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Abstract: Quantitative assessment of community resilience is a challenge due to the lack of empirical
data about human dynamics in disasters. To fill the data gap, this study explores the utility of
nighttime lights (NTL) remote sensing images in assessing community recovery and resilience in
natural disasters. Specifically, this study utilized the newly-released NASA moonlight-adjusted
SNPP-VIIRS daily images to analyze spatiotemporal changes of NTL radiance in Hurricane Sandy
(2012). Based on the conceptual framework of recovery trajectory, NTL disturbance and recovery
during the hurricane were calculated at different spatial units and analyzed using spatial analysis
tools. Regression analysis was applied to explore relations between the observed NTL changes and
explanatory variables, such as wind speed, housing damage, land cover, and Twitter keywords. The
result indicates potential factors of NTL changes and urban-rural disparities of disaster impacts
and recovery. This study shows that NTL remote sensing images are a low-cost instrument to
collect near-real-time, large-scale, and high-resolution human dynamics data in disasters, which
provide a novel insight into community recovery and resilience. The uncovered spatial disparities of
community recovery help improve disaster awareness and preparation of local communities and
promote resilience against future disasters. The systematical documentation of the analysis workflow
provides a reference for future research in the application of SNPP-VIIRS daily images.

Keywords: community resilience; nighttime light remote sensing; GIS; human dynamics; remote
sensing; spatial analysis

1. Introduction

Natural disasters continue to cause widespread and long-lasting economic, social,
and environmental impacts during the past decades. Hurricanes, one of the devastating
natural hazards in the United States, adversely interrupt businesses, impact transportation,
and disrupt communities. Empirical evidence shows that communities may suffer from
different consequences and recover at different rates during a disaster. Such differences
can be attributed to community resilience, which is the critical ability of individuals and
communities to cope with, adapt to, and recover from external stresses [1]. To reduce the
adverse impacts of disasters, considerable efforts have been made to understand and mea-
sure community resilience. One of the challenges in this endeavor is the lack of empirical
data to monitor different aspects of human activities in disasters [2]. Previous studies on
community resilience mostly rely on qualitative data (e.g., surveys and interviews) [3–5]
and resilience indices aggregated from socio-economic variables [6–10]. However, the qual-
itative data lack timeliness, are costly to acquire, and are inapplicable in large geographic
areas [2,11]. The resilience index-based approaches were theory-driven and lack validation
from empirical data [2,12]. Thus, there is a pressing need for large-scale, high-resolution
data to detect human dynamics in disasters, from which to extract new indicators to
measure community resilience.

With the development of remote sensing and earth observation techniques, various
types of images of the earth’s surface are captured at different spatial and temporal resolu-
tions. As a special type of remote sensing techniques, nighttime light (NTL) remote sensing
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captures artificial nocturnal lights generated from human activities, and thus are widely
applied to estimate population distribution and movement [13,14], monitor economic activ-
ity [15,16], urban growth [17], marine transportation [18], and energy consumption [19]. A
comprehensive review of applications of NTL data can be found in Levin et al. (2017) [20]
and Zhao et al. (2018) [21]. In the field of disaster management, previous work has applied
NTL to detect property damage [22–24], power outages [25–27], and estimate economic
recovery [15,16]. For example, Román et al. (2019) and Wang et al. (2018) used NTL data to
detect power outages in natural disasters [25,27]. Mohan & Strobl (2017) explored the use
of NTL in identifying short-term economic impacts and recovery of tropical Cyclone Pam
in South Pacific islands [16]. Compared with traditional remote sensing images captured in
the daytime, NTL images are particularly useful for detecting declines in human activities,
for instance, real estate bubbles [28] and evacuated cities [29] where physical land cover
remains the same, but the intensity of human activities has decreased. In a disaster process,
various community functions (e.g., population, economy, and infrastructure functionality)
may decline due to the hazard impact and gradually recover as the impact dissipates. This
unique feature makes NTL images a promising data source to fill the data gap in disaster
resilience assessment.

Among all publicly available NTL products, images from the Defense Meteorological
Satellite Program Operational Line-Scan System (DMSP-OLS) NTL data [30,31] and the
Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite
(SNPP-VIIRS) NTL data [30,32] are most widely used. As an older generation platform,
DMSP-OLS provides daily raw images and annual composites from 1992 to 2013 captured
by six different sensors. Due to the issues of radiance saturation in urban cores, coarse
spatial resolution (30 arc seconds, around 1 km), and absence of on-board and inter-satellite
calibration, the DMSP-OLS images are primarily used to analyze long-term socio-economic
changes, and are incapable to monitor human dynamics at a fine spatiotemporal resolution.
The NASA Black Marble product suite captured from the SNPP-VIIRS platform emerged in
2011 and has substantial improvements in spatial resolution (15 arc seconds, around 500 m),
spectral resolution (400–900 nm), and providing onboard calibration [30]. Despite these
improvements, the original VIIRS product (NASA product ID: VNP46A1) is still suffered
from noises of lunar illumination, twilight, and clouds. In 2020 August, NASA released the
VIIRS/NPP moonlight-adjusted daily images (NASA product ID: VNP46A2), which apply
advanced algorithms to eliminate noises from moonlight and correct the Bidirectional
Reflectance Distribution Function (BRDF). Due to these new features, the VIIRS daily
images become a valuable data source to study human dynamics at a fine spatiotemporal
resolution in natural disasters. Previous studies utilized the VIIRS daily images to detecting
power outages [27,33], building and infrastructure damages [23,24]. Despite the potential
of VIIRS images in disaster monitoring, its utility in assessing community recovery and
resilience has not been systematically evaluated.

In this study, daily moonlight-adjusted VIIRS/NPP images (VNP46A2) were applied
to monitor socio-economic impacts and community recovery during Hurricane Sandy
(2012), which is one of the most destructive natural disasters in U.S. history. The article
demonstrates the characteristics of the moonlight-adjusted VIIRS/NPP daily images and
documents the entire analytical process from data preprocessing, spatial analysis and
visualization, and statistical modeling. The utilities and limitations of the VIIRS/NPP daily
images in disaster management and resilience assessment were discussed. Specifically, the
spatiotemporal variations of NTL radiance were analyzed at multiple spatial scales (e.g.,
block groups, Core-Based Statistical Areas, etc.). Metrics derived from recovery trajectories,
including disturbance and recovery rate, were calculated from the NTL time series and
were analyzed over geographic space. Statistical analyses were conducted to examine the
relations between the NTL data and explanatory data (e.g., land cover data, damage data,
meteorological data, and Twitter data) in order to interpret the detected NTL variations.
This study aims to test the utility of the NTL as an alternative data source to monitor human
dynamics in natural disasters, which can provide novel insights and measurable indicators
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of community recovery and resilience. The results will provide practical guidance for the
future use of daily NTL images in disaster management and resilience assessment.

2. Study Area and Data
2.1. Study Area

Hurricane Sandy (2012), also called Superstorm Sandy, was formed in the western
Caribbean Sea on 22 October, made its landfall near Atlantic City in New Jersey in the
United States on 29 October, and finally dissipated on 2 November. Hurricane Sandy im-
pacted the Northeastern United States with heavy rain and strong winds and later caused
flash flooding and storm surge consequently. In total, 233 people were dead across eight
countries from the Caribbean to Canada and over 650,000 homes were damaged in the
US [34]. Moreover, Hurricane Sandy caused around 68.7 billion worth of damage, which
heavily impacted the economy in the Northeastern US. According to the Hazus disaster
damage model from the Federal Emergency Management Agency (FEMA), 12 states were
heavily impacted by Hurricane Sandy, including New York, Connecticut, New Jersey,
Delaware, District of Columbia, Maryland, Massachusetts, New Hampshire, Pennsyl-
vania, Rhode Island, Virginia, and West Virginia [35]. To capture human dynamics in
populated areas, 66 Core-Based Statistical Areas (CBSAs) within 12 states, including both
metropolitan and micropolitan statistical areas, are selected as the study area (yellow areas
in Figure 1) (CBSA data can be downloaded from the US Census [36]). According to
2010 American Community Survey (2012ACS 5-year estimates) and Bureau of Economic
Analysis (BEA) data, the study area has a 19.7% of the US total population (60,876,820
out of 308,745,538) and contributes 28.7% of the Gross Domestic Product generated in
the US in 2012 ($4,107,550,656,000 out of $14,332,171,020,000). Within these 66 CBSAs,
52.3 million people (86.0% of the total population) lived in coastal areas. The population
in the study area consists of 69.0% White, 16.1% African American, and 6.2% Asian. The
research area has 5 of the 25 largest urbanized areas in the US, including Washington D.C.,
Philadelphia, New York City, Boston, and Baltimore [37]. In summary, the study area is one
of the most urbanized regions in the US and it is of utmost importance to analyze how a
well-developed region responds and recovers from one of the costliest Atlantic hurricanes
in US history. Four SNPP-VIIRS DNB tiles (h09v05, h10v04, h10v05, and h11v04) that fully
cover the study area were utilized to analyze NTL radiance changes. The spatial analysis
of NTL radiance has been conducted in pixels, block groups, and CBSAs to avoid the
Modifiable Areal Unit Problem (MAUP).
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2.2. NASA Black Marble Products

As the primary data source in this study, NASA Black Marble Product, also known
as the VNP46 product suite, includes two types of images: (1) NPP/VIIRS At-sensor
TOA Nighttime Radiance Daily L3 Global 500 m SIN Grid V001 (NASA product ID:
VNP46A1) and (2) NPP/VIIRS Moonlight-adjusted Nighttime Lights Daily L3 Global
500 m SIN Grid V001 (NASA product ID: VNP46A2). VNP46A2 products are enhanced
from VNP46A1 by screening moonlight and calibrating the BRDF. VNP46A1 products
only contain fundamental layers, such as spectral bands, acquisition time, and original
radiance collected from the sensor. Improved from VNP46A1, the VNP46A2 products
include additional layers, such as BRDF-corrected radiance, BRDF-corrected gap-filled
radiance, mandatory quality assurance (QA) flags, and snow flags, which inform the data
quality and correction been conducted at each pixel. Images used in this study were
downloaded from NASA’s Level 1 and Atmosphere Archive and Distribution System
Distributed Active Archive Center (LAADS-DAAC) using the modified PowerShell wget
tool (version 5.1.18362.1801) in Windows OS with two parameters: (1) Tiles: four tiles
(h09v05, h10v04, h10v05, and h11v04) covering the study area (Figures 1 and 2). Time: day
numbers from 275 (22 October) to 335 (17 November) in 2012 [32,38].
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Figure 2. Daily average nighttime lights in Tile h10v04 from 1 October 2012 to 30 November 2012.

The NTL radiance data were extracted from the compressed Black Marble images
in Hierarchical Data Format (HDF5) using R. The BRDF-corrected radiance (in VNP46A1
products), BRDF-corrected gap-filled radiance (VNP46A2), and non-corrected radiance at
sensor (in both VNP46A1 and VNP46A2) were compared in Figure 2. The result shows
that the corrected radiance (VNP46A2 & VNP46A2 gap-filled) has a more stable daily
NTL radiance compared with the original radiance (VNP46A1) that is fluctuated due to
moonlight cycles (Figure 2). The UTC_Time layer in the VNP46A1 products contains the
UTC time when nighttime radiance is acquired. Four types of QA values in the VNP46A2
products indicate the quality of pixels: value 00 denotes high-quality persistent NTL, value
01 means high-quality ephemeral NTL, value 02 is poor quality (outlier, potential cloud
contamination, or other issues), and value 255 is no retrieval (VNP46A2 gap-filled layer
applies high-quality pixels from the nearest date to replace no-retrieval pixels) [32,38]. To
ensure high-quality and consistent NTL radiance, this study only used high-quality pixels
(value 00) in the non-filled images (VNP46A2) and excluded pixels in the other quality
levels (01, 02, and 255). Daily NTL images of the research area that are collected by a single
scan and mainly covered by high-quality pixels were used. Then the qualified daily NTL
images were mosaiced in R and later cropped into different spatial units (e.g., block groups,
CBSAs, etc.) for spatial and explanatory analysis.
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2.3. Auxiliary Data

Auxiliary data were collected from multiple sources to explain the variation of NTL
during Hurricane Sandy (Table 1). The auxiliary data include wind speed data, dam-
aged housing unit data, Twitter data, land-use data, and proximity data, all of which are
considered to have potential relations with NTL variation. Wind speed data at ground
observations in the study area were obtained from the National Oceanic and Atmospheric
Administration (NOAA) Hurricane Sandy aftermath report [39]. Damaged housing unit
data at the block-group level were acquired from the U.S. Department of Housing and
Urban Development (HUD) [40]. Twitter data were collected from Archive.org (an online
archive of digital materials) from 22 October 2012 to 17 November 2012 and aggregated
at the Core-Based Statistical Area (CBSA) scale according to geotags and user locations.
Defined by the Office of Management and Budget (OMB), a CBSA is a geographic area
that consists of one or more counties (or equivalents) anchored by an urban center of at
least 10,000 people plus adjacent counties that are socioeconomically tied to the urban
center by commuting [41]. CBSA refers collectively to both Metropolitan Statistical Areas
(MSA) and Micropolitan Statistical Areas (µSA). The NLCD 2011 Land Cover (product
name: NLCD_2011_Land_Cover_L48_20190424) and NLCD 2011 Developed Impervious-
ness Descriptor (product name: NLCD_2011_Impervious_descriptor_L48_20190405) in
the Contiguous United States (CONUS) from the Multi-Resolution Land Characteristics
(MRLC) Consortium (http://www.mrlc.gov, accessed on 18 September 2021) [42–47] were
used to compare NTL changes in different land uses. Spatial analysis tools were applied
to aggregate and analyze the NTL data in different spatial units and land-use types. In
addition, the hurricane trajectory was collected from National Weather Service (NWS) and
was used to calculate the proximity to Hurricane Sandy using Euclidean Distance.

Table 1. Description of auxiliary data.

Variable Description Spatial Scale Data Source

Wind Speed Recorded maximum surface wind speed from 1-km buffer NOAA

Housing Damage Percentage of the non-seasonal damaged
housing units Block group HUD

Tweet Ratio Ratios of tweets including specific keywords,
such as ‘hurricane’, ‘sandy’, etc. CBSA Archive.org

Distance to Hurricane Euclidean distance of the place from the
hurricane trajectory Pixel NWS

Land Use & Land Cover Land Cover and Developed Imperviousness
Descriptor Land-use types MRLC

3. Analysis
3.1. Conceptual Framework of Recovery Trajectories

Based on the concept of resilience including resistance and recovery, resilience under
the disastrous condition should be measured on both the reduction of functional capac-
ities and the recovery of the capacities to a normal condition [48]. Recovery trajectories
conceptualize resilience as a dynamic process that describes the change of a social system’s
functional capacities after a shock, such as natural disasters. Figure 3 shows an example
of the recovery trajectory where a functional capacity suddenly declines after the disaster
and gradually recovers subsequently. The conceptual framework of recovery trajectories
has been widely used to measure the resilience of social-ecological and infrastructural
systems [49–53]. The variation of recovery trajectories among different places can indicate
resilience. In this study, due to varying the atmospheric condition during the hurricane,
many images do not have sufficient high-quality pixels covering the study area. The time
series of the images cannot provide continuous recovery trajectories. Thus, the analysis
of NTL changes is limited to three sampling points at pre-disaster, in-disaster, and post-

http://www.mrlc.gov
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disaster phases. Specifically, the Disturbance Rate (DNTL) and Recovery Rate (RNTL) of
NTL radiance are measured from the three sampling points:

DNTL =
E(NTLin)− E

(
NTLpre

)
E
(

NTLpre
) (1)

RNTL =
E
(

NTLpost
)
− E(NTLin)

E
(

NTLpre
) (2)

where NTLpre, NTLin, and NTLpost denote the NTL radiance measured in the pre-, in-,
and post-disaster phases respectively (Figure 3). The function E calculates the mean NTL
radiance within a spatial unit (e.g., block groups or CBSAs) or land use type. In general, a
small disturbance (low DNTL) and fast recovery (high RNTL) would indicate high resilience,
while high DNTL and low RNTL mean the opposite.
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3.2. NTL Image Selection and Processing

NTL data from four tiles were extracted from the VNP46 suite and mosaiced, including
the UTC time layer, mandatory QA flag layer, and three radiance layers. Boundaries of
66 CBSAs in the Northeastern US were used as the extent of the extracted NTL data. Due
to varying cloud cover, the data quality of NTL images is very unstable during the disaster
period. Thus, we selected images with sufficient high-quality pixels in three disaster phases
(pre-disaster, in-disaster, and post-disaster) to analyze NTL changes.

Referring to previous studies [33,54], we split the hurricane process into three periods
by the landing time (29 October) and dissipating time (2 November), including the pre-
disaster period (22–28 October), the in-disaster period (29 October–1 November), and the
post-disaster period (2–17 November). Three sampling time points were used to represent
NTL radiance in the three periods respectively. The selection is based on two criteria:
data quality and single acquisition time. For the former criterion, dates are selected when
the study area is mostly covered by high-quality (cloudless) pixels. For the latter criteria,
only days when the study area is scanned at the same time are selected. Figure 4 shows
the UTC_Time layers (denoting the acquisition time in UTC) in the VNP46A1 products
from 22 October to 17 November in 2012. The blue dashed lines indicate days when the
study area is covered by image tiles, scanned at different time points. As an example, on
8 November the study area is covered by two image tiles scanned at different time points
(red and cyan in Figure 5a). A clear radiance difference can be observed in the boundary
between the two tiles (see Figure 5b). Thus, mosaicking of images with various scanning
time points on the same day can cause inconsistent NTL radiance over space. To avoid this
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bias, dates with multiple acquisition times (highlighted in blue dashed lines in Figure 6)
were excluded from the selection.
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Combining the two criteria, 22 October was selected as the sampling time point in the
pre-disaster period. 17 November was selected as the sampling point in the post-disaster
period with additional considerations. First, dates between 6 November and 10 November
were excluded from the selection to eliminate impacts from the 2012 Nor’easter Storm.
12 November meets both criteria but does not cover the populated areas (e.g., New York
City) near the landfall location, and thus was not selected. Due to the thick cloud brought
by the hurricane, it has been a challenge to find a single image meeting both criteria during
the in-disaster period. Thus, the two images on 31 October and 1 November were combined
to create a larger spatial coverage. When combining the images, if a pixel had a high-quality
flag on both days, the average NTL radiance of the two days was assigned in the combined
image. If a pixel had a good QA value in one of the two days, the NTL radiance on that day
was selected. Pixels with poor QA values on both days were excluded from the analysis.

3.3. Spatial Analysis

The spatial variation of NTL changes metrics (DNTL and RNTL) in Hurricane Sandy
was analyzed in different spatial units, including the pixel, block group, and CBSA level,
thus avoiding the MAUP in the spatial analysis. At the pixel level, DNTL and RNTL were cal-
culated in high-quality pixels at the three sampling time points using Equations (1) and (2).
For visualization purposes, a 5-by-5 focal window was applied to smooth the spatial pat-
tern at the pixel level. At the block-group and CBSA level, zonal statistic methods were
used to aggregate DNTL and RNTL in each spatial unit. To mainly focus on the illuminated
areas at night, a mask of impervious surface area (NLCD 2011 Developed Imperviousness
Descriptor) was applied to the NTL radiance before aggregating DNTL and RNTL. Then,
choropleth maps were produced to visualize the spatial distribution of DNTL and RNTL at
two levels. Comparing different distribution maps, spatial variations of NTL change as
well as the underlying factors were discussed. Additionally, the zonal statistics tool was
applied to extract and compare NTL radiance in different land uses.
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3.4. Regression Analysis

Univariate ordinary least square regression was applied to examine the relation
between NTL radiance changes (DNTL and RNTL) and each explanatory variable. The
equations of the regression model are as follows:

y = β ∗ xi + ε (3)

where xi is the explanatory variable, y is DNTL or RNTL derived from NTL changes using
Equations (1) and (2), and ε is the residual.

First, wind speed data were analyzed at the 1-km buffer scale. The maximum surface
wind speed data during Hurricane Sandy in the research area were collected from the
NOAA Hurricane Sandy aftermath report, geocoded based on the geographic coordinates,
and later used to explain the spatial variation of disturbance (DNTL) and recovery of NTL
(RNTL) [39]. In total, 387 observation stations located in high-quality pixels were used to
analyze the relations. Maximum surface wind speed occurred near the landfall time (from
29 October, 12:51 pm UTC to 30 October, 4:57 am UTC) at these stations were compared
with NTL changes in 1-km buffers around the stations.

Second, damaged housing unit data were analyzed at the block-group scale. Data
collected from HUD include block groups in New York, New Jersey, Connecticut, and
Rhode Island. Percentage of non-seasonal damaged housing units in block groups were
used (pct_dmg_ns in the HUD dataset) as an explanatory variable. This percentage was
calculated using the number of damaged non-seasonal housing units divided by the
number of total non-seasonal housing units.

Third, geocoded Twitter data were assessed at the CBSA scale. According to user
profiles and geotags, the collected tweets were geocoded at the city level and linked to
each affiliated CBSA. Hurricane-related tweets were retrieved by querying the keywords
‘hurricane’ and ‘sandy’. The retrieved tweets were preprocessed by removing stop words
(e.g., a, the, is, etc.) and word stemming (e.g., converting flooded/flooding/floods to
flood). The average sentiments of hurricane-related and all tweets in each CBSA were
calculated using the Valence Aware Dictionary and sEntiment Reasoner (VADER) package
(version 3.2.1) in Python 3.8.2 (https://pypi.org/project/vaderSentiment/, accessed on 18
September 2021) [55,56]. The ratio of hurricane-related tweets to all tweets was calculated
in CBSAs. Next, tweets containing various keywords (e.g., ‘electric’, ‘close’, ‘outage’,
‘flood’, ‘evacuate’, ‘wind’, ‘rain’, ‘storm’, and ‘damage’) were extracted from the hurricane-
related tweets. The selection of keywords refers to previous studies that utilize Twitter
data to study natural disasters [54,57,58]. The ratio of tweets containing each keyword was
calculated in CBSAs, with the number of tweets containing the keyword as the nominator
and the number of all geocoded tweets as the denominator. The relation between tweets
and NTL change was compared among CBSAs using univariate regression models.

Fourth, Euclidean Distance was applied to calculate the distance to the hurricane
trajectory in each pixel. The relations of DNTL and RNTL in each pixel to distance to
hurricane track were examined using regression analysis. Additionally, DNTL and RNTL.
were compared in different land use and land cover (LULC) types. The comparison was
conducted in two LULC classifications, including NLCD 2011 Land Cover (CONUS) and
NLCD 2011 Developed Imperviousness Descriptor (CONUS). Zonal statistics were used to
calculate the mean value of DNTL and RNTL in each land-use type.

Finally, results from all univariate regression models at different research scales are
summarized in the table. The coefficients of these models (e.g., p-value, R2) are reported to
indicate the significance of the relationships. Variables with high correlation with DNTL and
RNTL are highlighted. The potential driving factors of these significant correlations with
the NTL change are discussed. The workflow of the entire analysis process is summarized
in Figure 7.

https://pypi.org/project/vaderSentiment/
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4. Results
4.1. Temporal Changes of NTL Radiance

Within the study area, 39 CBSAs with sufficient high-quality pixels were plotted in
Figure 8. Thirty-two CBSAs (82.1% of the 39 CBSAs) show a decline of NTL radiance on Oct.
31 or Nov. 1 (i.e., in-disaster time point) and a recovery on 17 November (the post-disaster
time point). This V-shaped pattern is analogous to the recovery trajectory introduced in
Section 3.1, which may reflect the disturbance and recovery of certain human activities.
However, the exact pattern differs in different CBSAs. On 17 November (post-disaster), the
NTL radiance in 22 CBSAs (56.4% of the 39 CBSAs) have fully recovered or exceeded the
pre-disaster level (denoted as ‘recovered’ in Figure 8), while the other 10 CBSAs (25.6%)
have not fully recovered (denoted as ‘not recovered’ in Figure 8). The remaining 7 CBSAs
(17.9%) in other patterns (denoted as ‘Other’ in Figure 8) were excluded in the next steps
as not showing a similar pattern to the recovery trajectory. For example, Springfield in
Massachusetts and Torrington in Connecticut show an opposite pattern: the NTL radiance
is highest at the in-disaster time point.

4.2. Spatial Patterns of NTL Change

The spatial patterns of DNTL and RNTL are shown at the pixel and CBSA levels in
Figure 9. At the pixel level (Figure 9a,b), the New York/New Jersey Bight area has a large
NTL disturbance (high absolute value of DNTL, red color) in the hurricane and a strong
recovery after the hurricane (high RNTL). This area is highly populated and close to the
landfall location of Hurricane Sandy. As an exception, the center of New York City only
had moderate NTL disturbance and recovery. Additionally, NTL disturbance can also be
observed in Providence, Virginia Beach. At the CBSA level (Figure 9c,d), the metropolitan
areas near New York City and Providence had a large NTL reduction (high absolute DNTL),
but the NTL in most areas soon recovered from the reduction (high RNTL). Regions near
Providence, Philadelphia, New York, Washington D.C., have recovered to the pre-disaster
condition and can be considered resilient from this perspective. Several inland areas, such
as Lancaster and York-Hannover CBSA in Pennsylvania, experienced NTL reduction and
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did not recover to their pre-disaster condition. As can be observed in Figure 9, the NTL
disturbance shows different spatial patterns when aggregated in different spatial units. For
example, areas near Virginia Beach had a large NTL reduction at the pixel level but had a
small reduction at CBSA level. The variation in different spatial levels demonstrates the
MAUP when analyzing the NTL changes.
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4.3. Univariate Regression Results

Univariate regression analyses were conducted to associate the NTL variation with
explanatory variables. The purpose of the regression analysis is to find underlying factors
that can explain the spatial variation of NTL radiance observed in the spatial analysis
(Section 4.2). Depending on the resolutions of the auxiliary data, regression results at all
spatial scales are listed in Table 2. In this study, we consider p < 0.05 and R2 > 0.13 [59] as
significant relations. Highlighted in bold font in Table 2, 6 of the total 36 regression models
meet both criteria. First, a significant relation between NTL fluctuation (DNTL and RNTL)
and wind speed is detected, indicating high wind speed caused a V-shape recovery pattern
(low negative DNTL and high positive RNTL) during the hurricane. This result suggests
that large DNTL disturbance occurred in areas that experienced severe physical impacts
from the hurricane. At the CBSA scale, regression analysis was conducted to associate
NTL changes with Twitter data. Significant relations are detected between: (1) DNTL and
the ratio of keyword ‘damage’, (2) DNTL and the ratio of ‘sandy’, (3) RNTL and the ratio
of ‘electric’. The first relation suggests that the NTL disturbance is a signal of property
damage. The significant relation with the keyword “sandy” indicates areas experienced
high NTL disturbance also have more people discussing the hurricane in Twitter. The
relation between RNTL and keyword ‘electric’ may imply that electric outage or restoration
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is an important factor in the recovery process. These detected relations indicate that the
NTL changes may reflect certain aspects of human activities related to the Twitter keywords.
Moreover, a significant relation between DNTL and distance to the hurricane track was
detected at the CBSA level, indicating that a higher NTL reduction was observed near the
hurricane track. Due to low p-value or R2, the other 30 regression models do not show
significant relations.

Finally, NTL metrics (DNTL and RNTL) were compared among different LULC types.
Figure 10a shows that non-urban land cover types (open water, barren lands, cultivated
crops) have a large radiance reduction (large absolute value of DNTL) and relatively slow re-
covery (lower RNTL). Urban areas, including high-, medium-, and low-intensity developed
land, and open space had relatively small radiance reduction (small absolute DNTL) but
faster recovery (higher RNTL). Among the four urban land uses, high-intensity developed
area had the largest NTL reduction (largest absolute DNTL) in the hurricane. In different
imperviousness surfaces, primary and secondary roads had large radiance reduction (large
absolute DNTL) which may be caused by interrupted traffic (Figure 10b). The recovery rate
of primary roads in urban areas is higher than primary roads in non-urban areas. Tertiary
and secondary roads outside urban areas had little fluctuations (low absolute DNTL and low
RNTL). In general, roads within urban areas have shown a strong post-disaster recovery,
while roads in rural areas take longer to recover.
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Table 2. Relationship between the reduction in NTL radiance and auxiliary damage data.

Independent Variable
DNTL RNTL

Spatial Scale Sample #
β R2 RMSE Pr (>|t|) β R2 RMSE Pr (>|t|)

Wind speed −0.012 0.241 0.198 0.000 *** 0.014 0.182 0.278 0.002 ** 1-km buffer 387
Percentage of damaged housing units −0.001 0.006 0.23 0.019 * 0.001 0.001 0.378 0.285 Block group 909

Tweet ratio (disaster-related to all) −0.794 0.016 0.134 0.449 1.260 0.028 0.157 0.308 CBSA 39
Tweet ratio (keyword: close) 1.519 0.002 0.134 0.794 2.762 0.004 0.159 0.689 CBSA 39

Tweet ratio (keyword: damage) −46.617 0.171 0.123 0.009 ** 38.760 0.084 0.152 0.073 CBSA 39
Tweet ratio (keyword: electric) −86.394 0.096 0.128 0.055 135.288 0.168 0.145 0.009 ** CBSA 39

Tweet ratio (keyword: evacuate) −21.121 0.041 0.132 0.215 3.744 0.001 0.159 0.854 CBSA 39
Tweet ratio (keyword: flood) −16.233 0.043 0.132 0.205 13.727 0.022 0.157 0.368 CBSA 39

Tweet ratio (keyword: hurricane) −3.865 0.009 0.134 0.576 12.130 0.060 0.154 0.132 CBSA 39
Tweet ratio (keyword: outage) 4.648 0.002 0.134 0.798 −28.488 0.048 0.155 0.181 CBSA 39

Tweet ratio (keyword: rain) −10.851 0.089 0.128 0.065 8.484 0.039 0.156 0.229 CBSA 39
Tweet ratio (keyword: sandy) −19.519 0.157 0.124 0.012 * 20.013 0.118 0.150 0.032 * CBSA 39
Tweet ratio (keyword: storm) 1.289 0.004 0.134 0.707 2.277 0.009 0.159 0.575 CBSA 39
Tweet ratio (keyword: wind) −16.754 0.034 0.132 0.263 24.195 0.050 0.155 0.170 CBSA 39

Average sentiment (total tweets) −0.429 0.004 0.134 0.690 −0.579 0.006 0.159 0.649 CBSA 39
Average sentiment (disaster tweets) −0.051 4.05 × 10−4 0.135 0.903 −0.186 0.004 0.159 0.708 CBSA 39

Distance to hurricane 2.32 × 10−7 0.001 0.777 0.000 *** −3.05 × 10−7 0.002 0.870 0.000 *** Pixel 67793
Distance to hurricane 3.58× 10−7 0.156 0.124 0.013 * −3.12 × 10−7 0.084 0.152 0.073 CBSA 39

*** p < 0.001, ** p < 0.01, * p < 0.05.
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5. Discussion

The analysis aims to evaluate the utility of NTL images as a potential data source to
study community resilience. Compared with previous studies, this study has the following
contributions. First, it demonstrates the utility of the new moonlight-adjusted Black Marble
images (VNP46A2) in detecting short-term human dynamics in a disaster. Despite the
advancements claimed by NASA, the utility of the new image product has not been tested
in real disaster events. This study systematically documented the analytical workflow
and noted potential issues of the new image product, which are of reference values for
future studies. Second, this study uses the conceptual framework of recovery trajectory to
quantify temporal patterns of NTL radiance in a disaster. This brings cutting-edge remote
sensing techniques to resolve challenges in resilience assessment. The spatial analyses
of disturbance (DNTL) and recovery (RNTL) revealed geographical disparities of human
activities during the disaster, which provide novel insights into community recovery and re-
silience. We recognize the complexity of community resilience, which cannot be adequately
measured using the two indicators. Instead, the study demonstrates the value of NTL im-
ages in providing timely and high-resolution data of human dynamics in disasters, which
serves as an empirical grounding for developing and validating resilience measurement.

5.1. Interpretation of NTL Spatial Pattern

By comparing the disturbance (DNTL) and recovery rate (RNTL), the analysis revealed
geographical disparities of recovery patterns in different CBSAs. In general, populated
areas near the landfall location (including New York City) experienced a large disturbance
but fast recovery, indicating the strong ability to bounce back in these areas. At the pixel
level, the hurricane caused a large disturbance near the landfall location, including Ocean
City in Maryland and Atlantic City in New Jersey. However, this region did not recover
as fast as New York City. Several small CBSAs northeast to the landfall location (e.g.,
Springfield and Torrington in Connecticut and Pittsfield in Massachusetts) had a relatively
smaller disturbance and recovery slower, which is possibly due to the impact of Nor’easter.

The analysis shows that the NTL metrics (DNTL and RNTL) are significantly correlated
(p < 0.05 and R2 > 0.13) with 6 of the 36 variables, including wind speed, distance to
hurricane, and ratios of keyword ‘sandy’, ‘damage’, and ‘electric’ in Twitter. Although the
relatively low R2 suggests limited prediction power of the regression models, the detected
significant relations provide insights to the potential factors causing the NTL changes. The
significant relations of the NTL metrics with wind speed indicate that the NTL fluctuation
is mainly attributed to the hazardous weather condition brought by the hurricane. This
finding confirmed that damaging wind is one of the primary causes of hurricane-inflicted
loss of life and property damage as documented in the literature [34,60–62]. Additionally,
the high-wind areas are mostly located near the hurricane track, where the intensity of
human activities were significantly reduced due to various reasons. For example, the
largest NTL reduction is observed in the New York/New Jersey Bight area, which is a
highly populated coastal area to the northeast of the landfall location. During the hurricane,
a large population was evacuated from the predicted impact area, especially in New York
City and surrounding cities in New Jersey [63]. Also, the hurricane has caused businesses
and road closures, which lead to reduced visitations and traffic [64,65]. The evacuation
and business closures are possibly the cause of NTL radiance reduction observed in urban
areas. The relatively small NTL reduction in the center of New York City may reflect
the local gathering of emergency responders [64]. The significant relation between NTL
disturbance (DNTL) and the ratio of keyword ‘sandy’ demonstrates a direct link between
social media activity and NTL disturbance. Intensive discussions about the hurricane on
Twitter occurred in areas that experienced large NTL disturbance. The literature shows
that Twitter data is an effective indicator of human dynamics in disasters [54,66,67]. The
correlation between NTL and Twitter further confirms the observed NTL changes likely
reflect socio-economic impacts instead of other factors. Specifically, NTL disturbance
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(DNTL) is significantly related to the ratio of keyword ‘damage’ in Twitter, which implies
that the NTL radiance reduction may reflect damage to properties and infrastructures.
Literature documented severe property damage in Ocean County in New Jersey [68],
which is consistent with the large reduction of NTL observed in Figure 9a. The significant
relation between the ratio of keyword ‘electric’ and NTL recovery (RNTL) implies that
areas concerned about electric issues recovered more quickly. This result agrees with the
literature that restoration of electric supply played an important role in community and
business recovery [69,70]. Additionally, DNTL has a significant relation with distance to
hurricane track at the CBSA level, which confirms that the NTL disturbance is related
to hazardous conditions in the hurricane. Areas closer to hurricane track were likely to
experience strong wind, storm surge, and flooding brought by the hurricane, which lead to
reduced intensity of human activity (e.g., evacuation, road/business closure).

Despite the detected significant relations, further research is needed to build robust
models to explain the underlying causes of the observed NTL changes. The relatively
low R2 in the regression models may be attributed to insufficient high-quality images for
continuous monitoring, as well as the lack of fine-resolution human dynamics data to
compare with the NTL changes. Also, resampling the NTL data to the same scale of the
exploratory variables may result in potential data loss or bias, thus affecting the model
fitting. Future work is needed to ground-truthing the detected NTL patterns from other
data sources, such as real-time traffic data [51], mobile phone tracking data [71], and
survey data.

In general, larger disturbance (large absolute DNTL) and faster recovery (large RNTL)
can be observed in urban land cover and roads. In contrast, most rural land cover and
road types had smaller NTL changes (small absolute DNTL and small RNTL) during the
hurricane. This rural-urban disparity possibly indicates that NTL radiance is more sensitive
to human dynamics in the populated area. Meanwhile, some rural areas in the state of
Virginia, New York, and Connecticut still have not recovered to the pre-disaster condition
on 17 November. The slow recovery potentially indicates low resilience in these rural
areas. In addition to the large cities where public attention and resources are concentrated,
more actions are needed to assist the recovery of rural areas that are often marginalized in
disaster management [72,73].

5.2. Utility of the Black Marble Product in Disaster Monitoring

This study has attempted the use of new moonlight-adjusted NTL daily images to
detect short-term recovery trajectories of human activities in Hurricane Sandy. Despite
the limited high-quality images covering the study area during the hurricane, a V-shape
pattern of NTL radiance has been detected in 82.1% of the studied CBSAs, which generally
resemble the pattern of a recovery trajectory observed in other studies [33]. This result
confirmed the utility of the daily Black Marble images in sensing disturbance and recovery
of human activities in the hurricane. The remaining 12 CBSAs (17.9%) showing other
patterns may be explained by a few possible reasons. First, these places were not impacted
by the hurricane, and the NTL changes reflect normal activities (e.g., traffic congestion,
public events, and power outage). Second, the larger in-disaster NTL can result from the
evacuated population, which normally illuminated the evacuation sites and increase the
local NTL. Third, inherent noise in Black Marble images, such as atmospheric reflection
and lightning, may also introduce bias to the NTL radiance. Further investigations are
needed to explain the real causes of the other patterns.

Despite the detected patterns of NTL changes, due to the characteristics of the Black
Marble images, the analysis is still limited in the following aspects. First, the utility of
daily NTL images is highly dependent on the atmospheric condition. Due to the cloudy
sky during the hurricane, only images collected on some days have enough high-quality
pixels covering the study area. Thus, the analysis is limited to three sampling points
during the hurricane. Second, mosaicking images with different acquisition times may
cause inconsistent NTL radiance in the study area. To overcome this issue, this study only
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selected days when the images were from a single scan, which ensures consistent NTL
radiance over space. However, this selection criterion further reduces useable images for
analysis. Ideally, the radiance inconsistency at different acquisition times can be calibrated
before temporal analysis, which requires future work. Third, the influence of the other
storm (Nor’easter Storm) affected the detected recovery pattern. Though dates around
the Nor’easter are excluded in this study, NTL radiance at the post-disaster phase may be
affected by the Nor’easter. The results interpreted in this study may reflect overlapped
impacts and community responses in both disasters. In summary, these limitations indicate
that the daily NTL images may not continuously provide high-quality data in hurricanes
and flooding events when the atmospheric condition is not stable. Systematic data filtering,
processing, and analysis are needed to develop valid analysis results. Instead, the daily
NTL images may be more suited in monitoring disaster processes with a clear sky, such
as an earthquake and tsunami. Although the moonlight-adjusted Black Marble Product
brings advantages in resolution, data quality, and superior calibration algorithms, their
applications need to be carefully designed according to specific disaster conditions.

5.3. Future Work

A few improvements in NTL products can be conducted in future studies. First, the
resolution of current NTL data can be improved with additional data layers. Despite the
500 m (15 arc seconds) resolution of the Black Marble images is already an improvement
from the older generation DMSP-OLS products, the pixel size is still too large to be precisely
assigned to different land-use types or damaged structures, which creates difficulty to
interpret the detected radiance changes. A possible solution is upsampling the NTL data to
a finer resolution with additional data layers. For example, Zhao et al. (2018) upsampled
the NTL image from 0.00833◦ (30 arc seconds, about 1 km) to 0.00416◦ (15 arc seconds,
about 500 m) resolution by overlaying with geotagged social media data layers [74]; Román
et al. (2019) upsampled the NTL image from 500 m (15 arc seconds) to 30 m resolution by
overlaying with surface reflectance layers from Landsat 8 and Sentinel-2 [25]. Second, new
techniques can be applied to make use of low-quality pixels in NTL images. In this study,
only high-quality pixels were used to analyze the daily NTL changes, leading to the limited
coverage of the disaster area. In future studies, low-quality pixels may be calibrated by
simulating atmospheric refraction and interpolating using neighboring high-quality pixels.
Including low-quality pixels in analysis can significantly increase the monitoring area to
obtain continuous data about human dynamics in disaster areas. Third, the validation
issue needs to be solved. Currently, the detected NTL patterns cannot be fully explained
by the selected variables, thus the causes of fluctuation remain uncertain. In the future,
the NTL radiance will be compared with additional types of data (e.g., traffic data, mobile
phone tracking data, and survey data) to fully understand the relation between NTL
fluctuation and community recovery and resilience. Additionally, through applications in
more disaster events, the utility of NTL data for resilience assessment can be further tested
and the analytical method can be refined.

6. Conclusions

This study evaluated the use of NASA’s new moonlight-adjusted Black Marble Prod-
ucts (SNPP-VIIRS VNP46A2) in detecting human activities during a major disaster (Hurri-
cane Sandy). The study documented the analytical workflow from data collection, process-
ing to data analysis and interpretation. The spatial analysis revealed the spatial variation
of NTL radiance changes during the disaster. Univariate regression analyses were con-
ducted to associate the NTL changes with auxiliary data, aiming to find explaining factors
of the observed spatial variance. This study not only confirmed the merits of the NTL
products in observing community recovery in disasters, but also identified issues that
need to be resolved in future analysis. The findings and limitations discussed in this study
recommend further research on associating additional ancillary datasets on environmental,
socioeconomic, and demographic aspects. Overall, this study shows that daily NTL data
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is of great potential for exploring the impact on human activities during disasters and
calls for more contributions in the methods and applications of daily SNPP-VIIRS NTL
data. For broader implications, our framework on daily NTL data can be applied in other
disasters and broader fields, such as detecting population movement, economic growth,
and urbanization at both short-term and long-term scales.
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