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Abstract: Camera self-calibration determines the precision and robustness of AT (aerial triangulation)
for UAV (unmanned aerial vehicle) images. The UAV images collected from long transmission line
corridors are critical configurations, which may lead to the “bowl effect” with camera self-calibration.
To solve such problems, traditional methods rely on more than three GCPs (ground control points),
while this study designs a new self-calibration method with only one GCP. First, existing camera
distortion models are grouped into two categories, i.e., physical and mathematical models, and their
mathematical formulas are exploited in detail. Second, within an incremental SfM (Structure from
Motion) framework, a camera self-calibration method is designed, which combines the strategies for
initializing camera distortion parameters and fusing high-precision GNSS (Global Navigation Satellite
System) observations. The former is achieved by using an iterative optimization algorithm that
progressively optimizes camera parameters; the latter is implemented through inequality constrained
BA (bundle adjustment). Finally, by using four UAV datasets collected from two sites with two
data acquisition modes, the proposed algorithm is comprehensively analyzed and verified, and the
experimental results demonstrate that the proposed method can dramatically alleviate the “bowl
effect” of self-calibration for weakly structured long corridor UAV images, and the horizontal and
vertical accuracy can reach 0.04 m and 0.05 m, respectively, when using one GCP. In addition,
compared with open-source and commercial software, the proposed method achieves competitive or
better performance.

Keywords: digital photogrammetry; camera self-calibration; Brown model; polynomial model;
aerial triangulation

1. Introduction

With the advantages of flexible data acquisition and ease of use, UAV has become
one of the most important remote sensing platforms for the photogrammetry and remote
sensing community [1]. The UAVs have the characteristics of small size, autonomous
vertical take-off and landing with low site requirements, high flight safety performance,
and the flexibility to adjust the direction of flight, making them widely used for the regular
inspection of high-voltage transmission line corridors [2–6]. However, the UAV platforms
are often equipped with consumer-grade, non-metric digital cameras, mainly due to the
limitations of the platform’s load capacity. These cameras have non-ignored lens distortions
when compared with metric sensors, which influences the robustness and precision of AT.
The long corridor structure of UAV images is a critical configuration, and the reconstructed
model would be bending with the inaccurately estimated distortion parameters. For
example, Figure 1 illustrates the “bowl effect” of self-calibration with commercial software
and open-source software for long corridor UAV images because of the failure in camera

Remote Sens. 2021, 13, 4222. https://doi.org/10.3390/rs13214222 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1161-5049
https://orcid.org/0000-0002-7799-650X
https://orcid.org/0000-0002-3162-0566
https://doi.org/10.3390/rs13214222
https://doi.org/10.3390/rs13214222
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13214222
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13214222?type=check_update&version=2


Remote Sens. 2021, 13, 4222 2 of 24

distortion parameter estimation. Thus, it is very critical to accurately estimate the distortion
parameters of cameras for high-precision AT.
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errors are represented by the ellipse shape. (b) The result of commercial software Reality Capture 
V1.2, and (c) the result of open-source software AliceVision. 
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which affect the precision of 3D reconstruction. At present, the existing camera calibration 
methods can be categorized into two groups: pre-calibration and self-calibration. The pre-
calibration method usually depends on either the indoor calibration board with fixed pat-
terns [7,8] or the outer door large-scale 3D calibration test field [9]. However, this kind of 
method has many disadvantages applied in UAV image calibration. On the one hand, the 
indoor calibration errors of the calibration board with special patterns would be expanded 
with the increase of UAV flying height, and the focal length of the camera is usually set to 
be fixed depending on the flying height of UAVs, which is not suitable for indoor camera 
pre-calibration; on the other hand, although the outer door 3D calibration test field could 
improve the precision of camera calibration, it requires a lot of manpower and consumes 
time. Compared with the drawbacks of pre-calibration, the self-calibration process is sim-
pler and more convenient without any known calibration targets. 

With the above considerations, the relevant scholars have performed in-depth re-
search on the camera self-calibration methods with different camera distortion models, 
including the physical model and mathematical model. Among the camera distortion 
models, the Brown model [10] and its improved model [11] are the most classical physical 
models. However, it is a challenge for camera self-calibration to occur in the critical con-
figuration, due to the high correlation between the distortion parameters of the Brown 
model [12]. In the field of computer vision, the division model is another kind of physical 
model commonly used [13], which can fit simple camera distortion. Recently, many re-
searchers have combined the division model with the fundamental matrix or the essential 
matrix to solve the camera distortion parameters by establishing polynomial equations 
[14–17]. However, it cannot fit complex camera distortion and is not suitable for UAV 
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commercial software AgiSoft Photoscan V1.4.1, Z error is represented by the ellipse color, and X, Y
errors are represented by the ellipse shape. (b) The result of commercial software Reality Capture
V1.2, and (c) the result of open-source software AliceVision.

In photogrammetry and computer vision fields, the purpose of camera self-calibration
is to solve the internal orientation parameters and camera lens distortion parameters,
which affect the precision of 3D reconstruction. At present, the existing camera calibration
methods can be categorized into two groups: pre-calibration and self-calibration. The
pre-calibration method usually depends on either the indoor calibration board with fixed
patterns [7,8] or the outer door large-scale 3D calibration test field [9]. However, this
kind of method has many disadvantages applied in UAV image calibration. On the one
hand, the indoor calibration errors of the calibration board with special patterns would
be expanded with the increase of UAV flying height, and the focal length of the camera is
usually set to be fixed depending on the flying height of UAVs, which is not suitable for
indoor camera pre-calibration; on the other hand, although the outer door 3D calibration
test field could improve the precision of camera calibration, it requires a lot of manpower
and consumes time. Compared with the drawbacks of pre-calibration, the self-calibration
process is simpler and more convenient without any known calibration targets.

With the above considerations, the relevant scholars have performed in-depth research
on the camera self-calibration methods with different camera distortion models, including
the physical model and mathematical model. Among the camera distortion models, the
Brown model [10] and its improved model [11] are the most classical physical models.
However, it is a challenge for camera self-calibration to occur in the critical configuration,
due to the high correlation between the distortion parameters of the Brown model [12]. In
the field of computer vision, the division model is another kind of physical model com-
monly used [13], which can fit simple camera distortion. Recently, many researchers have
combined the division model with the fundamental matrix or the essential matrix to solve
the camera distortion parameters by establishing polynomial equations [14–17]. However,
it cannot fit complex camera distortion and is not suitable for UAV camera self-calibration.
The physical camera model cannot describe the complex distortion precisely and may not
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work when the pattern of camera distortion is not apparent and the precise knowledge
on distortion is unavailable. Based on this consideration, the mathematical model tries to
use function approximation theory to accurately fit complex camera distortion, such as the
quadratic orthogonal polynomial [18] and quartic orthogonal polynomial model [19]. Tang
et al. [20,21] proposed the orthogonal polynomial models based on Legendre and Fourier
polynomials and applied the models in an aerial camera for self-calibration. Subsequently,
Babapour et al. [22] presented the Chebyshev–Fourier and Jacobi–Fourier camera mod-
els, which significantly improved the horizontal and elevation accuracy of aerial images.
However, few studies have applied the Legendre- and Fourier-based distortion models to
camera self-calibration for long corridor UAV images. This is the first key research content
of this paper.

For the camera self-calibration with a long corridor structure, the related research
can be divided into three categories: the research on the theoretic analysis [23,24], the
research on the strategies of self-calibration [25,26], and the accuracy verification with such
structures [27–32]. Wu et al. [23] analyzed the motion field of images with radial distortion
and proved the ambiguous reconstruction with the “bowl effect” of camera self-calibration
under weak structures and configuration through mathematical theory. Zhou et al. [24]
discussed the impact of the focal length parameter estimation of camera self-calibration
with a flat, corridor configuration. The research on the theoretic analysis of camera self-
calibration with a long corridor structure has focused on investigating the causes and
influencing factors, but has not presented any solutions to solve the problems. For the
long corridor structure, Tournadre et al. [25] presented a 7th-order polynomial combined
with radial camera distortion model (F15P7) and verified the accuracy of the orientations
with a weak configuration using ground control points (GCP). Although this method can
alleviate the “bowl effect”, it relied on more than three GCPs for absolute image orienta-
tion. Polic et al. [26] proposed an uncertainty-based camera model selection method to
reduce the “bowl effect”, but this method did not consider the newest mathematical-based
distortion models and high-precision GNSS observations. Griffiths et al. [27] analyzed
the accuracy of 3D reconstruction from long corridor structure UAV images in detail, and
experiments show that the more complex distortion model can improve the accuracy of
camera self-calibration. The related works of [28–32] are mainly focused on accessing the
accuracy of the DSM (Digital Surface Model), DTM (Digital Terrain Model), the influence
of the distribution of GCPs, and on giving suggestions for data collection without improve-
ment of the strategies for camera self-calibration. Compared to the existing literature about
self-calibration with a long corridor structure, the proposed paper extends the scope of re-
search on camera distortion models and investigates the accuracy of the recently proposed
orthogonal polynomial model with the strategies for camera parameter initialization and
high-precision GNSS fusion in a long corridor structure.

For the traditional aerial photogrammetry in surveying and mapping, the UAV plat-
form generally collects image data with the regular region and often has multiple parallel
and overlapping stable structures. However, in the application of UAV inspection for
power lines, only rectangle or S-shaped strip flight trajectory is adopted to collect image
data, due to cost considerations. Since the constraints between the long corridor structure
are reduced to the minimum, the correlation of camera intrinsic parameters and exter-
nal parameters cannot be restricted with the stability structure of images, which leads
to the “bowl effect” phenomenon and affects the relative and absolute accuracy of 3D
reconstruction. At present, most UAVs are equipped with centimeter-level high-precision
differential GNSS, which can provide better initial position parameters to constrain the
camera projection centers [33,34]. Traditional technology for fusing high-precision GNSS
locations and oriented images of SfM is to minimize a weighted sum of image and GNSS
errors. However, when the structure of images is degenerated and unstable, the oriented
images bend after camera self-calibration. In this situation, the traditional technology of
fusing GNSS locations and SfM would not align the projection centers of the image to the
GNSS locations, which cannot eliminate the “bowl effect”. How to use the high-precision
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GNSS information to significantly alleviate the “bowl effect” is the second key research
content of this paper.

To overcome the problem, this paper firstly investigates the classical physical model
and orthogonal polynomial model for camera self-calibration. Then, a new strategy com-
bined with the parameter initialization of UAV images and high-precision GNSS observa-
tion fusion is proposed for camera self-calibration with the physical model and orthogonal
polynomial model. Finally, four UAV image datasets are used in the experiments for
camera self-calibration, which illustrates the feasibility of this strategy. Compared with
the related works of long corridor camera self-calibration, the proposed method has the
following contributions: (1) the accuracy of the newest mathematical camera distortion
models is investigated and verified, which can achieve better accuracy in the vertical
direction; (2) a new strategy of camera self-calibration for long corridor UAV images is
proposed, which can alleviate the “bowl effect” with the high-precision GNSS locations
for direct georeferencing; (3) compared with the traditional method, which needs more
than three GCPs to solve the problem of “bowl effect”, the proposed method achieves
competitive accuracy with only one GCP constraint, which is meaningful for the UAV
photogrammetric community.

This paper is organized as follows. Section 2 presents the camera distortion model and
the proposed camera self-calibration method with the camera parameters’ initialization
and high-precision GNSS fusion in detail. In Section 3, UAV datasets and experimental
results are presented and discussed. Section 4 concludes the results of this study and
presents future work.

2. Methodology

The proposed method mainly studies camera self-calibration in the incremental SfM
framework, which is used to accurately estimate the image orientation and camera intrinsic
parameters. Firstly, the most commonly used camera distortion models are analyzed
in Section 2.1, including physical models and mathematical models. Secondly, the BA
with inequality constraint is investigated in detail in Section 2.2. Finally, the camera
self-calibration strategy is introduced for the long corridor structure of UAV images in
Section 2.3. Figure 2 describes our main research contents. The camera distortion model
introduced in Section 2.1 is applied in the proposed camera self-calibration method, and
the bundle adjustment with inequality constraint described in Section 2.2 is applied in the
absolute orientation of the proposed camera self-calibration method.
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2.1. Camera Distortion Model

The classical Brown camera model in the field of photogrammetry and computer
vision, the 7th polynomial model, and the Legendre, Fourier, and Jacobi–Fourier orthogonal
polynomial models are compared and analyzed. The mathematical form of each camera
distortion model is described below.

2.1.1. Brown Model

The Brown distortion model [10] has been widely used in the photogrammetry and
computer vision field. The parameters of the Brown model mainly include symmetrical



Remote Sens. 2021, 13, 4222 5 of 24

radial distortion, tangential distortion, and in-plane distortion [35,36]. The mathematical
equations are as shown below.

∆x = x(k1r2 + k2r4 + k3r6) + p1(r2 + 2x2) + 2p2xy + b1x + b2y
∆y = y(k1r2 + k2r4 + k3r6) + p1(r2 + 2y2) + 2p2xy

r =
√
(x− x0)

2 + (y− y0)
2 =

√
x2 + y2

(1)

where x0, y0 is the principal point of the image, k1, k2, k3 are the radial distortion coeffi-
cients, p1, p2 are the tangential distortion coefficients, and b1, b2 are the in-plane distortion
coefficients, which are named as the affinity and the shear terms. The in-plane coefficients
represent different scaling factors and non-orthogonal pixels in the image along the x-
and y-axis.

2.1.2. 7th Polynomial Model

The 7th polynomial camera distortion model is provided by the open-source software
MicMac [25], and it contains a total of 66 parameters. The distortion functions are as
follows:

∆x = a0x + a1y− 2a2x2 + a3xy + a4y2+
a6x3 + a7x2y + a8xy2 + a9y3+
a14x4 + a15x3y + a16x2y2 + a17xy3 + a18y4+
a24x5 + a25x4y + a26x3y2 + a27x2y3 + a28xy4 + a29y5+
a36x6 + a37x5y + a38x4y2 + a39x3y3 + a40x2y4 + a41xy5 + a42y6+
a50x7 + a51x6y + a52x5y2 + a53x4y3 + a54x3y4 + a55x2y5 + a56xy6 + a57y7

∆y = −a0y + a1x + a2xy− 2a3y2 + a5x2+
a10x3 + a11x2y + a12xy2 + a13y3+
a19x4 + a20x3y + a21x2y2 + a22xy3 + a23y4+
a30x5 + a31x4y + a32x3y2 + a33x2y3 + a34xy4 + a35y5+
a43x6 + a44x5y + a45x4y2 + a46x3y3 + a47x2y4 + a48xy5 + a49y6+
a58x7 + a59x6y + a60x5y2 + a61x4y3 + a62x3y4 + a63x2y5 + a64xy6 + a65y7

(2)

where x, y are the same as the definition in the Brown model, and a0, a1, . . . , a65 are the
coefficients of the 7th polynomial. Six coefficients are eliminated to reduce the correlation
between those coefficients.

2.1.3. Legendre Model

The Legendre model is composed of a series of orthogonal polynomials, which greatly
reduce the correlation between distortion coefficients. This model has been used in the
camera self-calibration for professional digital mapping cameras. However, the feasibil-
ity of a consumer-grade camera applicated in camera self-calibration needs to be veri-
fied. Therefore, the Legendre orthogonal polynomial model with 66 parameters is intro-
duced in this paper. The mathematical expression is presented in Formula (3), where
pm,n = 0−6lm(x)ln(y), m, n ∈ [0, 5]; x = x−w/2

w , y = y−h/2
h ; x, y are the pixel coordinates

in the image; and w and h represent the width and height of the image, respectively. lm(x)
and ln(y) mean the Legendre polynomials and a0, a1, . . . , a65 are the coefficients. Similar to
the 7th polynomial distortion model, six coefficients are eliminated in the Legendre model.
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∆x = a0 p1,0 + a1 p0,1 + a2 p2,0 + a3 p1,1 + a4 p0,2 + a5 p3,0 + a6 p2,1+
a7 p1,2 + a8 p0,3 + a9 p4,0 + a10 p3,1 + a11 p2,2 + a12 p1,3 + a13 p0,4+
a14 p5,0 + a15 p4,1 + a16 p3,2 + a17 p2,3 + a18 p1,4 + a19 p0,5 + a20 p5,1+
a21 p4,2 + a22 p3,3 + a23 p2,4 + a24 p1,5 + a25 p5,2 + a26 p5,3 + a27 p3,4+
a28 p2,5 + a29 p5,3 + a30 p4,4 + a31 p3,5 + a32 p5,4 + a33 p4,5 + a34 p5,5
∆y = a1 p1,0 − a0 p0,1 + a35 p2,0 − a2 p1,1 − a3 p0,2 + a36 p3,0 + a37 p2,1+
a38 p1,2 + a39 p0,3 + a40 p4,0 + a41 p3,1 + a42 p2,2 + a43 p1,3 + a44 p0,4+
a45 p5,0 + a46 p4,1 + a47 p3,2 + a48 p2,3 + a49 p1,4 + a50 p0,5 + a51 p5,1+
a52 p4,2 + a53 p3,3 + a54 p2,4 + a55 p1,5 + a56 p5,2 + a57 p5,3 + a58 p3,4+
a59 p2,5 + a60 p5,3 + a61 p4,4 + a62 p3,5 + a63 p5,4 + a64 p4,5 + a65 p5,5

(3)

2.1.4. Fourier Model

The mathematical formula of 16 parameters in the first-order orthogonal polynomial
distortion model based on the two-dimensional Fourier series [21] is as follows:

∆x f = a0c1,0 + a1c0,1 + a2c1,−1 + a3c1,1 + a4s1,0 + a5s0,1 + a6s1,−1 + a7s1,1
∆y f = a8c1,0 + a9c0,1 + a10c1,−1 + a11c1,1 + a12s1,0 + a13s0,1 + a14s1,−1 + a15s1,1

(4)

where cm,n = 10−6 cos(mx f + ny f ), sm,n = 10−6 sin(mx f + ny f ), x f = x−w/2
w π, and

y f = y−h/2
h π; x, y are the pixel coordinates in the image; w and h represent the width

and height of the image, respectively; and a0, a1, . . . , a15 are the coefficients. When there is
significant radial distortion in the image, it needs to be employed together with the radial
distortion model. Therefore, the radial distortion and quadratic polynomial are applied.

∆xrg = xr(k1r2 + k2r4 + k3r6)+
b0xg + b1yg − 2b2x2

g + b3xgyg + b4y2
g

∆yrg = yr(k1r2 + k2r4 + k3r6)−
b0yg + b1xg + b2xgyg − 2b3y2

gg + b5xg
2

(5)

where xr, yr are consistent with x, y in the Brown model; xg = x f /π, yg = y f /π; k1, k2, k3
are the radial coefficients; and b0, b1, . . . , b5 are the coefficients of a quadratic polynomial.
The final hybrid distortion model is as follows:

∆x = ∆x f + ∆xrg
∆y = ∆y f + ∆yrg

(6)

2.1.5. Jacobi–Fourier Model

Compared with the Fourier model, the Jacobi–Fourier model has a higher horizontal
and vertical accuracy [22]. In this paper, the Jacobi–Fourier model is adopted, and the
function is presented in Formula (7), where Jn(α, β, r) is the Jacobi polynomial and the
mathematical expression is as shown in Formula (8); x, y ∈ [0, 1], represented as normalized
image coordinates; r is the distance from the normalized pixel coordinate to the origin,
r2 = x2 + y2; NJ , MF, NF are the variable parameters of Jacobi and Fourier, respectively;
and ai,m,n, bi,m,n, a′i,m,n, b′i,m,n are the coefficients of the polynomial.

∆xj f =
NJ

∑
i=0

MF
∑

m=0

NF
∑

n=1
ai,m,n Ji(α, β, r) sin(mπx + nπy)

+
NJ

∑
i=0

MF
∑

m=0

NF
∑

n=1
bi,m,n Ji(α, β, r) cos(mπx + nπy)

∆yj f =
NJ

∑
i=0

MF
∑

m=0

NF
∑

n=1
a′i,m,n Ji(α, β, r) sin(mπx + nπy)

+
NJ

∑
i=0

MF
∑

m=0

NF
∑

n=1
b′i,m,n Ji(α, β, r) cos(mπx + nπy)

(7)



Remote Sens. 2021, 13, 4222 7 of 24

Jn(α, β, τ) =

√
ω(α,β,τ)
bn(α,β)·τ Gn(α, β, τ)

Gn(α, β, τ) = n!(β−1)!
(α+n−1)!

n
∑

s=0
(−1)s (α+n+s−1)!

(n−s)!s!(β+s−1)! τ
s

bn(α, β) = n![(β−1)!]2(α−β+n)!
(β+n−1)!(α+n−1)!(α+2n)

ω(α, β, τ) = (1− τ)α−βτβ−1

(8)

In Formula (8), α, β are set to 7 and 3, respectively, according to the suggestion of [22];
τ ∈ [0, 1], and Gn, bn, ω are the polynomial, normalizing constant, and weighting function,
respectively. Similar to the Fourier model, the Jacobi–Fourier model is mixed with radial
distortion and quadratic polynomial as given in the following.

∆x = ∆xj f + ∆xrg
∆y = ∆yj f + ∆yrg

(9)

2.2. GNSS-Aided Bundle Adjustment with Inequality Constraint

GNSS-aided BA is the commonly used method in the photogrammetry and computer
vision fields. By minimizing the reprojection error, the traditional BA can optimize the
internal and external parameters of the camera together with the 3D coordinates of the tie
points. The error equation of GNSS-aided BA considers the deviation between the image
projection center Xc and GNSS phase center Xgps. The jointly optimized error function is
as described in Formula (10), where w is the weight of GNSS.

eu = ∑
j

ρj(
∣∣∣∣∣∣π(Pc, Xk)− xj

∣∣∣|22 ) + ∑
n

ρn(||w(Xc − Xgps||22) (10)

Different from the traditional weighted GNSS-aided BA, Maxime et al. [33] proposed
an inequality constrained bundle adjustment (IBA) method with GNSS fusion to reduce
the deviation error accumulation between the image projection center Xc and the GNSS
location Xgps for long image sequences. The basic idea of IBA is to improve the absolute
accuracy with GNSS-aided BA on the premise of appropriately increasing the reprojection
error. Let X∗ = (XT

c , XT
a , XT

k ) be the optimal solution of standard BA without consideration
of GNSS information, where Xc, Xa, Xk represent the projection center of image, rotation
angle, and 3D coordinates of tie points, respectively. Further, let e(X∗) be the minimum
sum of square reprojection errors with the optimal solution, i.e.,∀X, e(X∗) ≤ e(X). Suppose
et be a threshold that is slightly larger than the minimum reprojection error e(X∗), i.e.,
e(X∗) < et. IBA assumes that the GNSS error is bounded and the reprojection error e(X) of
BA with GNSS constraint should be less than et, that is, e(X) ≤ et. Under this condition,
the optimized image projection center should be as close to the GNSS phase center as
possible, i.e., Xc ≈ Xgps.

Let X2 = (Xa, Xk), then the unknowns of BA can be expressed as X = (XT
c , XT

2 ). Let
P = (I, 0) be such that Xc = PX. IBA establishes the optimization equation by combining
penalty function and inequality constraint, as shown in Formula (11).

eI(X) =
γ

cI(X)
+ ||PX− Xgps||2 (11)

where γ is a user-defined weight and a positive number, cI(X) = et − e(X), and cI(X) > 0.
The objective function is iteratively minimized by this inequality and penalty function
γ/cI(X) constraint. The penalty function value is close to positive infinity in the neighbor-
hood of cI = 0. The algorithm in C style is shown in Algorithm 1 and the parameter γ is set
γ = et−e(X∗)

10 ||PX∗ − Xgps||2 according to [33]. More details should be referenced in [33].



Remote Sens. 2021, 13, 4222 8 of 24

Algorithm 1 The procedure of IBA

1: err = γ/(et − e(X))+
∣∣∣∣PX− Xgps

∣∣∣∣2
2: UpdateD = 1; λ = 0.001;
3: for (It = 0; It < Itmax; It++) {
4: if (UpdateD) {
5: UpdateD = 0;
6: g = 2JT E(X); H = 2JT J;
7: gI =

γ

(et−e)2 g + 2PT(PX− Xgps); H = γ

(et−e)2 H + 2PT P;

8: g̃ =

√
2γ

(et−e)3 g;

9: }

10:
∼
H = H + λdiag

(
H +

∼
g
∼
g

T
)

11: solve
∼
H(a, b) =

(
−g,

∼
g
)

;

12: ∆ = a−
∼
g

T
a

1+
∼
g

T
b

b;

13: if (e(X + ∆ ≥ et) {
14: λ = 10λ; continue;
15: }
16: err′ = γ

et−e(X+∆) + ||P(X + ∆)− Xgps||2;

17: if (err′ < err) {
18: X = X + ∆;
19: if (0.9999err < err′) break;
20: err = err′; UpdateD = 1; λ = λ/10;
21: } else
22: λ = 10λ;
23:}

2.3. Camera Self-Calibration for Long Corridor UAV Images

The camera self-calibration for long corridor UAV images is realized under the frame-
work of incremental SfM in ColMap. Firstly, the incremental SfM selects two seed images
with enough matching feature points, which are of uniform distribution in the images
and the intersection angle between the two-image pair should be large enough. Then the
relative orientation and 3D coordinates of tie points in the initial image pair are calculated.
Secondly, the next best images are selected, which are most fully connected with the exist-
ing reconstructed model. The image poses and 3D coordinates of tie points are recovered
immediately. Finally, to eliminate accumulated error, the local and global BA optimization
is carried out iteratively: (1) when the number of newly added images exceeds a given
threshold, local BA optimization is performed for the local-oriented images; (2) when the
percentage of registered images grows by a certain threshold, the reconstructed model is
optimized by global BA [37]. The feature point extraction, exhaustive matching strategy,
criteria for seed image selection, and the strategies of controlling local BA in ColMap are
directly used in the proposed method without any changes.

For the long corridor UAV images, the existing incremental SfM framework has the
following shortcomings:

1. From the perspective of camera self-calibration, the next best image selection does not
consider whether the scene structure is degraded. If the structure of the seed image
is poor and lacks height variation, the camera intrinsic parameters are unstable and
may even lead to the failure of the final reconstruction.

2. At present, UAV images often record high-precision GNSS location information,
which can alleviate the “bowl effect” of long corridor images. The existing incremental
SfM framework of camera self-calibration does not take full advantage of GNSS
information for absolute orientation.

3. The inaccurately estimated distortion parameters have an adverse impact on the
3D point clouds generated by dense matching technology. The power lines in UAV
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images of high-voltage transmission are usually 1~2 pixels in width. When the
distortion parameters are estimated inaccurately, the reconstructed point clouds of
power lines are noisy and diverged around. Figure 3 shows the dense point clouds
reconstructed by ColMap with inaccurate camera distortion parameters.
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power lines.

Therefore, a camera self-calibration method is proposed, which combines the camera
parameters initialization and high-precision differential GNSS position information fusion.
The workflow is shown in Figure 4, and details of key steps are listed as follows:
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1. Image-relative orientation based on incremental SfM framework. Only the local BA
is performed to reduce the error accumulation, and the focal length, principal point,
and distortion parameters of the image are kept fixed to avoid the problem of the
unstable and large variation of distortion parameters and focal length caused by the
instability structure of image and scene degradation. The results of image-relative
orientation are shown in Figure 5a.
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2. Global BA and iterative optimization of camera parameters. In the process of iterative
global BA and gross error elimination, the optimization strategy of gradually freeing
the intrinsic and distortion of camera parameters is adopted, that is, (a) distortion
parameters, (b) focal length, and (c) principal point. This strategy can alleviate the
correlation between focal length, principal point, and distortion parameters of the
camera. According to the experiment, when the number of iterations is bigger than
two, the camera intrinsic parameters become stable. In this paper, the global BA
is iterated three times. In each iteration, the distortion, focal length, and principal
point parameters of the camera are optimized using the strategy of gradually freeing
parameters, to provide better initial values for GNSS-constrained BA.

3. Traditional weighted GNSS-constrained absolute orientation. At this time, the GNSS-
constrained BA optimizes the focal length, principal point, and distortion parameters
as unknowns together. Further, the error equation is shown in Formula (12).

eu = ∑
j

ρj(
∣∣∣∣∣∣π(Pc, Xk, θ)− xj

∣∣∣|22 ) + ∑
n

ρn(||w(Xc − Xgps||22) (12)

where θ = ( f , cx, cy, Dist), including the focal length f, principal point cx,cy, and the
distortion parameters Dist. The distortion parameters Dist are determined by the selected
camera distortion model introduced in Section 2.1. The weight of GNSS w is set to 10,
keeping consistent with [33]. The cost function ρ is the Cauchy function with stronger noise
resistance, as shown in Formula (13).

ρ(s) = log(1 + s) (13)

4. GNSS fusion based on IBA. This paper combines IBA to further fuse the GNSS. The
main steps are as follows: (a) the camera focal length, principal point, and distortion
parameters are used as unknowns to optimize together during camera self-calibration;
(b) the initial input parameters e(X∗) are the sum of the squares’ reprojection error of
weighted GNSS-constrained BA, and X∗ are the minimum solvers; (c) all the image
projection centers and the corresponding GNSS positions are used as constraints
for global IBA to solve iteratively. The final reconstructed model with the proposed
camera self-calibration strategy is shown in Figure 5b.

In summary, there are several differences between the proposed method with the
incremental SfM in ColMap and the usage of IBA in [33]. In ColMap, the local BA is
performed on the images that are connected with the most recently registered images,
and the global BA is performed according to the growing percentage of the registered
images. The camera intrinsic parameters are optimized during local BA and global BA.
In the proposed method, only local BA is performed before all images are registered, and
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the global BA is literately performed after all images are registered. During the local BA,
the camera intrinsic parameters are kept fixed. Further, during the global BA, the camera
intrinsic parameters are gradually freed to get better initial values. Then the traditional
weighted and inequality constrained BA with GNSS is performed for absolute orientation.
In [33], the IBA is used in local BA to fuse the low-cost GNSS and image projection centers
to refine the k-most recent images. The input-optimized initial parameters are the results
of local BA and the 3D GNSS location of the corresponding most recent image. The camera
intrinsic parameters are known and kept fixed. In the proposed method, the IBA is used
in global BA to fuse high-precision GNSS locations and image projection centers. The
camera intrinsic parameters are freed and optimized together with the GNSS constraint.
The inputs of IBA in the proposed method are the optimized parameters of the weighted
GNSS constraint BA and all the GNSS locations of registered images. The differences
between the proposed method and the incremental SfM in ColMap and the IBA in [33] are
listed in Tables 1 and 2, respectively.

Table 1. The differences between the incremental SfM in ColMap [38] and the proposed method.

Method Incremental SfM in ColMap The Proposed Method

Local BA Camera intrinsic parameters
are freed in local BA

Camera intrinsic parameters
are fixed in local BA

Global BA

Global BA is performed after
growing the registered images
by a certain percentage. The
camera intrinsic parameters

are freed in global BA.

Global BA is performed after
registering all images.

Iteratively free distortion
parameters, focal length, and
principal point in global BA.

Table 2. The differences between the IBA used in [33] and the proposed method.

Method IBA in [33] The Proposed Method

Applied Stage IBA is applied in Local BA IBA is applied in Global BA

Initial Parameters

The input-optimized initial
parameters are the results of
local BA and the most recent

GNSS location.

The input-optimized initial
parameters are the results of

weighted GNSS constraint BA
and all the GNSS locations.

Camera Intrinsic Parameters Keep fixed Free

3. Results and Discussion
3.1. Test Sites and Datasets

Two datasets of long corridor transmission line UAV images were collected by DJI
Phantom 4 RTK UAV, as shown in Figure 6. Figure 6a,b was collected using the rectangle
closed-loop trajectory; Figure 6c,d was collected using the S-shaped strip trajectory. The
rectangle and S-shaped trajectories were made by a third-party software developed based
on DJI Mobile SDK, and during the flight, the standard control algorithm provided by DJI
was applied to fly and take photos in autonomous mode along the trajectories. For the
rectangle trajectories, the forward and side overlap ratio of images were set to 88% and
75%, respectively, and the flight speed was set to 4 m/s. For the S-shaped trajectories, the
forward and side overlap ratio of images were set to 82% and 61%, respectively, and the
flight speed was set to 6 m/s. The time interval for taking photos was 3 s for all flights. The
camera focal length was kept fixed during image collection. The UAV flight height was
set to 70 m, which is relative to the position from where the UAV takes off and the camera
takes images vertically downward. The GSD (ground resolution distance) of images was
2.1 cm. The numbers of each image datasets were 140, 166, 165, and 132, respectively. To
verify the absolute orientation accuracy of BA, the accurate ground coordinates in the two
test sites were collected by Hi-Target iRTK2 GNSS receiver and FindCM CORS. The targets
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were marked with red paint manually on the road using the perpendicular lines with a
width of about 10 cm, and the ground coordinates inside the right angle were measured.
Finally, 15 targets were collected in test site 1 and 27 targets were collected in test site 2.
The distribution of targets is listed in Figure 6e,f. The targets in test site 1 were labeled from
A1 to A15, and the targets in test site 2 were labeled from B1 to B27. For the experiments
of camera self-calibration without GCP constraint, all the targets were regarded as check
points to evaluate the accuracy. For the experiments with one GCP constraint, the target of
A14 in test site 1 and the target of B20 in test site 2 were regarded as control points and the
rest of the targets were regarded as check points for accuracy evaluation. Both A14 and
B20 were located in the middle of the long corridors.
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Figure 6. UAV images of the test sites. (a,c) The rectangle and S-shaped datasets of test site 1,
respectively; (b,d) the rectangle and S-shaped datasets of test site 2, respectively. (e,f) the location
distribution of GCPs in test site 1 and test site 2.

3.2. Analysis of the Influence of Camera Distortion Models

Firstly, the influence of different image acquisition modes and camera distortion
models on the accuracy of bundle block adjustment was analyzed. For the hybrid Fourier
and Jacobi–Fourier models, the radial and quadratic polynomial distortion parameters
were first calculated with all images. Then, we kept these parameters fixed and calculated
the parameters of Fourier and Jacobi–Fourier. For other distortion models, all the distortion
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parameters were calculated at one time. The mean, SD (standard deviation), and RMSE
(root mean square error) were used to evaluate the accuracy of checkpoints.

The statistical results are listed in Table 3. Figures 7 and 8 show the residuals of check
points for different distortion models. It can be seen that the accuracy of S-shaped image
datasets was significantly better than that of rectangle image datasets (except for the vertical
accuracy of the Brown model and hybrid Jacobi–Fourier model in test site 2). The main
reason is that when the images are collected in the S-shaped method, the angle between
the images is always changing, which can reduce the correlation between distortion and
other parameters of the camera, and then the horizontal accuracy and vertical accuracy
are improved.

Table 3. Statistical results of self-calibration for different camera distortion models.

Datasets
Camera
Model

Mean(m) SD(m) RMSE(m)

X Y Z X Y Z X Y Z

Test Site 1

Rectangle

Brown 0.004 −0.001 0.174 0.011 0.036 0.037 0.012 0.036 0.178

Poly7 0.008 0.018 2.456 0.018 0.050 0.032 0.020 0.053 2.456

Legendre −0.006 −0.002 0.829 0.026 0.082 0.032 0.027 0.082 0.830

Fourier 0.001 0.000 0.755 0.013 0.054 0.032 0.013 0.054 0.755

Jacobi–Four −0.001 0.003 0.481 0.020 0.040 0.032 0.020 0.040 0.482

S-Shaped

Brown 0.011 0.002 −0.348 0.014 0.018 0.022 0.018 0.018 0.349

Poly7 0.004 0.001 0.084 0.012 0.028 0.025 0.012 0.028 0.088

Legendre 0.003 −0.000 −0.061 0.012 0.030 0.026 0.012 0.030 0.066

Fourier 0.010 0.007 0.054 0.013 0.013 0.018 0.016 0.015 0.057

Jacobi–Four 0.019 0.007 0.031 0.020 0.014 0.022 0.028 0.015 0.038

Test Site 2

Rectangle

Brown −0.018 0.028 0.753 0.030 0.025 0.036 0.035 0.037 0.754

Poly7 0.001 0.014 0.240 0.022 0.032 0.028 0.022 0.035 0.242

Legendre −0.018 0.027 0.223 0.033 0.027 0.033 0.038 0.038 0.226

Fourier 0.000 0.004 0.208 0.022 0.035 0.028 0.022 0.035 0.210

Jacobi–Four −0.011 0.024 0.104 0.023 0.025 0.029 0.026 0.035 0.108

S-Shaped

Brown 0.016 −0.006 −1.259 0.012 0.012 0.041 0.020 0.013 1.260

Poly7 0.004 0.003 0.058 0.016 0.012 0.018 0.017 0.012 0.061

Legendre 0.003 0.004 0.125 0.017 0.012 0.018 0.017 0.013 0.127

Fourier 0.005 0.005 0.098 0.014 0.012 0.015 0.013 0.013 0.099

Jacobi–Four 0.022 0.003 −0.724 0.016 0.012 0.035 0.027 0.013 0.725

For further analysis, we can see the following: (1) For the rectangle dataset of test
site 1, the horizontal and vertical accuracy with the Brown model was higher than other
distortion models. However, for the other three datasets, the accuracy of the Brown model
was the worst. (2) From the comparison of camera self-calibration between the Poly7 model
and the Legendre model, it can be seen that the horizontal accuracy of Poly7 was better
than the Legendre model for all the datasets. Further, the Poly7 model had better vertical
accuracy in the S-shaped dataset of test site 2. However, the Legendre model had better
vertical accuracy than the Poly7 model in the other three datasets. The main reason is
that the orthogonality of the Legendre model can improve the accuracy of focal length for
camera self-calibration, and then improve the vertical accuracy, but meanwhile, it loses
the horizontal accuracy. (3) From the comparison of camera self-calibration between the
hybrid Fourier model and hybrid Jacobi–Fourier model, it can be seen that the horizontal
accuracy of the two models had little difference. However, the vertical accuracy of the
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hybrid Jacobi–Fourier model was better than the hybrid Fourier model in general (except
for the S-shaped dataset in test site 2).

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 25 
 

 

hybrid Jacobi–Fourier model was better than the hybrid Fourier model in general (except 
for the S-shaped dataset in test site 2). 

In summary, the bundle block adjustment accuracy in the horizontal direction with 
the five different models can reach the centimeter level, while the vertical accuracy has 
great differences for the four datasets. No one distortion model can achieve the best accu-
racy among all four datasets. Overall, the horizontal and vertical accuracy of bundle block 
adjustment with mathematical distortion models was better than the physical model in 
the long corridor structure datasets, and the vertical accuracy of the hybrid Jacobi–Fourier 
model was generally better than the other three mathematical distortion models. 

Table 3. Statistical results of self-calibration for different camera distortion models. 

Datasets Camera 
Model 

Mean(m) SD(m) RMSE(m) 
X Y Z X Y Z X Y Z 

Test Site 
1 

Rectangle 

Brown 0.004 −0.001 0.174 0.011 0.036 0.037 0.012 0.036 0.178 
Poly7 0.008 0.018 2.456 0.018 0.050 0.032 0.020 0.053 2.456 

Legendre −0.006 −0.002 0.829 0.026 0.082 0.032 0.027 0.082 0.830 
Fourier 0.001 0.000 0.755 0.013 0.054 0.032 0.013 0.054 0.755 

Jacobi–Four −0.001 0.003 0.481 0.020 0.040 0.032 0.020 0.040 0.482 

S-Shaped 

Brown 0.011 0.002 −0.348 0.014 0.018 0.022 0.018 0.018 0.349 
Poly7 0.004 0.001 0.084 0.012 0.028 0.025 0.012 0.028 0.088 

Legendre 0.003 −0.000 −0.061 0.012 0.030 0.026 0.012 0.030 0.066 
Fourier 0.010 0.007 0.054 0.013 0.013 0.018 0.016 0.015 0.057 

Jacobi–Four 0.019 0.007 0.031 0.020 0.014 0.022 0.028 0.015 0.038 

Test Site 
2 

Rectangle 

Brown −0.018 0.028 0.753 0.030 0.025 0.036 0.035 0.037 0.754 
Poly7 0.001 0.014 0.240 0.022 0.032 0.028 0.022 0.035 0.242 

Legendre −0.018 0.027 0.223 0.033 0.027 0.033 0.038 0.038 0.226 
Fourier 0.000 0.004 0.208 0.022 0.035 0.028 0.022 0.035 0.210 

Jacobi–Four −0.011 0.024 0.104 0.023 0.025 0.029 0.026 0.035 0.108 

S-Shaped 

Brown 0.016 −0.006 −1.259 0.012 0.012 0.041 0.020 0.013 1.260 
Poly7 0.004 0.003 0.058 0.016 0.012 0.018 0.017 0.012 0.061 

Legendre 0.003 0.004 0.125 0.017 0.012 0.018 0.017 0.013 0.127 
Fourier 0.005 0.005 0.098 0.014 0.012 0.015 0.013 0.013 0.099 

Jacobi–Four 0.022 0.003 −0.724 0.016 0.012 0.035 0.027 0.013 0.725 
 
 

  
(a) (b) 

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 25 
 

 

  
(c) (d) 

  
(e) (f) 

Figure 7. The residuals of check points after self-calibration for test site 1. (a,c,e) The residuals of 
check points of the rectangle dataset in the direction of X, Y, and Z, respectively; (b,d,f) the residu-
als of check points of the S-shaped dataset in the direction of X, Y, and Z, respectively. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. The residuals of check points after self-calibration for test site 2. (a,c,e) The residuals of 
check points of rectangle dataset in the direction of X, Y, and Z, respectively; (b,d,f) the residuals 
of check points of S-shaped dataset in the direction of X, Y, and Z, respectively. 

3.3. Analysis of the Performance of Proposed Self-Calibration 

Figure 7. The residuals of check points after self-calibration for test site 1. (a,c,e) The residuals of
check points of the rectangle dataset in the direction of X, Y, and Z, respectively; (b,d,f) the residuals
of check points of the S-shaped dataset in the direction of X, Y, and Z, respectively.

In summary, the bundle block adjustment accuracy in the horizontal direction with the
five different models can reach the centimeter level, while the vertical accuracy has great
differences for the four datasets. No one distortion model can achieve the best accuracy
among all four datasets. Overall, the horizontal and vertical accuracy of bundle block
adjustment with mathematical distortion models was better than the physical model in
the long corridor structure datasets, and the vertical accuracy of the hybrid Jacobi–Fourier
model was generally better than the other three mathematical distortion models.

3.3. Analysis of the Performance of Proposed Self-Calibration

To verify the feasibility of the proposed strategy for camera self-calibration, this paper
is compared with the scheme of ColMap [38]. Since ColMap does not implement the
GNSS-constrained BA, the similarity transforms were applied for the projection center
of images and GNSS after the final global BA in ColMap. Then, the weighted BA with
GNSS as described in Formula (12) was conducted. Considering that ColMap does not
provide any mathematical distortion models, the Brown model was adopted to make the
experimental comparison.
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The statistical results of check points after camera self-calibration are shown in Table 4.
The results show that the horizontal accuracy with the proposed strategy is better than
that of ColMap’s in the four datasets of the two test sites. In the direction of elevation, the
proposed strategy significantly improved the RMSE accuracy than ColMap (except for the
rectangle dataset in test site 2). Due to the “bowl effect” in ColMap camera self-calibration,
although its mean value was smaller than that of the proposed strategy in the S-shaped
dataset of test site 1, it had a large standard deviation, which indicates that there is a large
fluctuation in the vertical direction of the reconstructed model with ColMap, as shown
in Figure 9b. In the rectangle dataset of test site 2, the elevation of ColMap had a higher
accuracy in the mean and RMSE than that of the proposed strategy. The reason is that the
initial image pair selected during the incremental SfM framework had a better structure,
which led to a smaller variation range of focal length and a higher accuracy. However, it
should be noted that the standard deviation of ColMap in this dataset was 0.055 larger
than ours, which shows that the ColMap’s fluctuation of elevation error is still large and
there is a “bowl effect” in the reconstructed model with a certain bending phenomenon,
as shown in Figure 9c. In conclusion, the proposed camera self-calibration strategy had
advantages in horizontal accuracy and had better vertical accuracy than ColMap in three
of the datasets.
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Table 4. Statistical results of self-calibration for different calibration methods.

Datasets Method
Mean(m) SD(m) RMSE(m)

X Y Z X Y Z X Y Z

Test Site 1

Rectangle
ColMap 0.006 −0.007 0.574 0.015 0.050 0.036 0.016 0.050 0.575

Ours 0.004 −0.001 0.174 0.011 0.036 0.037 0.012 0.036 0.178

S-Shaped
ColMap 0.107 0.103 0.055 0.040 0.320 0.404 0.114 0.337 0.407

Ours 0.011 0.002 −0.348 0.014 0.018 0.022 0.018 0.018 0.349

Test Site 2

Rectangle
ColMap −0.038 0.033 0.239 0.055 0.026 0.091 0.067 0.042 0.256

Ours −0.018 0.028 0.753 0.030 0.025 0.036 0.035 0.037 0.754

S-Shaped
ColMap 0.012 −0.005 −1.380 0.018 0.011 0.019 0.021 0.012 1.381

Ours 0.016 −0.006 −1.259 0.012 0.012 0.041 0.020 0.013 1.260
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The DJI Phantom 4 RTK UAV records the differential GNSS location of the image with
centimeter positioning accuracy. The relative accuracy between the projection center of the
image after camera self-calibration with the proposed strategy and the corresponding GNSS
location were analyzed. As the horizontal relative errors between the proposed method
and ColMap had no obvious regularity and the vertical relative errors can indicate whether
the “bowl effect” appears, the vertical offset distribution of the image projection centers
after camera self-calibration and the corresponding GNSS locations in the four datasets are
listed in Figure 9. It can be seen that, in the elevation direction, the reconstructed model
of ColMap had obvious bending. It is a convex shape that is higher in the middle and
lower on both sides in the rectangle dataset of test site 1. Further, it shows a concave shape
that is lower in the middle and higher on both sides in both the S-shaped dataset of test
site 1 and the rectangle dataset of test site 2. The offsets in the vertical direction of the
reconstructed model with the proposed method are small, which significantly alleviates
the “bowl effect”. For the S-shaped dataset of test site 2, there are two broken jumps in the
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proposed method and ColMap. The main reason is that the large illumination leads to the
increase of mismatch feature points, which affects the accuracy of bundle block adjustment.
In summary, the vertical relative accuracy of the proposed method in the vertical direction
is significantly improved compared with ColMap and the bending of the reconstructed
model is reduced.

3.4. Comparison with State-Of-The-Art Software

The open-source software MicMac and the commercial software Pix4d Mapper were
selected to compare and analyze with the proposed method. Based on the comparative
experiments mentioned above with different distortion models, it was found that the
overall performance of the hybrid Jacob–Fourier model was the best. Therefore, the
hybrid Jacobi–Fourier distortion model was selected for further comparative analysis.
The F15P7 distortion model was adopted in MicMac with the strategies proposed in [25].
The distortion model of Pix4d Mapper was unknown. In this section, self-calibration is
conducted without and with GCPs.

3.4.1. Bundle Adjustment without GCP

For bundle adjustment without GCP, the experimental results are listed in Table 5.
Figures 10 and 11 show the residual of check points with this software after camera self-
calibration. From the analysis of horizontal accuracy, the following can be seen: (1) The
proposed method had the smallest mean value in the two datasets of test site 1. The mean
values of Pix4d in both datasets of test site 2 are the smallest. For the two datasets of test site
1, the standard deviation of MicMac in the Y direction is the largest, reaching 0.1 m, while
Pix4d and the proposed method are both less than 0.07 m. Therefore, MicMac performs the
worst overall. (2) The RMSE values in the X direction of Pix4d and the proposed method
have little difference in the datasets except for the S-shaped dataset of test site 1. However,
the RMSE values of Pix4d in the Y direction are 0.03 m, 0.015 m, and 0.010 m larger than the
proposed method. Therefore, the horizontal accuracy of the proposed method is generally
better than Pix4d.

Table 5. Statistical results of self-calibration for different software.

Datasets Software
Mean(m) SD(m) RMSE(m)

X Y Z X Y X Y Z Z

Test site 1

Rectangle

MicMac −0.007 −0.023 0.301 0.017 0.125 0.095 0.019 0.127 0.315

Pix4d −0.012 −0.024 −1.266 0.020 0.066 0.088 0.024 0.070 1.269

Ours −0.001 0.003 0.481 0.020 0.040 0.032 0.020 0.040 0.482

S-shaped

MicMac −0.029 −0.050 −0.075 0.013 0.155 0.157 0.031 0.163 0.174

Pix4d 0.021 0.013 0.360 0.017 0.016 0.029 0.027 0.021 0.362

Ours 0.019 0.007 0.031 0.020 0.014 0.022 0.028 0.015 0.038

Test site 2

Rectangle

MicMac −0.016 0.047 0.716 0.037 0.043 0.056 0.041 0.064 0.718

Pix4d 0.008 −0.013 −0.847 0.025 0.048 0.037 0.026 0.050 0.848

Ours −0.011 0.024 0.104 0.023 0.025 0.029 0.026 0.035 0.108

S-shaped

MicMac 0.056 −0.023 −1.425 0.076 0.021 0.108 0.095 0.031 1.429

Pix4d 0.011 0.005 −0.111 0.013 0.023 0.025 0.018 0.023 0.113

Ours 0.022 0.003 −0.724 0.016 0.012 0.035 0.027 0.013 0.725
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Figure 10. The residuals of check points after self-calibration with different software for test site 1.
(a,c,e) The residuals of check points of rectangle dataset in the direction of X, Y, and Z, respectively;
(b,d,f) the residuals of check points of S-shaped dataset in the direction of X, Y, and Z, respectively.

From the analysis of the vertical accuracy, the following can be seen: (1) The proposed
method had the smallest standard deviation in the datasets except for the S-shaped dataset
of test site 2. Pix4d had the smallest standard deviation in the S-shaped dataset of test site 2.
MicMac had the largest standard deviation in the four datasets and the accuracy fluctuates
greatly. (2) For test site 1, the RMSE values of MicMac were the smallest, but it had the
largest standard deviation and the reconstructed model had obvious bending, as shown
in Figure 12a,b. Pix4d had the smallest RMSE and standard deviation in the S-shaped
dataset of test site 2. The possible reason is that the feature points matching of Pix4d is
more robust with the large change of illumination. However, the RMSE values of Pix4d in
the vertical direction were 0.787 m, 0.324 m, and 0.74 m larger than the proposed method,
which indicates that the proposed has better accuracy in the vertical direction. To sum up,
compared with MicMac and Pix4d, the proposed method still has certain advantages.

To evaluate the “bowl effect” with different software, the relative errors in the Z
direction between the projection centers and the corresponding GNSS locations are shown
in Figure 12. Compared with Pix4d and the proposed method, MicMac had the worst
performance in the vertical relative accuracy between the projection centers and GNSS
locations. The fluctuation range of vertical relative errors was between −0.2 m and 0.3 m
with MicMac, which is much bigger than Pix4d and the proposed method. There was a
“bowl effect” with MicMac in the four datasets except for the S-shaped dataset in test site 2,
while the bending of the reconstructed models was significantly reduced with Pix4d and
the proposed method. The vertical relative errors of the proposed method were close to
Pix4d. The “bowl effect” was alleviated with the proposed method and Pix4d.
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(b,d,f) the residuals of check points of S-shaped dataset in the direction of X, Y, and Z, respectively.
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3.4.2. Bundle Adjustment with GCP

For bundle adjustment with GCP, a single GCP was applied for the camera self-
calibration experiment compared with MicMac and Pix4d Mapper. All the optimized
parameters of Section 3.4.1 were used as the initial parameters for MicMac and the pro-
posed method with one single GCP-constrained BA. The Brown and hybrid Jacobi–Fourier
distortion models were selected with the proposed method. Table 6 lists the experimental
results. Figures 13 and 14 show the residuals of check points after camera self-calibration
with one single GCP. From the analysis of horizontal accuracy, the accuracy of the Brown
and hybrid Jacobi–Fourier distortion models with the proposed strategy is comparable.
The mean values in the horizontal direction of X and Y with MicMac were the largest in
the datasets except for the S-shaped dataset of test site 1, and the horizontal RMSE values
and standard deviation values were also the largest among the four datasets. In the two
datasets of test site 1, the mean values and RMSE values of Pix4d in the X and Y horizontal
directions were larger than the Brown and hybrid Jacobi–Fourier model. Further, in the
two datasets of the test site 2, the mean values and RMSE values of Pix4d in the horizontal
direction of X were smaller than Brown and hybrid Jacobi–Fourier model with the proposed
strategy, but in the Y direction, they were larger than the two distortion models with the
proposed strategy. In general, the horizontal accuracy of the proposed method is relatively
close to Pix4d. The horizontal RMSE value of the two distortion models with the proposed
method was better than 0.04 m, while MicMac was less than 0.5 m and Pix4d was less than
0.08 m.

Table 6. Statistical results of self-calibration for different software with one single ground control point constraint.

Datasets Software
Mean(m) SD(m) RMSE(m)

X Y Z X Y Z X Y Z

Test site 1

Rectangle

Brown −0.005 0.003 0.016 0.011 0.036 0.040 0.012 0.036 0.043

Jacobi–Four 0.000 0.000 0.016 0.021 0.041 0.038 0.021 0.041 0.042

MicMac 0.020 −0.081 0.169 0.019 0.200 0.119 0.027 0.216 0.207

Pix4d 0.018 −0.019 0.018 0.020 0.073 0.083 0.027 0.076 0.085

S-shaped

Brown −0.011 −0.001 −0.014 0.014 0.018 0.022 0.018 0.018 0.026

Jacobi–Four −0.019 −0.004 −0.024 0.017 0.016 0.019 0.026 0.016 0.030

MicMac 0.017 −0.029 0.164 0.017 0.044 0.142 0.024 0.053 0.217

Pix4d 0.020 0.013 0.034 0.019 0.017 0.027 0.027 0.022 0.043

Test site 2

Rectangle

Brown 0.018 −0.027 0.005 0.030 0.026 0.029 0.035 0.038 0.029

Jacobi–Four 0.012 −0.024 0.003 0.024 0.026 0.028 0.027 0.035 0.028

MicMac 0.154 −0.071 0.016 0.214 0.067 0.105 0.264 0.098 0.106

Pix4d 0.005 −0.010 −0.023 0.023 0.048 0.033 0.024 0.049 0.040

S-shaped

Brown −0.018 0.007 0.024 0.014 0.013 0.017 0.023 0.015 0.029

Jacobi–Four −0.023 −0.002 0.005 0.018 0.013 0.019 0.029 0.013 0.019

MicMac −0.283 0.057 0.022 0.381 0.053 0.190 0.475 0.078 0.191

Pix4d 0.012 0.017 −0.017 0.013 0.021 0.024 0.017 0.027 0.030
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Figure 13. The residuals of check points after self-calibration with one single GCP for test site 1. 
(a,c,e) The residuals of check points of rectangle dataset in the direction of X, Y, and Z, respec-
tively; (b,d,f) the residuals of check points of S-shaped dataset in the direction of X, Y, and Z, re-
spectively. 
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Figure 13. The residuals of check points after self-calibration with one single GCP for test site 1.
(a,c,e) The residuals of check points of rectangle dataset in the direction of X, Y, and Z, respectively;
(b,d,f) the residuals of check points of S-shaped dataset in the direction of X, Y, and Z, respectively.
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Figure 14. The residuals of check points after self-calibration with one single GCP for test site 2. 
(a,c,e) The residuals of check points of rectangle dataset in the direction of X, Y, and Z, respec-
tively; (b,d,f) the residuals of check points of S-shaped dataset in the direction of X, Y, and Z, re-
spectively. 
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for camera self-calibration, which may lead to the “bowl effect”. To solve such a tough 
problem, traditional methods rely on more than three GPCs, while the proposed method 
relies on only one GCP. The proposed new camera self-calibration method for long corri-
dor UAV images in high transmission lines combines the initialization of the camera cali-
bration parameters and the fusion of high-precision differential GNSS position infor-
mation for long corridor UAV images in high transmission lines. Based on the compre-
hensive analysis of the physical and mathematical models of camera distortion, the new 
camera self-calibration method was designed, which takes full consideration of the initial-
ization of the camera intrinsic parameters in long corridor UAV images and the fusion of 
differential GNSS with inequality constrained BA.  

The UAV images of two test sites with two different acquisition modes were applied 
for camera self-calibration experiments. The experimental results show that the proposed 
camera self-calibration method can significantly alleviate the “bowl effect” for long corri-
dor UAV images, reduce the bending of the reconstructed model, and improve the abso-
lute accuracy. Compared to the accuracy using the physical distortion model without any 
GCPs, the mathematical distortion models achieve better horizontal and vertical accuracy 
in the weak structure datasets. Among them, the vertical accuracy of the hybrid Jacobi–
Fourier distortion model is generally better than the other mathematical models. Further-
more, with only one single GCP constraint, the proposed method with Brown and hybrid 
Jacobi–Fourier distortion models achieved the best accuracy compared with open-source 
and commercial software. Compared with the open-source software MicMac, the RMSEs 
in the directions of X, Y, and Z improved the GSD value on average approximately 8.36, 
4.02, and 7.07 times, respectively, in the four datasets with the Brown model, and im-
proved the GSD value on average approximately 8.18, 4.05, and 7.12 times, respectively, 
with hybrid Jacobi–Fourier model. Compared with the commercial software Pix4d, the 
RMSEs in the directions of X, Y, and Z improved the GSD value on average approximately 
0.08, 0.80, and 0.85 times, respectively in the four datasets with the Brown model. Alt-
hough, in the direction of X, the RMSE lost 0.01 times the GSD value with the hybrid Ja-
cobi–Fourier model, while the RMESs in the directions of Y and Z improved 0.82 and 0.94 
times the GSD value on average, respectively. Considering that different distortion mod-
els perform differently with different scenes, this study focuses on how to select the ap-
propriate distortion model according to the characteristics and uncertainty of the scene in 
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Figure 14. The residuals of check points after self-calibration with one single GCP for test site 2.
(a,c,e) The residuals of check points of rectangle dataset in the direction of X, Y, and Z, respectively;
(b,d,f) the residuals of check points of S-shaped dataset in the direction of X, Y, and Z, respectively.

From the analysis of elevation, the two distortion models with the proposed strategy
achieved the best accuracy, while MicMac achieved the worse. The RMSE in the vertical
direction of MicMac was greater than 0.1 m, while Pix4d was less than 0.1 m and the two
distortion models with the proposed strategy were both less than 0.05 m. The vertical
accuracy of the two distortion models was relatively close, and the difference between
the first three datasets was only at the millimeter level, while the vertical RMSE of the
hybrid Jacobi–Fourier model was 0.01 m better than the Brown in the S-shaped dataset
of test site 2. Therefore, in the case of a single GCP constraint, the accuracy of the Brown
model is comparable to the hybrid Jacobi–Fourier model, and the overall accuracy of
camera self-calibration with the proposed strategy is better than that of MicMac and Pix4d.
Additionally, compared with Table 5 in the vertical direction, MicMac had the smallest
RMSE value in the rectangle dataset of test site 1 while Pix4d had the smallest RMSE value
in the S-shaped dataset of test site 2. However, the vertical RMSE of Brown and hybrid
Jacobi–Fourier models with the proposed strategy was better than MicMac and Pix4d
after adding a single GCP. The reason is that the horizontal accuracy is ensured and the
relative errors between image projection centers and GNSS locations are small with the
experiments of direct georeferencing in Sections 3.3 and 3.4.1, which indicates that the
proposed method can significantly reduce the bending of the reconstructed model and the
image structures have litter distortion. The “bowl effect” is alleviated. The only problem
is that the vertical accuracy is unstable because the focal length is highly correlated with
other distortion parameters. With one GCP constraint, the correlation between focal length
and other distortion parameters is reduced and the focal length can be accurately estimated.
In this case, vertical accuracy can be ensured.

4. Conclusions

The UAV images collected on a linear axis and fixed height are critical configurations
for camera self-calibration, which may lead to the “bowl effect”. To solve such a tough
problem, traditional methods rely on more than three GPCs, while the proposed method
relies on only one GCP. The proposed new camera self-calibration method for long corridor
UAV images in high transmission lines combines the initialization of the camera calibration
parameters and the fusion of high-precision differential GNSS position information for long
corridor UAV images in high transmission lines. Based on the comprehensive analysis of
the physical and mathematical models of camera distortion, the new camera self-calibration
method was designed, which takes full consideration of the initialization of the camera
intrinsic parameters in long corridor UAV images and the fusion of differential GNSS with
inequality constrained BA.

The UAV images of two test sites with two different acquisition modes were applied
for camera self-calibration experiments. The experimental results show that the proposed
camera self-calibration method can significantly alleviate the “bowl effect” for long corridor
UAV images, reduce the bending of the reconstructed model, and improve the absolute
accuracy. Compared to the accuracy using the physical distortion model without any GCPs,
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the mathematical distortion models achieve better horizontal and vertical accuracy in the
weak structure datasets. Among them, the vertical accuracy of the hybrid Jacobi–Fourier
distortion model is generally better than the other mathematical models. Furthermore,
with only one single GCP constraint, the proposed method with Brown and hybrid Jacobi–
Fourier distortion models achieved the best accuracy compared with open-source and
commercial software. Compared with the open-source software MicMac, the RMSEs in the
directions of X, Y, and Z improved the GSD value on average approximately 8.36, 4.02, and
7.07 times, respectively, in the four datasets with the Brown model, and improved the GSD
value on average approximately 8.18, 4.05, and 7.12 times, respectively, with hybrid Jacobi–
Fourier model. Compared with the commercial software Pix4d, the RMSEs in the directions
of X, Y, and Z improved the GSD value on average approximately 0.08, 0.80, and 0.85 times,
respectively in the four datasets with the Brown model. Although, in the direction of
X, the RMSE lost 0.01 times the GSD value with the hybrid Jacobi–Fourier model, while
the RMESs in the directions of Y and Z improved 0.82 and 0.94 times the GSD value on
average, respectively. Considering that different distortion models perform differently
with different scenes, this study focuses on how to select the appropriate distortion model
according to the characteristics and uncertainty of the scene in future work.
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