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Abstract: Soil moisture (SM) significantly affects the exchange of land surface energy and the stability
of terrestrial ecosystems. Although some conclusions have been drawn about the effects of SM on
the ecosystem water use efficiency (WUE), the influence mechanism and the quantitative assessment
framework of SM on WUE are still unclear. This study provides an analysis framework for the
feedback relationship between SM and WUE based on the dependence of the evaporation fraction on
SM and output datasets from remote sensing and the Global Land Data Assimilation System. The
results show that the range of WUE of terrestrial ecosystems of China was 0.02–19.26 g C/kg H2O in
the growing season with an average value of 1.05 g C/kg H2O. They also show a downward trend
in 43.99% of the total area. In the evapotranspiration (ET) pathway, SM negatively affected WUE,
and the sensitivity coefficient ranged from −18.49 to −0.04. In the net primary production (NPP)
pathway, the sensitivity coefficient ranged from −68.66 to 43.19. Under the dual effects of the ET
and NPP pathways, the influence of SM on WUE was negative in 84.62% of the area. Variation in
SM led to significant WUE variability. Generally, the percentage change in WUE (∆WUE) ranged
from 0% to 190.86%, with an average value of 28.02%. The maximum ∆WUE ranged from 0% to
758.78%, with an average value of 109.29%. The WUE of forest ecosystems showed strong resistance
to SM variation, whereas that of non-forest vegetation was more sensitive to SM variation. This
analytical framework provides a new perspective on the feedback relationship between WUE and
SM in terrestrial ecosystems.

Keywords: feedback relationship; evaporation fraction; net primary production (NPP); elasticity
coefficient; climatic zone

1. Introduction

The water use efficiency (WUE) of an ecosystem is the ratio of carbon sequestration to
water consumption, which couples the terrestrial carbon and water cycles and closely links
photosynthesis and evapotranspiration (ET) processes in the ecosystem [1,2]. Although
there are many ways to express the WUE of an ecosystem, the ratio of the net primary
production (NPP) to ET is widely used [3]. The variation of WUE controlled by both biotic
and abiotic factors [4,5] and recent research showed that a vapor pressure deficit (VPD)
and canopy conductance are two dominant factors of WUE in response to drought [6].
On the global scale, WUE is positively related with drought in the majority of regions [7].
In China, most forest ecosystems exhibit strong drought resistance by improving their
WUE [8]. Under the influence of the negative feedback relationship between ET and
air temperature [9,10], the variation in WUE is usually positively correlated with air
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temperature [11]. Many studies have shown that, in the past 30 years, the vegetation
cover, gross primary productivity (GPP) and ET in western China have been low, and the
demand for evaporation has been high [12]. In the context of climate change, many studies
focus on the response process and mechanism of WUE to the constraints of drought or
water conditions [7,13,14]. On a global scale, WUE generally decreases with an increase in
drought or geographic latitude [15]. However, studies have shown that WUE generally has
a positive relationship with the drought degree. Drought events can slightly increase the
WUE in the majority of forest, grassland, and shrub ecosystems [16,17]. In addition, the
response of the WUE to drought has spatial heterogeneity at different spatial scales and
in different ecosystems. ET has been shown to control the WUE response to drought in
semi-arid and high-latitude regions, and GPP dominated the response WUE to drought
in tropical forest regions [7]. Thus, a quantitative study of WUE and its spatial variation
along drought gradients is essential for understanding the regional environmental and
physiological functions of heterogeneous landscapes [16,18].

As an important indicator of drought, soil moisture (SM) often plays a vital role in the
ecosystem carbon–water relationship [19–22]. Studies have shown that SM can indirectly
affect the WUE of terrestrial ecosystems by controlling the NPP and ET processes [21].
Soil water loss in sub-humid, semi-arid, and arid regions can reduce the total primary
productivity by 40% [23]. Granier et al. showed that when the soil relative extractable water
(REW) was below 0.4, the GPP decreased significantly and the total ecosystem respiration
did not decrease until the REW continued to decrease to 0.2 [24]. However, another study
showed that because water stress has less limitation on carbon assimilation than ET, ET
decreases especially on cloudy days, thereby resulting in a significant increase in WUE [25].
In the global forest ecosystem, the variations in ecosystem WUE, GPP, and ET are correlated
with SM, and the sensitivities of the WUE to the soil water content significantly increase
with the increase in the vapor pressure deficit [26]. The seasonal fluctuation of SM caused
by local rainfall is the main factor determining the GPP/ET relationship in the tropical
Amazon rainforest [27,28].Given the above results, some studies think that soil water use
efficiency is an adequate representative and indicator of WUE [15,29]. Therefore, studying
the influence mechanism of SM on WUE is of great significance to the evolution of terrestrial
ecosystems and the response to climate change.

Many studies have shown that a decrease in soil moisture or an increase in drought
severity usually increases the WUE [7,25,30,31]. A recent study showed that SM, rather
than VPD, dominates dryness stress on ecosystem production globally [32]. Considering
SM can better reflect the ET rate at a large regional scale [33,34], ET often dominates the
WUE variability in arid and semi-arid regions [7]. Therefore, whether from NPP or ET
pathways, SM should be the dominant factor affecting WUE. However, the influencing
mechanism by which SM variability affects WUE is still unclear. Soil water variation has
a dual effect on the WUE by affecting both NPP and ET. However, current research on
the quantitative analysis of this complex process is insufficient. Thus, this study focuses
on three questions: (1) What were the spatiotemporal variation characteristics of WUE
in the terrestrial ecosystems of China over the past 30 years (1985–2014)? (2) What is the
cause and effect mechanism by which SM influences WUE and how can it be quantitatively
evaluated? (3) To what extent does the variation of SM affect WUE?

2. Materials and Methods
2.1. Study Area

China has a land area of approximately 9.6 × 106 km2 and diverse ecosystems. Ac-
cording to the vegetation map of China (1:1,000,000), grassland ecosystems account for the
largest proportion of terrestrial ecosystems, covering 29.88% of the total land area, followed
by forest ecosystems, which cover for 23.96% of the total land area. In addition, farmland,
desert, wetland, and other ecosystems accounted for 18.82%, 13.53%, 3.92%, and 7.55% of
the total land area, respectively.
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This study mainly discussed the variation in WUE and SM in different climate zones
of the terrestrial ecosystem. The terrestrial ecosystem in China has eight climatic zones,
namely, the marginal tropical zone (A), south subtropics zone (B), middle subtropics zone
(C), north subtropics zone (D), warm temperate zone (E), middle temperate zone (F), cold
temperate zone (G), temperate zone in Qinghai–Tibet Plateau (H), and sub-frigid zone in
Qinghai–Tibet Plateau (I) (Figure 1). As the terrestrial ecosystems of China span multiple
climatic zones, its climatic growth seasons also have significant spatial differences, ranging
from the shortest two-month growth season to the longest twelve-month growth season
(Figure 1).
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Figure 1. Sketch map of climatic zones (left)and the length of growing seasons (right) in the terrestrial ecosystemsof China.

2.2. Data

Monthly latent heat flux (LE), sensible heat flux (H) and ground heat flux (G), ET, sur-
face net radiation (Rn), and SM (four layers: 0–10, 10–40, 40–100, 100–200 cm) datasets were
obtained from the NASA Global Land Data Assimilation System (GLDAS) Noah model
(GLDAS_NOAH025_M_2.0). We used the dataset from 1985 to 2014 with a spatial resolu-
tion of 0.25◦ × 0.25◦ (downloaded from https://disc.gsfc.nasa.gov/datasets, accessed on
10 October 2020). In this study, SM in the 0–100 cm soil layer was regarded as the SM of
root zone based on previous research [35,36]. The monthly NPP dataset (spatial resolution
of 1 km × 1 km) of China’s terrestrial ecosystems north of 18◦N from 1985 to 2014 was
obtained from the Global Change Research Data Publishing & Repository of China. The
NPP data were calculated using the Carnegie–Ames–Stanford Approach (CASA) model
based on the monthly meteorological data of China’s land from 1985 to 2015, national
soil texture data, and land cover and vegetation index data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) and the Advanced Very High Resolution Radiometer
(AVHRR) remote sensing images. CASA model is a process-based remote sensing model
for estimating NPP of terrestrial ecosystem, which is driven by grid datasets of climate,
radiation, soil, and remote sensing vegetation index [37]. A comparative analysis with the
measured and simulated data from previous studies [38–42] showed that the NPP dataset
used in this study hadgood accuracy [43].

https://disc.gsfc.nasa.gov/datasets
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To verify the NPP and ET (GLDAS) data, this study collected the monthly observation
data from eight flux towers in China from 2003 to 2010, which were provided by ChinaFLUX
(http://www.cnern.org.cn/, accessed on 15 September 2021). In addition, this study also
collected the monthly observation flux data from the other four flux towers from the
stations, and the collected data length of these four stations was 2004–2006, 2011–2014,
2008–2011, and 2013–2014, respectively. This study also used SM data based on microwave
remote sensing in China from 2002 to 2011 (provided by the National Tibetan Plateau Data
Center (TPDC) of China; http://data.tpdc.ac.cn, accessed on 2 August 2021) to verify the
SM data from GLDAS. The spatial and temporal resolutions of the SM dataset (from the
TPDC) were 0.25◦ and monthly, respectively. The dataset was calculated based on the
high spatial and temporal resolution surface meteorological dataset and an improved land
surface assimilation system to drive the Simple Biosphere model (SiB2) and assimilate the
brightness temperature observed by the Advanced Microwave Scanning Radiometer Earth
Observing System sensor (AMSR-E) satellite [44,45]. The verifications showed that the
RMSE of this SM dataset (from the TPDC) was approximately 5% volumetric soil water
content [45,46].

The soil texture dataset was obtained from the TPDC of China (http://data.tpdc.ac.cn,
accessed on 13 May 2020). The dataset was calculated based on the 1:1,000,000 scale
soil map and 8595 soil profiles of China’s second national soil survey and the regional
land and climate simulation standard of the U.S. Department of Agriculture (soil texture
classification standard is shown in Table 1). This study also used the data of soil hydraulic
properties in China, which were provided by the National Cryosphere Desert Data Center
of China (http://www.crensed.ac.cn/portal/, accessed on 21 August 2020).

Table 1. Soil texture classification standard of soil texture dataset.

Soil Diameter (mm)

>3 3~2 2~1 1~0.5 0.5~0.25 0.25~0.1 0.1~0.05 0.05~0.002 <0.002

rock gravel

sand

silt clayvery
coarse
sand

coarse
sand

medium
sand

fine
sand

very
fine
sand

This study extracted the growing season by using the base temperature threshold of
10 ◦C (≥10 ◦C) [47] based on the multi-year monthly average air temperature. The required
grid data of monthly average temperature in China (1985–2014) were downloaded from
the “National Tibetan Plateau Data Center” of China (http://data.tpdc.ac.cn, accessed
on 13 May 2020). However, in the Qinghai Tibet Plateau, the maximum monthly average
temperature in most areas is usually lower than 10 ◦C. Therefore, according to the local
actual situation and previous studies [48,49], the growth season was defined as June
to September.

2.3. Methods
2.3.1. Mathematical Expression between SM and EF

Previous studies have proposed an effective analysis method for the functional rela-
tionship between the evaporation fraction (EF) and SM [50,51]. This method expressed the
dependence of EF on SM (θ) as follows:

EF(θ)


0, if θ < θr

EFmax
θ−θr
θc−θr

, if θr ≤ θ ≤ θs

EFmax, if θ > θs

(1)

http://www.cnern.org.cn/
http://data.tpdc.ac.cn
http://data.tpdc.ac.cn
http://www.crensed.ac.cn/portal/
http://data.tpdc.ac.cn
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where θ is volumetric soil moisture content (m3/m3), θc is the soil moisture at the critical
point, and θr is the soil wilting coefficient. EF is the evaporative fraction, which is calculated
as follows:

EF =
LE
Rn

(2)

where LE is the latent heat flux and Rn is the surface net radiation. When θ < θr, EF is not
always zero owing to the presence of hygroscopic SM [52]. Therefore, EFmin is defined as
the EF value corresponding to a cumulative frequency percentage of 5%. In addition, when
θ > θc, energy rather than SM became the dominant limiting factor for ET. Thus, the study
similarly defined EFmax as the EF value corresponding to 95% of the cumulative frequency
percentage. Because this study only focused on the functional relationship between SM
and EF in the range of EFmin ≤ EF ≤ EFmax, Equation (1) could be expressed as follows:

θ =
EF

EFmax
(θc − θr) + θr (3)

This study estimated the raster map of θr using soil hydraulic parameters and soil
texture datasets [53]. Although the fitting between EF and θ could obtain the parameter
θc, it could result in great uncertainty. Thus, this study used the soil field capacity (θf) to
replace θc and introduced a dimensionless parameter A into the calculation scheme for
correction. Finally, Equation (3) was deformed as follows:

θ =
EF

EFmax
A(θf − θr) + θr (4)

The gridded θf value was also calculated using soil hydraulic parameters and soil
texture datasets [53]. First, we used the monthly SM and EF data from 1985 to 2000 to fit
the multi-year average monthly (January to December) parameter A. Then, the monthly
SM from 2001 to 2014 was estimated using the EF data during the same period and the
fitted parameter A. The GLDAS SM data finally verified the estimated soil moisture data
during 2001–2014.

2.3.2. The Response of WUE to SM Variation

Generally, WUE is calculated as follows:

WUE =
NPP
ET

(5)

Based on Equation (2), ET could be expressed as follows:

ET =
Rn × EF

L
(6)

where L is the latent heat of vaporization, which is the ratio of LE to ET. Thus, the elasticity
of WUE to the variation of SM could be divided into two contributions based on Equations
(4) to (6), as follows:

∂WUE
∂θ

=
∂WUE

∂ET
∂ET
∂θ

+
∂WUE
∂NPP

∂NPP
∂θ

(7)

The first term on the right side of the equation describes the impact of SM variation
on the ET process and the further influence on the WUE. This term was calculated based
on Equations (3), (5) and (6). The second term on the right of the equation is the sensitivity
of WUE to SM variation via the NPP pathway, which was estimated based on Equation (5)
and the following statistical method:

ε = median

[
(NPPi − NPP)/NPP(

θi − θ
)
/θ

]
(8)
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where ε is the sensitivity coefficient; NPP and θ are the long-term average values of the
NPP and SM in growing season of a pixel; NPPi and θi are the growing season values of
NPP and SM in each year, respectively.

Thus, the following formula could be used to evaluate the average impact of SM
variation on WUE in the past 30 years:

∆WUE =

∣∣∣∣∂WUE
∂θ

∣∣∣∣∆θ (9)

where ∆θ is the percentage change in SM in the growing season from 1985 to 2014. Thus,
∆WUE was the average influence (change percentage) of SM variation on WUE. Similarly,
the impact of the maximum variation of SM on WUE was calculated as follows:

∆WUEmax =

∣∣∣∣∂WUE
∂θ

∣∣∣∣∆θmax (10)

where ∆θmax is the maximum rate of change in SM during the growing season from 1985 to
2014, which was calculated as the difference between the maximum and minimum values
of SM during the period. ∆WUEmax is the maximum possible impact of SM variation on
WUE during the growing season in past 30 years.

3. Results
3.1. Data Verification

The analysis of this study was based on the output datasets of the climate model
and remote sensing model, including the ET and SM datasets from GLDAS, and the NPP
dataset from the Global Change Research Data Publishing & Repository of China. The
verification results showed that the monthly ET of the GLDAS dataset and the observed
ET data in 12 flux towers in China had a good consistence (Figure 2b). The determination
coefficient (R2), root mean square error (RMSE), mean absolute percent error (MAPE), and
Nash–Sutcliffe efficiency coefficient (NSE) between the simulated and measured ET values
were 0.79, 14.78 mm, 31.32%, and 0.77, respectively. In addition, the verification results
of NPP data showed that, although the estimated monthly NPP data used in this study
underestimated the actual NPP, the R2, RMSE, MAPE, and NSE between the estimations
and observations were 0.97, 69.02 g C·m−2·mo−1, 35.09%, and 0.42, respectively, which
indicated that the NPP dataset used in this study was also consistent with the observations
(Figure 2a). This study compared the SM data based on microwave remote sensing data
assimilation in China (2002–2011) with GLDAS SM data (Figure 2c), owing to the lack of
measured SM data. The results showed a good consistency, and the R2, RMSE, MAPE,
and NSE values were 0.96, 0.05 m3·m−3, 18.25%, and 0.59, respectively. Furthermore, The
monthly SM from 2001 to 2014 was estimated using Equation (4) and then verified using
SM data of GLDAS. The overall trend of change in estimated SM was close to the GLDAS
SM data, and the determination coefficient (R2) was 0.97 (Figure 2d). Meanwhile, the RMSE,
MAPE, and NSE of this simulation were 0.01 m3·m−3, 18%, and 0.92, respectively. The
fitting error was primarily due to the overestimation of SM, especially when the SM was
low. This study may have overestimated SM in some arid regions or during dry seasons.
Although there were still some simulation errors, the datasets used in this study were
generally reliable and could ensure the accuracy of the results.
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3.2. Spatiotemporal Variation of WUE

In terms of the growing season, the range of WUE in all terrestrial ecosystems was
0.02–19.26 g C/Kg H2O, with an average value of 1.05 g C/Kg H2O and a standard devia-
tion of 1.45 g C/Kg H2O. Furthermore, the high-value areas of WUE were mainly located
in the arid regions of Northwest China (Figure 3a). The spatial variation in WUE in the dif-
ferent climatic zone was also distinct (Figure 3c). The sub-frigid zone in the Qinghai–Tibet
Plateau(PSF) and the temperate zone in the Qinghai–Tibet Plateau (PTMP) had the highest
WUE, with maximum values of 1.80 g C/Kg H2O and 1.03 g C/Kg H2O, respectively. The
north subtropics (NST) had the lowest WUE with a value of 0.48 g C/Kg H2O. The WUE in
the warm temperate zone (WTMP), middle temperate zone (MTMP), cold temperate zone
(CTMP), south subtropics zone (SST),marginal tropical(MT) zone, and middle subtropics
zone (MST) was0.98, 0.87, 0.64, 0.60, 0.55, and 0.51 g C/Kg H2O, respectively. In general,
the change in WUE was correlated with the SM (coefficient of determination: R = 0.56), and
a higher SM usually led to a lower WUE (Figure 3d).
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pathway in the arid region of northwestern China was the most significant, followed by 
that in the southeast monsoon region. The impact in the central China region was rela-

Figure 3. Temporal and spatial variation characteristics of water use efficiency (WUE) in the terrestrial ecosystems of China
during the growing season from 1985 to 2014. (a) Multi-year average WUE in the growing season; (b) Mann–Kendall
test of the WUE change trend (“DEC” is the decrease trend and “INC” is the increase trend) in the growing season;
(c) multi-year average WUE in the growing season in different climatic zones, whiskers indicate standard deviation;
(d) scatter plot between WUE and SM in the growing season, and the blue solid line is the change trend of fitted by quadratic
curve. The abbreviations of MT, SST, MST, NST, WTMP, MTMP, CTMP, PTMP, and PSF represent the marginal tropical
zone, south subtropics zone, middle subtropics zone, north subtropics zone, warm temperate zone, middle temperate
zone, cold temperate zone, temperate zone in Qinghai–Tibet Plateau, and the sub-frigid zone in Qinghai–Tibet Plateau
(PSF), respectively.

During the growing season, WUE showed a downward trend in 43.99% of the total
area. Among these areas, WUE showed extremely significant (Sig = 0.99), significant
(Sig = 0.95), and insignificant (Sig = 0.90) downward trends in 35.03%, 6.11%, and 2.58%
of the total terrestrial ecosystem area, respectively. In contrast, WUE also showed an
increasing trend in 34.91% of the total area of the terrestrial ecosystem. Among these areas,
the percentage with extremely significant, significant, and insignificant increases in WUE
was 28.07%, 4.94% and 1.91%, respectively. Thus, in the past 30 years, the WUE of the
terrestrial ecosystem has generally shown a downward trend, especially in the arid areas of
Northwest China, the Mongolian Plateau, and the southern Qinghai–Tibet Plateau. WUE
also showed a significant downward trend in some areas of the monsoon region of China
(Figure 3b).

3.3. Elasticity of WUE to SM

The variation in SM can, simultaneously, directly affect the NPP and ET, which,
ultimately, leads to the changes in WUE. On the ET pathway, the sensitivity coefficient of
the WUE to SM ( ∂WUE

∂ET
∂ET
∂θ ) at the growing season scale ranged from −18.49 to −0.04, with

an average of −3.02 (Figure 4a). Generally, the negative impact of SM on WUE via the ET
pathway in the arid region of northwestern China was the most significant, followed by
that in the southeast monsoon region. The impact in the central China region was relatively
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insignificant. This negative effect (Figure 4b) was mainly due to the negative feedback
relationship between the WUE and ET (EF). In different climatic zones, the negative impact
of SM on WUE via the ET pathway was the lowest in the PSF, and the average value of the
elasticity coefficient was −1.87. The impact was the most significant in the CTMP, with an
average elasticity coefficient being−3.80. In other zones, the adverse effects of SM on WUE
via the ET pathway were in the order of MTMP, SST, MST, MT, WTMP, NST, and PTMP,
with average elasticity coefficients of −3.72, −3.49, −3.24, −3.12, −2.98, −2.96, and −2.29,
respectively (Figure 4b).
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Figure 4. Spatial characteristics of the elasticity coefficient of water use efficiency (WUE) to soil moisture (SM) change
in the growing season of the terrestrial ecosystem in China during 1985–2014. Panels (a,c,e) show the raster map of the
sensitivity of WUE to SM variation via the evapotranspiration (ET) and net primary production (NPP) pathways and the
final effects of both pathways, respectively. Panels (b,d,f) show the sensitivity of WUE to SM variation via the ET pathway
and NPP pathway and the final effects of both pathways in different climatic zones, respectively. The abbreviations of MT,
SST, MST, NST, WTMP, MTMP, CTMP, PTMP, and PSF represent the marginal tropical zone, south subtropics zone, middle
subtropics zone, north subtropics zone, warm temperate zone, middle temperate zone, cold temperate zone, temperate
zone in Qinghai–Tibet Plateau and the sub-frigid zone in Qinghai–Tibet Plateau (PSF), respectively.
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In the NPP pathway, the sensitivity coefficient of WUE to SM ( ∂WUE
∂NPP

∂NPP
∂θ ) had a more

apparent spatial variation, and the value ranged from −68.66 to 43.19 with an average
of 0.13 (Figure 4c). Thus, SM via the NPP pathway positively affected WUE in 55.71% of
the area, whereas it showed a negative influence in the remaining 44.29% of the area. In
addition, SM via the NPP pathway often had a more significant impact (larger absolute
value) on WUE in the southeast monsoon region and northwestern arid region of China.
In different climatic zones (Figure 4d), the impact of SM on WUE via the NPP pathway
showed a positive effect in MTMP, WTMP, and PTMP, with elasticity coefficients of 0.74,
0.50, and 0.33, respectively. In contrast, the impacts of SM on WUE via the NPP pathway
were negative in the other climatic zones, and the elasticity coefficients ranged from −1.39
to −0.12. Generally, the area percentage of the region in which SM had a positive effect on
WUE via the NPP pathway ranged from 28.10% to 63.44% in different climatic zones.

Under the dual effects of ET and NPP pathways, the final SM significantly impacted
WUE. The elasticity coefficient of WUE to SM ranged from −74.01 to 39.81, with an average
value of −2.87 (Figure 4e). Because the impact of SM on WUE via the ET pathway was
completely negative, the comprehensive influence of SM on WUE also showed a more
remarkable negative effect. In the terrestrial ecosystem, SM negatively and positively
impacted WUE in 84.62% and 15.38% of the total area, respectively. For each climatic zone,
the average value of the effect of SM on WUE was also negative, and the negative effect was
the most significant in the NST, which had an average elasticity coefficient of −4.27. The
average value was the lowest in PTMP, which had an average elasticity coefficient of −1.93.
For the other climatic zones, the elasticity coefficient of WUE to SM ranged from −4.03
to −2.01. Generally, the NPP pathway mainly determined the trend of change in WUE
in different climatic zones, which was because the correlation coefficient between ∂WUE

∂θ

and ∂WUE
∂NPP

∂NPP
∂θ (R = 0.84) was more significant than that between ∂WUE

∂θ and ∂WUE
∂ET

∂ET
∂θ

(R = 0.69). In contrast, the ET pathway mostly dominated the influence level (absolute
value of the elasticity coefficient of WUE to SM) of SM on the WUE (Figure 4b,d,f).

3.4. WUE Variability Caused by SM

In this study, the absolute value of the percentage change in the WUE (∆WUE) was
used as an index to analyze the WUE variability. Figure 5a shows that the variation of
SM led to significant WUE variability, especially in northeast and northwest China. At
the growing season scale, the average ∆WUE due to the variation in SM ranged from
0% to 190.86%, with an average value of 28.02% (Figure 5a). For different climatic zones
(Figure 5c), SM in the CTMP had the most significant effect on WUE, causing an average
variation in WUE of approximately 53.90%. In contrast, SM in the PTMP had the least
impact on WUE, causing only, approximately, a 11.96% variability in WUE. For the other
climatic zones, ∆WUE caused by SM variation in MTMP, WTMP, NST, MT, SST, MST, and
PSF were 38.93%, 27.75%, 23.04%, 18.39%, 14.78%, 12.84%, and 12.30%, respectively. The
spatial trend of the maximum WUE variability (∆WUEmax) was similar to the variability of
the ∆WUE (Figure 5b). It also had the greatest change in northeast and northwest China.
Furthermore, the ∆WUEmax ranged from 0% to 758.78%, with an average value of 109.29%.
These results indicated that the maximum change in SM over the past 30 years doubled
the variability in WUE. In different climatic zones, the trend of change in ∆WUEmax was
the same as that for ∆WUE, but the value of ∆WUEmax was larger than that of ∆WUE.
∆WUEmax was generally 3.7–4.4 times greater than ∆WUE (Figure 5c).
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Figure 5. Percentage change in water use efficiency (∆WUE) caused by soil moisture variation in the terrestrial ecosystem in
the growing season. Panels (a,b) represent the spatial variation characteristics of the ∆WUE and ∆WUEmax of the entire
terrestrial ecosystem, respectively. Panel (c) represents ∆WUE and ∆WUEmax in different climatic zones. Panel (d) shows
the scatter plot between the variation in WUE and the ratio of tree cover to no-tree vegetation cover. The abbreviations of
MT, SST, MST, NST, WTMP, MTMP, CTMP, PTMP, and PSF represent Marginal tropical zone, south subtropics zone, middle
subtropics zone, north subtropics zone, warm temperate zone, middle temperate zone, cold temperate zone, temperate
zone in Qinghai–Tibet Plateau and the sub-frigid zone in Qinghai–Tibet Plateau (PSF), respectively.

The feedback relationship between SM and WUE was affected by the climatic factors
and vegetation cover. The ratio of vegetation cover between forest and non-forest was also
an essential factor affecting the feedback relationship between WUE and SM (Figure 5d).
The lower the forest cover, the more significant the change in WUE caused by changes in
SM. As the forest cover increased, the variability of WUE caused by changes in SM rapidly
decreased. When the cover ratio of forest to non-forest vegetation was higher than one, the
variability of the WUE caused by changes in the SM tended to stabilize. The WUE of the
forest ecosystem had strong resistance to variation in soil water. In contrast, the WUE of
non-forest vegetation was more sensitive to the changes in SM.

4. Discussion
4.1. The Reliability of Evaluation Results

In most cases, SM dominates ET, especially in water-limited regions [54,55]. To explore
the coupling relationship between SM and ET, researchers proposed a simple parameteri-
zation schematic, in which the SM and ET of a forest presented a linear relationship [56].
Recently, studies have proposed a conceptual framework for the dependence of the evap-
orative fraction (EF) on SM. It is suitable to analyze the soil moisture control on energy
partitioning [50,51]. Based on this coupling relationship between SM and EF, this study
established an evaluation framework for the feedback relationship between the WUE and
SM. The uncertainty of this evaluating framework mainly originated from two aspects:
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(1) the reliability of the datasets used and (2) the uncertainty of the parameterized expres-
sion of EF and SM.

Previous studies have shown that evaporation, LE, H, and SM data in the GLDAS
dataset have good applicability in China [57,58]. Our verification results (Figure 2) also
showed that the datasets used in this study were, overall, reliable, despite some overestima-
tion or underestimation. The analysis method for the coupling relationship between EF and
SM has already been applied [51]; however, this framework needs to fit two parameters
(namely, θc and θr), which may cause uncertainty. Given this, the study directly used
two determined parameters, namely, θf, and θr, provided by the dataset of soil hydraulic
parameters in China (http://data.tpdc.ac.cn, accessed on 13 May 2020). This study also
introduced a dimensionless parameter A. Thus, this study only fit one parameter (A), which
could avoid the uncertainty caused by the need to fit two parameters in the original equa-
tion and eliminate the error caused by possible overfitting. This study used the monthly
SM and EF data from 1985 to 2000 to fit the multi-year average monthly parameter A. The
monthly SM from 2001 to 2014 was estimated using Equation (4) and then verified using
SM data of GLDAS (Figure 2d). The overall trend of change in estimated SM was close
to the GLDAS SM data, and the R2, RMSE, MAPE, and NSE of this simulation were 0.99,
0.01 m3·m−3, 18%, and 0.98, respectively. Although there were still some simulation errors,
the estimation was generally reliable. Furthermore, the trend of change in the estimated
value was consistent with the GLDAS SM data; thus, the functional relationship between
SM and EF was credible overall.

4.2. The Coupling Relationship between Soil Moisture and WUE

Studies have shown that WUE is sensitive to changing environments [59]. Gener-
ally, many factors, such as the CO2 concentration, nitrogen deposition, climatic factors,
vegetation, human drivers, and SM, significantly influence WUE [6,60–62]. SM is one of
the critical factors affecting WUE [21,63]. However, most studies have not thoroughly
explored the mechanisms and accurate quantification of the effects of SM on WUE. Our
results showed that SM had a completely negative influence on WUE via the ET pathway.
However, SM also directly influenced WUE via the NPP pathway, which included negative
(44.29% of the total areas) and positive effects (55.71% of the total areas); the overall positive
effect was dominant. The areas in which SM had a negative impact on WUE via NPP
were mainly distributed in the extremely arid desert areas of Northwest China, the cold
temperate areas in Northeast China, and humid areas in Southeast China, which might
have been caused by the negative impact of SM on NPP [64].

Under the dual effects of SM, there was a clear negative feedback relationship between
WUE and SM, which was generally consistent with existing research [7,31]. The increase
in SM often led to a decrease in WUE in most areas. The strength of the feedback relation
between SM and WUE may have partly depended on the hydrothermal conditions of
the local environment. However, the most significant feature of the spatial variability
of the WUE in this study was that WUE showed a downward trend in the arid area of
northwestern China. In contrast, there was an upward trend in the humid eastern region of
China. Therefore, China’s terrestrial ecosystem WUE may be more dominated by ET than
by NPP [21]. Because the NPP of tropical and subtropical vegetational zones is higher, it is
generally approximately 8–10 times that of an arid desert and alpine vegetation areas in
northwest China [65]. However, the WUE in the tropical and subtropical vegetation zones
was smaller than that of the desert and alpine vegetation areas, which may have been
due to excessive ET reducing the WUE. Furthermore, studies have shown that whether
the effect of SM on WUE is positive or negative depends primarily on whether the ET
or NPP process dominates the WUE process [21]. This study used the absolute value
of ∂WUE

∂ET
∂ET
∂θ and ∂WUE

∂NPP
∂NPP

∂θ to determine which pathway of ET or NPP dominated the
feedback relationship between SM and WUE. The results showed that the ET pathway
dominated the feedback relationship between SM and WUE in 72% of the total area. The
region in which the NPP pathway determined the feedback relationship only accounted

http://data.tpdc.ac.cn
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for approximately 28% of the total area, especially in the Qinghai–Tibet Plateau. Therefore,
terrestrial ecosystems can partially offset the influences of soil dryness by improving WUE.
In addition, this adjustment should be more remarkable in areas where ET controls the
WUE process, such as in the arid regions of the northwest.

4.3. Plausible Changing Trend and Adjustment of WUE

Under the background of climate change, especially with the increase in temperature
and drought, the trend of change in WUE is uncertain. Studies have shown that a temper-
ature rise would increase the NPP of global terrestrial ecosystems [66,67] However, the
continuous temperature rise may eventually lead to a significant decrease in NPP [51],
mainly owing to the limitation of the optimum temperature for plant growth [68,69]. Thus,
WUE may show two completely different changes in future scenarios of a continuous
temperature rise. First, the temperature rise in the early stage could result in a general
increase in NPP. Meanwhile, the temperature rise in arid areas (water-limited areas) might
not contribute much to ET, but may cause a linear increase in humid areas [65,66]. There-
fore, under the early warming scenario, WUE in the arid region of northwestern China
could tend to increase significantly. In the humid area, WUE may only slightly change. In
contrast, in the late warming period, WUE in the arid northwestern region may become
smaller, owing to the decrease in NPP. Correspondingly, the WUE in the humid eastern
area may decline because of the possible continued increase in ET. In addition, future
climate changes may lead to an increase in the frequency, intensity, and duration of drought
events [70,71]. Therefore, drought will cause a decrease in SM, which will affect the trend
of change in WUE.

Although studies have shown that an ecosystem can respond to increased drought
by increasing WUE [7,8], this issue may not be straightforward. Because the WUE of
different vegetation types has various responses to drought, the WUE may be positively or
negatively correlated with drought and show a quadratic function relationships [59]. In
the arid region, the decrease in SM caused by drought could lead to a much greater decline
in ET compared with the change in NPP (increasing or decreasing trend) (Figure 4). Finally,
a drought may lead to an increase in WUE in most areas of the arid region. In humid areas,
the energy conditions mainly determine the evaporation process. Therefore, the decline
in SM in the early drought stage might not cause a significant change in ET. At this time,
the trend of change in WUE might mainly depend on the changing in NPP, which could
show an upward or downward trend. With the aggravation of drought, SM could decrease
significantly, which could cause a decline in ET. As a result, in the humid area, the original
upward trend of WUE may be strengthened, and the original downward trend of WUE
may be stabilized or even reversed in some cases.

To enhance the adaptability of ecosystems to future climate change or mitigate the
adverse effects of climate change, it may be necessary to introduce the following sugges-
tions:(1) In arid regions, the existing desert vegetation and grassland should be prevented
from shrinking or degrading owing to intense human factors because these vegetation
have a high ecosystem resilience [72]. (2) In arid areas with sparse vegetation, greening
should be achieved by expanding grassland areas rather than artificial afforestation. C4
plants, which are usually dominated by herbaceous plants, have a higher internal WUE
and can better adapt to the natural conditions of limited water and sufficient energy [73].
With the possible aggravation of drought in humid areas, expanding the C4 vegetation
area can also be considered.

5. Conclusions

This study developed an analysis framework to quantitatively assess the influence of
SM on WUE. Based on the analysis framework, this paper found that:

(1) SM had an overall negative effect on the WUE in the terrestrial ecosystems during
the last 30 years. In the NPP pathway, SM significantly affected WUE, and the
sensitivity coefficient ranged from −68.66 to 43.19. However, in the ET pathway, SM
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completely negatively affected WUE. Under the dual effects of ET and NPP pathways,
SM negatively affected WUE in 84.62% of the area, whereas it showed a positive
influence on WUE in the remaining 15.38% of the area. Thus, although SM had a
positive effect on the WUE of individual regions, it still had an overall negative effect
on the WUE of each climatic zone.

(2) The variation in SM could lead to a significant WUE variability, especially in Northeast
and Northwest China. During the growing season in the past 30 years, the average and
maximum variability of WUE caused by variation in SM were 28.02% and 109.29%,
respectively. Regarding different climatic zones, SM in CTMP had the greatest effect
on WUE, whereas it had the least impact on WUE in PTMP. In addition, the lower
the forest covers, the higher the variability of WUE caused by changes in SM. The
WUE of forest ecosystems is more resistant to changes in SM, whereas the WUE of
non-forest vegetation is more sensitive to changes in SM.

These findings deepened our understanding of WUE changes and their underlying
mechanisms, thereby offering important insight for predicting the response of ecosystems
to climate change.
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