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Abstract: In this study, we aimed to investigate the hydrological performance of three gridded
precipitation products—CHIRPS, RFE, and TRMM3B42V7—in monthly streamflow forecasting.
After statistical evaluation, two monthly streamflow forecasting models—support vector machine
(SVM) and artificial neural network (ANN)—were developed using the monthly temporal resolution
data derived from these products. The hydrological performance of the developed forecasting
models was then evaluated using several statistical indices, including NSE, MAE, RMSE, and R2. The
performance measures confirmed that the CHIRPS product has superior performance compared to
RFE 2.0 and TRMM data, and it could provide reliable rainfall estimates for use as input in forecasting
models. Likewise, the results of the forecasting models confirmed that the ANN and SVM both
achieved acceptable levels of accuracy for forecasting streamflow; however, the ANN model was
superior (R2 = 0.898–0.735) to the SVM (R2 = 0.742–0.635) in both the training and testing periods.

Keywords: streamflow forecasting; artificial neural network; support vector machine; remote sensing;
satellite precipitation products; upper Blue Nile River basin

1. Introduction

Reliable streamflow forecasting is a topic of concern in hydrological studies for the
operation of flood and drought mitigation systems and the operation and planning of
reservoirs [1–3]. In this regard, numerous attitudes and models have been applied to
improve the modeling and simulation of streamflow forecasting [4–8]. The existing models
that are commonly used in hydrological applications are typically classified into two
main groups, namely physical and data-driven models. Complicated mathematical tools
and extensive expertise are required to work with the physical-based models, which are
sophisticated and require a large amount of calibration data [8]. Data-driven models can
forecast streamflow with appropriate accuracy and rely on the physics of hydrological
problems as their key feature [9]. In recent decades, rising trends in computing capability
and data availability have made the development of data-driven models more attractive
and beneficial [10–12]. Multilinear regression (MLR) is recognized as performing quite
well for long-term forecasting, and it is one of the typical forms of data-driven models [13].
In MLR, the function that relates input and output records is linear, whereas streamflow
forecasting relies on both known and unknown variables, thus rendering it an extremely
nonlinear process.

Numerous studies recently confirmed the reliability of SVM as a machine learn-
ing model and ANN as an artificial intelligence approach in modeling the significant
non-linearity between parameters in hydrological applications, including rainfall–runoff
models, groundwater simulation, streamflow prediction, and flood prediction [12,14–26].
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The potential of such hydrological applications mainly relies on the spatiotemporal res-
olution and consistency of accurate long-term rainfall series. Although rainfall datasets
are available in different formats, researchers are mostly attracted to standard or ground-
based weather stations. Ground-based rainfall networks have irregular spatiotemporal
distribution in some regions, which results in poor hydrological simulation and inadequate
solutions to issues related to water resources, highlighting the importance of using satellite-
based and global precipitation products [27–29]. These products are being significantly
improved, allowing for estimates of these products to evolve as a reliable source of data
with considerable spatiotemporal accuracy, and they could become reasonable alternatives
to recovering unavailable rain gauge data, particularly in regions with no robust network
of ground rain gauges [30,31].

Due to the inaccuracies existing in satellite datasets and uncertainties arising from sam-
pling technologies, the regional variation in the capabilities of grid precipitation products
is quite considerable [32]. In the past three decades, numerous studies have investigated
the potential of various satellite products. Javanmard et al. [27] evaluated TRMM_3B42
products over Iran and seasonal and annual timescales against ground records, reporting
that they preserved the spatiotemporal rainfall patterns but had limitations in reliably
retrieving the rainfall quantity. Ahmed et al. [33] assessed two satellite products, RFE and
TRMM, finding that the two products perform well in estimating and observing rainfall.
Sulugodu et al. [34] evaluated the hydrological performance of CHIRPS in streamflow fore-
casting, and they found that satellite-derived products showed suitable accuracy. The key
point taken from the previous literature was that at both the global and regional scales, no
satellite product could satisfy all verification measurements or be effectively implemented
in several hydrological applications [35–38].

In this study, we attempted to: (1) examine the potential of three commonly used
precipitation products with high temporal and spatial resolution, namely Climate Hazards
Group Infra-Red Precipitation with Station (CHIRPS, https://developers.google.com/
earth-engine/datasets (access on 12 July 2020)), African Rainfall Climatology (RFE 2.0,
https://journals.ametsoc.org (access on 12 July 2020)), and Tropical Rainfall Measuring
Mission (TRMM-3B42V7, https://climatedataguide.ucar.edu/climate-data/trmm (access
on 12 July 2020)); (2) use these products to develop a monthly streamflow forecasting model
using ANN and SVM models; and (3) assess the forecasting models’ reliability. To the best
of our knowledge, no studies on the application of artificial neural network fuzzy inference
system and support vector machine techniques to forecast streamflow using CHIRPS, RFE,
and TRMM-3B42V7 rainfall data as inputs in the study area have been carried out to date.
The structure of this paper is as follows: following this introduction, Section 2 comprises a
detailed methodology and the components of the proposed models. Section 3 presents a
detailed comparison between historical rainfall records and satellite product estimates, the
case study results, a discussion of ANN- and SVM-based forecasts, and their applications
in streamflow forecasting. Finally, a discussion and concluding remarks are presented in
Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Case Study

The approach we propose herein was implemented in the UBNRB, which is situated
in Western Ethiopia, extends between 7◦45′ and 12◦45′N and from 34◦05′ to 39◦45′E, and
has an area coverage of about 200,000 km2 (Figure 1). The Blue Nile originates at elevations
of about 3000 m; then, it flows 1450 km from its origin at an elevation of 1829 m to reach
Sudan with an elevation of 490 m, merging with the White Nile to form the Nile [38]
(Figure 1). The river and its substreams have a natural northwest slope in general, but
they are steeper in the east than in the west and northeast. During the primary rain season,
June–October, almost 84% of the overall rainfall volume is received. On the Sudan–Ethiopia
border, the estimated annual streamflow is around 48.660 million m3, exceeding 40% of the
overall water resources in Ethiopia. The average annual runoff over the UBNRB is about

https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
https://journals.ametsoc.org
https://journals.ametsoc.org
https://climatedataguide.ucar.edu/climate-data/trmm
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46 billion m3 (1456 m3/s), with a runoff ratio of 18% [39]. The rivers of the basin provide
the Nile with more than 62% of its overall discharge at Aswan; therefore, the UBNRB is a
major and vital water resource for Ethiopia and downstream countries.
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Figure 1. Location map of the study area showing the digital elevation model (DEM) of the upper
Blue Nile River basin and the selected meteorological stations.

2.2. Data Collection
2.2.1. Ground Data

Fifty years (1964–2014) of monthly rainfall records from 30 meteorological stations
(Figure 1), representing suitable spatial distribution across the UBNRB, were included with
an average annual rainfall of 1260 mm, which is relatively higher than that of other sub-
basins [40]. The climatic seasons of the UBNRB include the dry season in October–February
(Bega), a relatively short raining season in March–May (Belg), and a long raining season
in June–September (Kiremt), during which about 74% of rainfall is received. The rainfall
distribution over the UBNRB is characterized by significant diversity both spatially (as
it decreases spatially from the southwest to the east and northeast) and temporally over
the year. The streamflow datasets considered in this study were the monthly streamflow
records of the UBNRB measured at El-Diem station (1966–2008), located near the Ethiopia–
Sudan border (Figure 1).
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2.2.2. Gridded Precipitation Datasets

The accuracy and performance of three precipitation products—CHIRPS, RFE2, and
TRMM-3B42V7—were evaluated at a monthly scale. Table 1 briefly illustrates the investi-
gated products and their spatiotemporal characteristics.

Table 1. Summary of the three gridded precipitation datasets used in this study.

Product Start End
Resolution

Coverage
Spatial Temporal

CHIRPS 1981 Present 0.25◦ Daily 50◦N to 50◦S
REF 2.0 1998 Present 0.10◦ Daily 40′′S to 40′′N

TRMM-3B42V7 1998 Present 0.25◦ Daily 50◦N to 50◦S

CHIRPS Dataset

Since 1981, CHIRPS has been available in a range of high-resolution formats and with
time scales varying from daily to monthly [41]. Version 2 of the NOAA Climate Prediction
System (CFS) atmospheric model rainfall area, TRMM-3B42V7, a precipitation climate
dataset (CHPclim), and rainfall station records were used to build CHIRPS. CHIRPS covers
a range from 50◦S to 50◦N with spatial resolutions of 0.05◦ and 0.25◦ for all longitudes. In
this research, the 0.25◦ resolution dataset was analyzed and evaluated. CHIRPS version
2 is accessible to the public for download from (http://chg.geog.ucsb.edu/data/chirps,
accessed on 11 October 2021).

TRMM-3B42V7 Dataset

The TRMM product was initially issued in 1997 as a cooperative space mission by the
Japanese NASDA and NASA for monitoring and analyzing tropical and subtropical precip-
itation, as well as to provide a precise estimation of quasi-worldwide precipitation [42,43].
Since it was introduced in 1997, TRMM-3B42V7 has provided beneficial precipitation data
for a quasi-global range from 50◦N to 50◦S with a 0.25◦ spatial resolution.

RFE 2.0 Dataset

The RFE product was originally released and implemented as an operational product
in 1998 by CPC/NOAA; it covers a range from 40◦S to 40◦N and from 20◦W to 55◦E, and
it is spatially distributed at 0.1◦ [29]. The RFE datasets rely on the aggregation of daily
measured rainfall records from the Global Telecommunication System (GTS), along with
advanced microwave sounding unit and special sensor microwave estimates of satellite
rainfall. Version 2 of RFE became usable at the beginning of 2001 and originally worked
to estimate rainfall on the African continent; it was eventually enhanced to include other
areas [30].

2.3. Methodology
2.3.1. Performance Evaluation of Precipitation Datasets

Substantial post-processing dataset bias correction, assessment, and validations are
performed before implementing the output of the precipitation products’ data in streamflow
forecasting. The procedure of gridded precipitation assessment could be performed either
by (1) precise comparisons with gauge records or (2) employing hydrological models and
evaluating the capabilities of the products in simulating streamflow. The first technique
was employed in this study to assess the investigated precipitation products before using
their data as input for the forecasting models. The accuracy of these products was evaluated

http://chg.geog.ucsb.edu/data/chirps
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based on the coefficient of correlation (Cr), RMSE, ME, and relative bias (BIAS), respectively,
as follows:

Cr =
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∑n

i=1 Si −Gi

∑n
i=1 Gi

∗ 100 (4)

where i and j are the grid points; n is the number of samples; and G and S are the gauge
records and satellite estimations, respectively.

Contingency scores, which reflect the extent of correlation between the satellite esti-
mates and recorded rainfall, were also calculated utilizing the number of hits, false alarms
(FARs), and misses (Equations (5)–(7)). The probability of detection (POD), often referred
to as the hit rate, represents the percentage of events encountered that the precipitation
product assessed that was correctly estimated on the basis of the threshold limits. The FAR
provides the magnitude of false alarms that were provided by the products and were not
eventually detected. Then, by employing the critical success index (CSI), the hit rate and
false alarm percentages are integrated into a single score that indicates the performance
evaluation of the cumulative rainfall detection of the precipitation products compared to
the recorded rainfall. For the POD and CSI, the ratings vary from 0 to 1 for the weak and
strong ends, respectively, and for FAR, the ratings vary from 1 to 0 for the weak and strong
ends, respectively.

Hit = ∑n
i=1(Si −Gi) when Si > 0 and Gi > 0 (5)

Miss = ∑n
i=1(Si −Gi) when Si = 0 and Gi > 0 (6)

False = ∑n
i=1(Si −Gi) when Si > 0 and Gi = 0 (7)

POD =
Nhit

Nhit + Nmiss
(8)

FAR =
Nfalse

Nhit + Nfalse
(9)

CSI =
Nhit

Nhit + Nmiss + Nfalse
(10)

where Hit indicates precipitation identified concurrently by the satellite estimation and
gauge records; Miss reflects events detected by the gauge but not identified by the satellite
estimation; and False is the opposite of Miss, meaning that precipitation is detected by
satellite estimation but not recorded by the gauges.

2.3.2. Forecasting Models

The primary aim of this research was to integrate ANN and SVM with satellite-based
precipitation to forecast the monthly streamflow of the upper Blue Nile River at El Diem
station. The analysis started by examining the correlation between precipitation product
estimates and recorded data in order to classify stations with significant correlations.
Following that, using the selected precipitation data, an ANN model was developed along
with an SVM to forecast streamflow. Finally, the performance of the two established models’
was measured using various performance metrics. Figure 2 presents a schematic flowchart
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of the applied methodology. To execute the proposed forecasting models, the investigated
dataset was randomly split into two sets: training (70%) and testing (30%). The training
dataset corresponded to the data being used in the model training, and the parameters of
the model were calibrated according to the error’s interpretation of the data. The testing
subset was employed in the model performance evaluation.
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Support Vector Machine (SVM) Model

SVM is typically a well-suited approach for the regression and prediction of hydrolog-
ical time series with acceptable performance [44,45]. SVM reflects the concept of structural
risk minimization (SRM), which aims to minimize a learning model’s predicted error,
eliminate the issue of overfitting, and allow for improved generalization. By applying other
alternative loss functions, SVM can be extended to the regression analysis of time series
to convert the nonlinearity of the measured data into a superior structural feature vector
and, afterwards, to apply a linear regression to the structural vector. The SVM regression
function expresses the predefined input x to the specified output y as follows:

f(x) = ωTϕ(x) + b (11)
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where f(x) represents the SVM model’s expected value, ϕ(x) is the nonlinear mapping
function, andω and b are the SVM model parameters to be optimized.

The SVM optimization model for the training dataset can be described as presented in
Equation (12): 

min R( ω, ξ, ξ∗, ε) = 1
2 ||$||

2 + C
[
νε+ 1

l

l
∑

i=1
(ξi + ξ

∗
i )

]
subjective to : yi −$Tϕ(xi)− b ≤ ε+ ξi

$Tϕ(xi) + b− yi ≤ ε+ ξi
ξi, ε ≥0

(12)

where C is the variable utilized to balance the empirical risk and complexity term of the
model ||$||2 and ξ∗i is the slack variable representing the distance of the ith sample from
the ε tube. This problem can be solved as a regular nonlinear optimization problem by
developing a dual optimization problem following the Lagrange multipliers approach:

max R(ai, a∗i ) =
l

∑
i=1

(a∗i − ai)− 1
2

l
∑

i=1

l
∑

j=1
(ai − a∗i )

(
aj − a∗j

)
K
(
xi, xj

)
subjective to :

l
∑

i=1
(ai − a∗i ) = 0

0 ≤ ai, a∗i ≤
C
l

l
∑

i=1
(ai + a∗i ) ≤ Cv

(13)

where thekernelfunction, K
(
xi, xj

)
, satisfies the conditions of the Mercer and ai and a∗i

are the positive Lagrange multipliers. The radial basis function (RBF) is the best kernel
function, and it has been further examined in hydrological applications together with linear
functions [46]. The RBF is expressed as:

K(x, xi) = exp

(
−||x− xi||2

σ2

)
(14)

The parameters of the SVM model are recognized after achieving the optimal solution
of the dual optimization problem. The regression model for an unknown input vector x is
then defined as follows:

f(x) =
l

∑
i=1

(a∗i − ai) K
(
xi , xj

)
+ b (15)

Artificial Neural Network (ANN)

ANN implementations have been addressed in numerous experiments on hydrological
problems [12,32–36]. The key benefits of ANNs include the ability to model nonlinear
interactions, offering conceptual stability and robustness and ease of execution. ANN
modeling considers both temporal variations in hydrological and climatic conditions and
spatial variation in the catchment; therefore, ANNs have become prevalent in streamflow
forecasting. An ANN model has three significant components: model configuration
(parameters and architecture), input data layers, and output data layers (Figure 3). The
input dataset is involved in the first layer, which is linked to the hidden layers by a
set of neurons. Through the modeling process, there could be one or multiple hidden
layers depending on the level of data mining. The number of optimal hidden layers and
the corresponding neuron weights could be then identified through the training process
using the input–output dataset. There are no universally accepted rules for specifying the
optimum number of input variables, neurons, or hidden layers; however, data processing
has been shown to enhance ANN models’ efficiency. There are several types of artificial
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neural networks that have been implemented in the literature, e.g., multi-layer perceptron
(MLP), radial basis function (RBF) networks, and recurrent neural networks (RNNs).
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2.3.3. Model Performance Measures

To measure the performance of the developed models, the following four statistical
indicators were used:

I. Nash–Sutcliffe efficiency coefficient (NSE) [47], expressed as:

NSE = 1−

∑n
i=1( Qoi −Qfi)

2

∑n
i=1

(
Qoi −

–
Qo

)2

 (16)

II. Mean absolute error (MAE), expressed as:

MAE =
∑n

i=1|Qoi −Qfi|
n

(17)

III. Root mean square error (RMSE), expressed as:

RMSE =

√
∑n

i=1(Qoi −Qfi)
2

n
(18)

IV. The absolute variance fraction, R2, is calculated as follows:

R2 = 1− ∑n
i=1(Qi −Qfi)

2

∑n
i=1(Qoi)

2 (19)

where Qo is the observed streamflow, Qf is the predicted streamflow,
–
Qo is the

average of the observed streamflow, and n is the total amount of data.

2.4. Design of Experiments for Streamflow Simulation

Design of experiments (DOE) is a tool that uses mathematical and statistical resources,
allows for the understanding of particular phenomena and the factors that have an impact
on a specific output of the process, and enables one to find the best set of observable
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parameters and experimental conditions for minimizing prediction errors and to provide
optimal policies. In this study, The DOE factors were divided into two groups: forecasting
models’ factors (SVM and ANN) and time series factors (precipitation and streamflow
data). The DOE factors of the forecasting models included the SVM parameters (C, σ, and
ε), the number of optimal hidden layers, and the corresponding neuron weights of the
ANN model. The DOE factors included the correlation between the precipitation at the
investigated stations and the streamflow records, as well as (consequently) the number
of stations.

Based on the methods discussed above, the following steps were adopted to carry out
this study (Figure 2):
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First of all, the analysis evaluated the quality of the investigated precipitation products
against the observed rain gauge dataset at a monthly scale using visual inspection
and statistical methods (Equations (1)–(10)).
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A linear scaling method was then applied for the purpose of bias correction. The goal
of this method was to precisely match the monthly mean of corrected estimations
with that of observed estimations, assuming that the rain gauge records were the true
observations and the satellite estimations (TRMM-3B42 V7, RFE 2.0 and CHIRPS)
were the biased estimation.
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To check for the presence of correlation between monthly precipitation products and
the monthly streamflow, the Pearson’s coefficient was calculated to ascertain the
existence of statistically significant correlations.
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The forecasting model (either SVM or ANN) and, consequently, the required precipi-
tation and streamflow input data were then selected.
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The input datasets were split into two sets, namely training (70% of the data) and
testing datasets (30% of the data).
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The process of model training was then performed to obtain the best evaluation
parameters of each model.
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The selected forecasting model was then tested, and the model performance was
evaluated using the evaluation criteria (Equations (16)–(19)).
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Finally, the historical observed monthly streamflow data were compared with the
forecasted values obtained from the SVM and ANN models.

3. Results
3.1. Evaluation of Raw Satellite Estimates

Before performing the streamflow forecasting, the reliability of the three selected
precipitation products was evaluated using the data for the period of 1983–2014 for the
REF dataset, 1981–2014 for the CHIRPS dataset, and 1998–2014 for the TRMM dataset. Box
plots of rainfall products and measured values revealed insignificant variability in monthly
rainfall quantities and trends (Figures 4 and 5). The frequency of the rainfall was accurately
interpreted by the three products, and the identified rainfall amounts were almost identical
to the gauge records. The REF and TRMM products exceeded rainfall by a mean value
of 100 mm, particularly in July and August. The estimated rainfall volumes obtained
using CHIRPS were closer to the historical records; however, CHIRPS had an overall slight
overestimation in rainfall volumes. Monthly rainfall estimations derived using satellite
products were compared to historical data. The three products exhibited linear correlations
with the measured data. CHIRPS was found to have better correlations (0.92, 0.82, 0.91, and
0.86) than the other products (Table 2). ME and BIAS values showed that CHIRPS provided
the best agreement with historical records. CHIRPS displayed superior performance in
detecting rainfall occurrences, having suitable values of POD and CSI and reasonable mean
FAR scores. TRMM demonstrated close to the same rain event detection performance,
with around the same POD and CSI values. The statistical results achieved by comparing
the monthly precipitation products with historical records demonstrated a higher level of
concordance between satellite estimates and gauge records. The lowest RMSE values were
scored by CHIRPS, and RFE had the highest RMSE values. The scatter plots of the monthly
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rainfall of the satellite products versus the gauge records are shown in Figure 6. CHIRPS
demonstrated the best R2 (0.85, 0.67, 0.83, and 0.74 for the Abasina Joger, Arjo, Bahir Dar,
and Combolocha stations, respectively). TRMM-3B42V7 outperformed with R2 = 0.55, 0.52,
0.56, and 0.64, respectively. The RFE demonstrated the smallest R2.
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Table 2. Statistical and contingency indicators for the satellite products compared to gauge records on a monthly basis.

Station Rainfall Sources Cr RMSE (mm) ME BIAS (%) CSI POD FAR

Abasina Joger
TRMM-3B42V7 0.79 110.39 16.92 14.72 0.70 0.70 0.18

CHIRPS 0.92 66.31 19.86 8.17 0.66 0.66 0.23
RFE 0.75 96.54 29.80 25.93 0.68 0.68 0.21

Arjo
TRMM-3B42V7 0.72 93.01 10.77 14.53 0.62 0.62 0.28

CHIRPS 0.82 70.02 10.77 7.88 0.60 0.60 0.30
RFE 0.73 105.20 22.45 16.43 0.64 0.64 0.25
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Table 2. Cont.

Station Rainfall Sources Cr RMSE (mm) ME BIAS (%) CSI POD FAR

Bahir Dar
TRMM-3B42V7 0.81 121.62 24.88 23.14 0.58 0.58 0.32

CHIRPS 0.91 72.63 17.32 20.22 0.54 0.54 0.37
RFE 0.75 132.10 28.47 14.07 0.56 0.56 0.35

Combolocha
TRMM-3B42V7 0.80 92.43 14.83 10.85 0.49 0.50 0.43

CHIRPS 0.70 154.24 29.50 21.58 0.51 0.52 0.41
RFE 0.80 92.43 14.83 10.85 0.49 0.50 0.48
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3.2. Correlation Analysis of Rainfall and Streamflow Data

The results of the correlation analysis between the rainfall records of the investigated
stations and the monthly streamflow of the upper Blue Nile River at El Diem station, at
various lags at a monthly scale, revealed significant correlations. Since this study was
aimed at forecasting the streamflow at a given time based on previous data on rainfall, we
were mainly interested in the negative lags. Therefore, the correlation of rainfall records
with streamflow was calculated at lag time t (lag 0), t-1(lag 1), and t-2 (lag 2), as shown
in Figure 7. Figure 7 shows that the correlation at some stations is much closer than at
others. It is evident that the rainfall of all the gauge stations at time t-1 has the strongest
relationship, which is almost around 0.74 with river flow at time t. In general, all historical
rainfall records and, consequently, the corresponding precipitation products in UBNRB,
along with previous streamflow measurements at El Diem station, can be feasibly used
as an input for ANN and SVM models to forecast streamflow. Stations with a correlation
coefficient of more than 0.75 were used as inputs for the forecasting models.
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3.3. SVM Model Development Using CHIRPS

The performance of SVM and ANN, in one-month-ahead streamflow forecasting,
was evaluated using 13 stations as the input based on the correlation analysis. During
the training phase, trial and error was used to establish the structure of the ANN and
the parameters for the SVM model. The trial-and-error process for determining SVM
parameters rapidly converges, whereas ANN takes longer to find the best structure for a
considered dataset. Based on the literature, the radial basis function (RBF) is considered
to be one of the most widely used kernel functions since it has superior predictive skill
compared to other kernel functions. The SVM was developed with the use of the RBF
with parameters (C, σ, and ε) for streamflow modeling, and the SVM’s performance was
influenced by the parameters that were established. Since the searching parameters’ search
scheme has a vital role in achieving accurate predictive performance of an SVM model,
the shuffled complex evolution algorithm (SCE-UA) that has been used effectively in
hydrological applications was implemented [33,34]. To obtain proper values of C, σ, and ε,
the RMSE was employed to optimize the model. The results of the RBF kernel are presented
in Table 3 in terms of R2, RMSE, MAE, and E. In the training period, the performance
indicators were R2 = 0.74, RMSE = 1125 m3/s, MAE = 638, and E = 0.625; these indicators
for the testing phase were R2 = 0.507, RMSE = 1188 m3/s, MAE = 487, and E = 0.06.
Figure 8 shows the historical and forecasted streamflow, as well as a scatter plot for the
SVM model, in the training and testing periods. A significant drop in the performance level
can be observed in Figure 8 in terms of the training and testing results. The results further
demonstrate that the SVM model overestimated the values of the forecasted streamflow
by 37%.
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Table 3. Performance measures of ANN and SVM models for measured and forecasted monthly streamflow.

Model Product
Training Test

R2 RMSE MAE E R2 RMSE MAE E

ANN
CHIRPS 0.898 587.289 385.732 0.913 0.735 535.322 208.193 0.809
TRMM - - - - 0.562 1336.465 913.897 0.495

RFE - - - - 0.437 1517.094 1018.638 0.350

SVM
CHIRPS 0.742 1125.687 638.661 0.625 0.507 1188.968 487.442 0.060
TRMM - - - - 0.307 2431.665 1486.513 −0.67
RFE0 - - - - 0.204 2705.930 1641.719 −1.06
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3.4. ANN Model Development Using CHIRPS

The three-layer ANN model was used on the basis of the back-propagation training
system, the sigmoid activation function was used by hidden nodes, and the layer of the
output employed the linear function. Since the number of nodes within the hidden layer
of the developed ANN model was known to have a significant impact on the model’s
performance, the optimal number of neurons in this layer was determined through a trial-
and-error approach by changing the number of neurons between 1 and 20. The process
of training ended when the RMSE of all testing datasets reached the minimum. The best
performance in the testing period was achieved when there were eight nodes in the hidden
layer; therefore, the number of hidden nodes was adjusted to eight. The performance indi-
cators in the training phase were R2 = 0.898, RMSE = 587 m3/s, MAE = 385, and E = 0.913,
and in the testing phase, the performance indicators were R2 = 0.735, RMSE = 535 m3/s,
MAE = 208, and E = 0.809. From the training to the testing phase, the model performance
dropped slightly. Figure 9 shows the recorded and forecasted streamflow, as well as the
scatter plot for the best fitting ANN model, in the training and testing phases.
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3.5. Performance Evaluation of TRMM-3B42V7 and RFE 2.0 Data in Streamflow Forecasting

Both the TRMM-3B42V7 and REF 2.0 records are available from 1998; therefore, the
data length was not statistically sufficient to perform the training and testing of both the
ANN and SVM models. To examine the performance of the two products, the rain gauge
records were used to train the ANN and SVM models; then, the two products were used to
test the two models in the period from 1998 to 2001, as shown in Figures 10 and 11. TRMM-
3B42V7 performed slightly better than REF 2.0 regarding the ANN model (Figure 10)
and the SVM (Figure 11) in the testing phase (Table 2). The ANN, using TRMM-3B42V7,
produced the highest R2 (0.562), the lowest RMSE (1336), a suitable MAE (913), and the
highest E (0.495). However, in general, these values were lower than those obtained using
the CHIRPS product.
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3.6. Comparison of ANN and SVM Models for Monthly Streamflow Forecasting

Table 3 presents the results of the model performance evaluation for the ANN and
SVM models that confirm, in general, that the ANN performed better than the SVM.
The overall comparison also revealed that the use of CHIRPS models for the forecasting
streamflow is more appropriate than the use of models developed using the TRMM-3B42V7
and REF 2.0 datasets, which showed relatively low performance measures. To distinguish
between the ANN and SVM models, the CHIRPS dataset of the last five years of the study
period was used as input for the two models, and a comparison of the output of the ANN
and SVM models, along with their corresponding measured streamflow, is presented in
Figure 12. The findings shown in Figure 12 illustrate that the ANN model had superior
performance than the CHIRPS-based SVM model. The additional statistical performance
evaluation of the developed models was performed using the Taylor diagram (Figure 7),
which describes the statistical patterns of developed models and their relative position from
the measured streamflow in terms of their correlation, their root mean square difference,
and the ratio of their variances [48]. Figure 13 confirms that the performance of the ANN
model was the strongest and the most realistic in the training and testing periods since it
was located closer to the reference line (RMSD) and the historical dataset.
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4. Discussion

We compared three grid precipitation datasets of historical rainfall records and eval-
uated the hydrological performance of these datasets in forecasting streamflow. In a
variety of previous studies, statistical assessments of the grided precipitation products
were performed on small to large regions [33,34]. Furthermore, the hydrological evaluation
of satellite products has also been investigated in several basins [27–29,35]. Musie [28]
evaluated the capability of four satellite products to simulate streamflow in Ethiopia and
reported that the performance of CHIRPS was the best. Likewise, in our analysis, the
monthly Cr, ME, and BIAS values revealed that the three satellite-based products behaved
differently, and CHIRPS performed better than the other two products. The RFE product
overestimated rainfall quantities, which resulted in higher ME and BIAS values. This result
demonstrates that while RFE was capable of identifying rainfall patterns, the rainfall quan-
tities were significantly biased, which would result in streamflow with greater peak flow
than measured. Regarding the proposed forecasting models, the ANN model performed
much better than the SVM, which produced the highest R2, the minimum RMSE, and the
maximum E. The performance measures of the ANN model showed a relatively small drop
from the training to testing phases; however, some of these measures obtained by the SVM
were poor.

The SVM overestimated the monthly streamflow, as presented in Figure 12; however,
the simulated values of streamflow using the ANN model were closer to the historical
records. Additional distinct insights emerge in Figures 12 and 13, which display the
discrepancy between forecasted and historical streamflow records for the two models. The
two figures show that the values obtained using SVM were significantly higher than the
measured values, in which the SVM tended to overestimate streamflow records; however,
the ANN model tended to underestimate streamflow for some individual months. The
ANN using CHIRPS performed better than when using TRMM-3B42V7 and RFE 2.0 in the
testing period. RFE 2.0 and TRMM-3B42V7 had greater statistical MAE and BIAS values
than CHIRPS, which resulted in the relatively low performance in the testing phase results
(Figure 11) and an overall overestimation of the streamflow. Based on our results, the
high performance of the CHIRPS product indicates that this product could be used for
streamflow forecasting with reasonable accuracy. It is worth mentioning that the training
and testing of the ANN and SVM models were found to be sensitive to both the length of
the satellite products dataset and the correlation between the gauge records and the satellite
products dataset. The developed forecasting models using CHIRPS therefore performed
much better than when using RFE 2.0 and TRMM-3B42V7 in this study. Consequently, it
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is highly recommended to evaluate other satellite products such as PERSIANN-CDR that
have been shown to provide good performance in hydrologic applications [49–55] and cover
a relatively long period (from 1983 to present) compared to RFE 2.0 and TRMM-3B42V7.

5. Conclusions

In the present study, we attempted to measure the statistical performance of three
satellite-based precipitation products and compare their performance as input into ANN
and SVM models for streamflow forecasting at El Diem station located along the upper Blue
Nile River. In the training phase, a randomization procedure was implemented to evaluate
the potential of inputs to create a more reliable and robust model in the development
of ANN and SVM. Furthermore, the parameters of the two forecasting models were
optimized to minimize the RMSE. The results of the precipitation product assessment
confirmed that in both statistical and hydrological assessments, the CHIRPS product had
the strongest performance. Furthermore, CHIRPS performed well as the input for the
proposed forecasting models and provided a precise estimate of streamflow in the training
and testing models. A comparison between the forecasted and historical streamflow
records, using several evaluation criteria, confirmed the accuracy and effectiveness of
the applied models and indicated that, in comparison to the SVM model, a relatively
better resemblance of streamflow pattern was achieved by the ANN model, which can
be recommended for streamflow forecasting. Finally, this work’s main conclusion is that
combining ANN and SVM with satellite-based precipitation products could provide a
highly useful tool for streamflow forecasting. Although the project of the Grand Ethiopian
Renaissance Dam upstream of El Diem station will result in a decrease and irregularity in
the inflow volume to this station over the coming years, the proposed ANN model showed
satisfactory results and could be used as a simple tool for forecasting monthly streamflow
upstream of this dam.
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