). (g) An example image from a 20 m height with HFVC and IB. (h) The extracted result of (g) with a 3-pixel
radius. (i) The fusion result of (g) through the four radius filters.

3.3. Same Tree Crown Fusion

To illustrate the final tree crown recognition results, Figure 7 shows the examples
under different conditions. In order to display the recognition effect more clearly, different
colors of plane graphics were used for marking. The red circles in Figure 7b,e,h,k and
Figure 7c,f,i,l marked the position and size of the crown recognized by RF. The center
of each red circle was the same point as the centroid of the corresponding RoI, and the
areas of the two were equal. The weed areas were marked with blue circles. The green
rectangles were used to show the position and size of the fused crowns, indicating that the
corresponding positions were different fragments of the same crown before the fusion.
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Figure 7. Recognition and fusion results of MREFCM under different conditions. (a) Sample image under LFVC and IB;
(b) recognition results of (a) by RF; (c) fusion results of (b); (d) sample image of HFVC and IB; (e) recognition results of (d);
(f) fusion result of (e); (g) sample image of HFVC and SB; (h) recognition results of (g); (i) fusion result of (h); (j) sample
image of HFVC and IB; (k) recognition results of (j); (l) fusion result of (k).

As shown in Figure 7c,f,i,l, the green rectangle marked the fused crown, correspond-
ing to the fragments in the extraction region caused by illumination or crown shape in
Figure 7b,e,h,k. The Equation (11) introduced in Section 2.6 was used to calculate the
distance threshold L, the judgment of the threshold between RoIs depended on the distance
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between the trees, which represented the minimum expected distance between the crown
segments to be fused and avoided the limitation of manual settings.

3.4. Comparison of the Recognition Effect of Different Texture Features

There were 2418 trees in the test set. In order to evaluate the effect of the proposed
method on tree crown counting, the method described in Section 2 was used to extract
the regions from the image test set, and an RF model consisting of 500 trees was used
for recognition. The algorithm automatically located and counted all the tree crowns in
the test set, and used the visual interpretation method to mark the ground truth in the
image to calculate the accuracy of the method. In order to quantify the difference of crown
recognition accuracy before and after inclusion of different texture features, three combined
feature spaces of color vector + GLCM, color vector + LBP, and color vector + LBP + GLCM
were used for crown recognition in the test set. It can be clearly seen from Figure 8 that
the recognition accuracy of the RF model based on the combination of these two texture
features has been significantly improved.

Figure 8. Comparison of the recognition effect of different texture feature combinations.

More detailed recognition results are shown in Tables 5–7. It can be seen that the
precision (P), recall (R), and F1 score of each texture category were significantly different.
The combination of GLCM + LBP had a significant impact on the recognition accuracy,
93.3% of the crowns were judged correctly and 91% of the actual crowns were found.

Table 5. Statistical table of crown recognition (color vector + LBP + GLCM).

Height BI FVC
Actual
Crown TP FP FN P (%) R (%) F1 (%)

20 m
0.25 0.48 1027 961 45 66 95.53 93.57 94.54

0.24 0.58 429 387 40 42 90.63 90.21 90.42

35 m
0.25 0.79 501 435 22 66 95.19 86.82 90.81

0.38 0.43 461 429 52 32 89.19 93.05 91.08

Average 2418 2212 159 213 93.29 91.22 92.24

Table 6. Statistical table of crown recognition (color vector + GLCM).

Height BI FVC Actual
Crown TP FP FN P (%) R (%) F1 (%)

20 m
0.25 0.48 1027 657 120 369 84.56 64.04 72.88

0.24 0.58 429 253 54 159 82.41 61.41 70.38

35 m
0.25 0.79 501 367 37 106 90.84 77.59 83.69

0.38 0.43 461 253 24 135 91.34 65.21 76.09

Average 2418 1530 235 769 88.20 65.06 75.76
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Table 7. Statistical table of crown recognition (color vector + LBP).

Height BI FVC Actual
Crown TP FP FN P (%) R (%) F1 (%)

20 m
0.25 0.48 1027 668 150 358 81.66 65.11 72.45

0.24 0.58 429 289 68 123 80.95 70.15 75.16

35 m
0.25 0.79 501 359 37 114 90.66 75.90 82.62

0.38 0.43 461 266 25 122 91.41 68.56 78.35

Average 2418 1582 280 717 86.17 69.93 77.15

Although the proposed method had good illumination intensity and shadow robust-
ness, there were still a few errors, such as extraction omission and recognition errors. For
example, in Figure 9a–d, yellow rectangles were used to mark the regions that were mis-
recognized. The missing tree crowns in Figure 9a,d were marked with orange rectangles,
and the images in Figure 9a,b were taken at the altitude of 20 m, while those in Figure 9c,d
were taken at 35 m.

Figure 9. Recognition errors and omissions detected during performance evaluation. (a) The
recognition results under 20 m, high FVC, and IB conditions. (b) The recognition results under 20 m,
low FVC, and IB conditions. (c) The recognition results under 35 m, high FVC, and SB conditions.
(d) The recognition results under 35 m, very high FVC, and IB conditions. The red circles mark
the tree crown areas that were correctly identified, the blue circles mark the weed areas that were
correctly identified, the orange rectangle marks the missing tree crown area, and the yellow rectangles
mark the incorrectly identified areas.
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4. Discussion
4.1. Accuracy Comparison

In order to eliminate the effects of weed interference, crown shape, and shooting
height on the extraction of broad-leaved tree crowns, this study used spectral transfor-
mation, multi-radius filtering, and RF methods to enhance the recognition effect of ITCs
in the test dataset. In the previous literature, the research on the recognition of ITCs
has mainly focused on mature trees [17,18], many studies were undertaken in “clean”
orchards [9,15,31,37,40], and little attention was paid to the detection of broad-leaved
saplings, especially in the sites with complex forest conditions. As mentioned above, the
four sample images in Figure A1 are typical scenes of manual screening, which means that
in similar surveys, only a small amount of work is needed for intuitive manual selection,
and a different number of sample images can be selected flexibly, so it is suitable for rapid
survey inspection of forest plantation in an extensive area. As can be seen from Figure 4,
in all scenarios, the statistical results of GRDI were obviously better than other spectral
indexes. Interestingly, the resolution showed a downward trend with the increase of light
intensity, which may be due to the change of lightness and saturation caused by higher
brightness intensity. GRDI is essentially a simple differential vegetation index. This is
similar to previous studies [20]. In our study site, FVC and flight altitude had no strong
correlation with the separation of foreground and background (Figure 4c). In contrast,
although the gray distribution range of the background changed due to the difference of
FVC, the flight altitude did not interfere with the pixel-level spectral transformation in this
study, and it did not deviate from the ground truth through the interference of various
noises, like satellite data [20]. Therefore, in similar inspection work, the difference of flight
altitude will not affect the ITC counting effect.

The extraction of broad-leaved tree crowns is different from coniferous trees. Early
studies in Italy and Finland reported the characteristics of broad-leaved tree recognition in
high-resolution images, that is, the point with the highest light intensity does not represent
the midpoint of the broad-leaved crown [17,18]. In this study site, unlike coniferous
species [24], the multiple main branches of the broad-leaved crown extended outward
in almost random directions, specifically, the crown diameters of sapling had obvious
differences, so the window sizes of the filter could not be unified, which means the detection
strategy of ITC was affected [12,25]. Four closed filters with different radii were used to
process the image, and Figures 5 and 6 show the extraction effect and change process. The
results of crown extraction in various scenes show the relationship between the shape
of broad-leaved crown and the radius of closed filter, and the final fusion effect. The
interference caused by the difference of crown radius and the random extension of multiple
branches was controlled, so that the potential areas of the crown with different radii
were extracted. It should be noted that one RoI extracted by the large radius filter may
correspond to several small RoIs extracted by the small radius filter, which shows the
different extraction range of filters with different radii. Therefore, using closed filters with
different radii for extraction and fusion can improve the accuracy of RoI extraction and
expand the extraction range.

Unlike many previous studies on ITC recognition reported in the literature, the dataset
in this study only contained RGB images, without data such as near-infrared and LiDAR,
and the coverage of weeds far exceeded that of common orchards. Therefore, the method
proposed by Chen et al. [16] under similar weed coverage conditions was reproduced, and
all the data in the test set were used for comparison. Table 8 shows the results of comparing
the proposed method with the published method, which also aimed at automatic crown
detection in complex scenarios. The emphasis is that our work would be superior to that
used for control ones, and it was evaluated under higher weed coverage rate, including
wider variability in crown shape and interference caused by shrubs.
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Table 8. Performance comparison of tree counting methods published in the literature.

Method Height BI FVC P (%) R (%) F1 (%)

Proposed
method

20 m
0.25 0.48 95.53 93.57 94.54

0.24 0.58 90.63 90.21 90.42

35 m
0.25 0.79 95.19 86.82 90.81

0.38 0.43 89.19 93.05 91.08

Average 93.29 91.22 92.24

Chen et al.
[16]

20 m
0.25 0.48 80.70 63.18 70.87

0.24 0.58 88.82 70.56 78.64

35 m
0.25 0.79 96.26 35.51 51.88

0.38 0.43 95.69 43.87 60.16

Average 90.37 53.28 65.39

In Chen’s literature [16], a large radius filter was used to cover the entire crown and
eliminate small interference areas, but the filter with a fixed radius was difficult to apply
to the extraction of crowns with different diameters and shapes. The multi-radius filter
method proposed in this paper can adapt to different tree crowns in typical scenarios, so the
application scope is more extensive. The experimental results show that the precision of the
compared method (90.37%) was slightly lower than that of the proposed method (93.29%),
while the recall (53.28%) was significantly lower than that of the proposed method (91.22%).
The main reason may be that the number of RoIs extracted by a single-radius filter was
limited, and a considerable part of the crown was not extracted, resulting in the support
vector machine (SVM) not getting enough input. This can be verified from the precision
and recall data in Table 6. Similarly, using color to divide tree crowns in olive groves is also
a beneficial approach [31], but this approach relies on a “clean” olive forest environment
and uses only a single small radius filter to eliminate weed interference. However, in a
complex environment, the accuracy of tree crown segmentation and detection counts will
be affected.

4.2. Strengths and Limitation

The crown morphology of broad-leaved seedlings in the study area is different from
that of adult trees. The 3D shape of the adult crown is similar to a semi-ellipsoid with
a radius determined by the outermost branches. The surface of the crown is composed
of leaves, thin branches, and the gaps between them. It presents a repetitive texture, but
generally there is no obvious fracture, and its surface is relatively “smooth”. In contrast,
the crown of broad-leaved seedlings is completely different from that of adult trees. The
crowns of larger seedlings in the image show irregular branches, and the canopy is divided
into several parts, which resemble a flower in the image (Figures 5–7). In addition, the
trunk may tilt in different directions, further increasing the deformation of the crown,
while the crowns of smaller seedlings have continuous contour lines, the two are very
different. The closed filter can be used to bridge narrow discontinuities and elongated
gullies, eliminate small holes, and fill in the breaks in the contour. In this study, the radius
of the filter was determined according to the size of the crown (20–70 cm) and the ground
sampling distance (0.7 cm, 1.3 cm). The closed filter with a larger radius can eliminate
the gap formed by splitting in multiple directions within the circumscribed circle of the
seedling crown. Obviously, the radius of the filter should be greater than half of the average
value of the gaps between different branches, but the irregular tree spacing caused by the
terrain and tree stem inclination should be noted, and a closed filter with a large radius
may connect adjacent tree crowns together. Therefore, the use of small filters can be used
to determine the position of small seedling crowns and eliminate the misconnection of
adjacent crowns in subsequent fusion. Thus, the main strength of this study was the use
of a multi-radius closed filter. This was designed for the difference of crown shape to
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enhance the ability to capture the crown of saplings. In other regions, the radius of the
filters can be quickly determined according to the range of crown diameter and the ground
sampling distance, which means that the proposed method of transfer only needs to set a
few parameters.

The optimal parameter selection of the proposed algorithm refers to the radius se-
lection of the closed filter [16]. The typical scene sample images were quickly selected
manually and the filter radius was selected in combination with the ground sampling
distance, so as to eliminate the interference caused by the wider variability of individual
characteristics of tree crown and their distribution in the whole study area. This design
was particularly advantageous because only RGB images of the study area were used and
the morphological differences among the sapling crowns were obvious. Although the
UAV images used in different studies were different, most of the published studies so far
only used a single fixed radius filter to eliminate interference or as a template for detect-
ing tree crown. The radii of the four closed filters used in this method were determined
by experiments on typical scene samples. As shown in Figures 5 and 6, compared with
the single-radius closed filter, the multi-radius extraction fusion algorithm significantly
improved the extraction effect, which is a comprehensible parameter as it represents the
different expected radii in pixels of the tree crown to be segmented. It can be seen that the
large radius extraction results included the missing areas of the small radius, while the
small radius extraction results subdivided the mixed areas in the large radius extraction.
The manual evaluation showed that the multi-radius extraction realized the extraction of
different sizes crown in the image and reduced the interference caused by the change of
light and crown shape.

The interference caused by weeds, brightness intensity difference, and multiple main
branches growing randomly in the crown of broad-leaved saplings may lead to the frag-
mentation of a single crown. Another strength of MREFCM is in fusing the fragments of
the same crown. In most agricultural plantations, the tree spacing is ideally regular [40],
so the distance parameter can be used to determine the center of the crown and eliminate
the interference of fragments. However, compared with plantations, in this study area,
the tree spacing and the crown radii were quite different, so it was impossible to use the
distance parameter to determine the crown center. In this study, by judging the average
crown distance calculated, selective fusion of crown fragments avoided repeated counting
of the same crown, thus improving the accuracy of counting (Figure 7).

Although the proposed method has good illumination intensity and shadow robustness,
there were still a few errors, such as extraction omission and identification error. For example,
in Figure 9a–d, yellow rectangles were used to mark the regions with wrong recognition,
where a tree crown was recognized as weeds or weeds were recognized as tree crowns, which
may be because those weeds and tree crown areas showed similar color and texture features,
which will be studied in the future. The missing tree crowns in Figure 9a,d were marked with
orange rectangles, and Figure 9a,b was taken at altitude of 20 m, while Figure 9c,d was taken
at 35 m. The reason for the omission may be that the illumination intensity of the tree crown
was lower than that of other crowns or the effective illumination area was smaller, choosing
to shoot when the illumination is sufficient may reduce this effect.

In this study, only the most common RGB images were used for tree crown recognition.
Although the proposed method did manually select the spectral index of the study area
based on typical images, the workload was very small and suitable for rapid inspection
of newly planted land. The method used in this study required spectral transformation
to enhance the difference between the crown and the background. Therefore, in different
tree species areas, different spectral indexes may need to be used, which may require the
collection of more kinds of seedling images for testing.

4.3. Future Studies

The method used in this study can be used to extract the crowns of broad-leaved
saplings of different shapes to increase the frequency of verification of new afforestation
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and examine the impact of environmental driving factors on the survival rate of afforesta-
tion. The crown recognition of broad-leaved saplings may be affected by many factors,
including the color difference between the crown and the background, the shape of the
crown, the density of the crown, and the interference of complex background on ITC
recognition. Recent studies have discussed the relationship between multiple data sources
and enhancing ITC recognition capability [44,47,49], LiDAR point cloud analysis [39],
multispectral analysis [41], convolutional neural network [46], and other methods that
improve the effect of ITC recognition by collecting data such as RE and LiDAR to obtain
more broad-leaved sapling features [24,39], using CNN and other algorithms to improve
the recognition effect of crowns [9,45]. Therefore, in future studies, more data sources
should be considered to extract potential features of tree crowns to further enhance the
accuracy of ITC recognition. These factors should be considered in future studies so that
beneficial afforestation measures can be used for intervention (e.g., replanting, fertilizing,
watering) at the right time.

5. Conclusions

This paper proposed a method that combines multi-radius filtering and fusion with
random forest to recognize ITCs in new forests. Experiments were carried out on the drone
image test set collected from the newly planted forest land in Xichuan County. This study
used statistical methods to select the appropriate spectral index to reduce the impact of
high coverage weeds in drone images. Multiple closed filters with different radii were used
to bridge the scattered canopy branches and reduce the interference of canopy debris. The
texture features and color vectors of LBP and GLCM together constituted the recognition
effect of texture feature space. A random forest composed of 500 trees is used to identify
RoI. The experimental results showed that the average recognition of the canopy in the test
set increased from 75.76% and 77.15% of a single texture feature to 92.94%, which indicates
that the combination of the two texture features plays an important role in improving
the recognition accuracy. When using high-resolution UAV images for new afforestation
verification, it is best to consider multiple texture features to improve the recognition effect.

The proposed method demonstrates the potential of UAV in forest monitoring. The
proposed method can be used as a valuable tool for precision forestry to improve the
efficiency of forest monitoring. However, red edge (RE) and LiDAR data should be
collected in future studies, and the verification of the proposed method should be extended
to fog or dust weather and different tree species.
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Appendix A

Figure A1 shows the original images of four typical fraction vegetation coverage
(FVC), and brightness intensity (BI), as well as the corresponding results of seven spectral
transformation methods, which are used to evaluate the optimal transformation methods
under different conditions.
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Figure A1. Detail of the UAV image from the study area. (a) 35 m (1.34 cm spatial resolution), HFVC, IB; (a1–a7) the result of transformation of (a) with image spectral index in Table 3.
(b) 35 m, HFVC, SB; (b1–b7) the result of transformation of (b) with image spectral index in Table 3. (c) 20 m (7.34 mm spatial resolution), MFVC, IB; (c1–c7) the result of transformation of
(c) with image spectral index in Table 3. (d) 20 m, MFVC, IB; (d1–d7) the result of transformation of (d) with image spectral index in Table 3.
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