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Abstract: Socioeconomic development is often dependent on the production of mining resources,
but both opencast and underground mining harm vegetation and the eco-environment. Under the
requirements of the construction for ecological civilization in China, more attention has been paid to
the reclamation of mines and mining management. Thus, it is the basement of formulating policies
related to mining management and implementing reclamation that detection of mining disturbance
rapidly and accurately. This research carries on an empirical study in the Dexing copper mine,
Jiangxi, China, aiming at exploring the process of distance and reclamation. Based on the dense
time-series stack derived from the Landsat archive on Google Earth Engine (GEE), the disturbance of
surface mining in the 1986–2020 period has been detected using the continuous change detection and
classification (CCDC) algorithm. The results are that: (1) the overall accuracy of damage and recovery
is 92% and 88%, respectively, and the Kappa coefficient is 85% and 84% respectively. This means
that we obtained an ideal detection effect; (2) the surface-mining area was increasing from 1986–2020
in the Dexing copper mine, and the accumulation of mining damage is approximately 2865.96 ha
with an annual area of 81.88 ha. We also found that the area was fluctuating with the increase. The
detected natural restoration was appraised at a total of 544.95 ha in the 1988–2020 period with an
average restoration of 16.03 ha. This means that it just restores less in general; (3) it has always been
the case that the Dexing mine is damaged by mining and reclamation in the whole year (it is most
frequently damaged month is July). All imageries in the mine are detected by the CCDC algorithm,
and they are classified as four types by disturbing number in pixel scale (i.e., 0, 1, 2, more than
2 times). Based on that, we found that the only once disturbed pixels account for 64.75% of the whole
disturbed pixels, which is the majority in the four classes; (4) this method provides an innovative
perspective for obtaining the mining disturbed dynamic information timely and accurately and
ensures that the time and number of surface mining disturbed areas are identified accurately. This
method is also valuable in other applications including the detection of other similar regions.

Keywords: continuous change detection; google earth engine; Landsat; disturbance; vegetation; NDVI

1. Introduction

In China, mineral output and its proportion have increased significantly. The non-
ferrous metals (copper, aluminum, lead, and zinc) increased from 950,000 tons in 1978,
accounting for 2.65% of the world’s output, to 56.86 million tons in 2019, accounting
for 50.27% of the total output in the world [1]. Mineral resources are indispensable to
modern industrial raw materials. However, surface mining behaviors are able to directly
damage the surface soil and vegetation [2]. Underground mining is likely to contribute
to the collapse of land and then deteriorate the land and vegetation [3]. The extraction of
non-ferrous metals usually consumes considerable energy and produces abundant wastes,
which can result in the degeneration of the ecosystem and environmental problems [4].
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Therefore, in order to realize the harmonious development of environmental protection
and mine production, it is necessary to carry out effective protection and management.

Since the 1930s, the United States, Australia, Germany, and Canada have begun to
attach importance to mine ecological restoration, and promulgated relevant laws and
regulations, such as the Opencast Mining Management and Restoration (Reclamation)
Act, which requires that “whoever destroys it, reclaims it”. Under the overall require-
ments of the construction in ecological civilization in China, great attention has also been
paid to the governance of mines. China has enacted the Mineral Resources Law and the
Standard for the Construction of Green Mines in Nonferrous Industries. In order to effec-
tively implement the whole life cycle management of mining engineering, such as mining
safety, prevention of geological disasters, ecological protection, and restoration, researchers
and mining management agencies must continuously monitor the changes of strata and
vegetation caused by man-made disturbances in mining areas. However, the traditional
method of field investigation is unable to observe the previous mining history due to its
time-sensitive characteristic, and the measurement data error may be caused by human
behaviors, resulting in low efficiency with large consumption of human financial resources.
In recent years, with the development of remote sensing platforms and sensors, continuous
and repeated remote sensing observations of most areas in the earth’s surface have been
achieved, and massive multi-source, multi-scale, and multi-resolution remote sensing data
have been accumulated. Remote sensing monitoring has become an effective method for
disturbance monitoring in mining fields.

The earliest application for remote-sensing monitoring is to compare the data of dif-
ferent years (that is, the comparison of multi-temporal classification results). This method
usually directly uses the pixel spectral value, or the feature parameters such as vegeta-
tion index, texture feature, independent component extracted from the image, and then
through principal component analysis (PCA) [5], change vector analysis (CVA) [6], pixel
dichotomy model method [7], and decision tree [8], a direct comparison is made from those
obtained difference image and extract the change information. A lot of practices have been
carried out in mining areas, including vegetation degradation and reclamation [9], land
use cover and change monitoring in mining areas [4,10], ecological landscape monitoring
in mines [11,12], and vegetation change monitoring in mining fields [13]. The comparison
of temporal classification results is the basic method of change detection, which is suitable
for imageries processing and analyzing with fewer temporal phases. The technical key
could be contributed to the construction of change detection index and the determination
of change threshold, generally, which is an interval of 2 years, 5 years or even 10 years.
However, the interval is still insufficient compared with the growing demand for the
analysis of long-time sequence and mass remote sensing imageries.

With the accumulation of a large number of historical data in the same region and
different periods, the high time-resolution remote sensing data can be easily obtained. As
a result, the change detection of remote sensing time series imageries has been popular
in remote sensing technology and application in recent years. The time-series analysis
usually uses single-band quantitative parameters (such as NDVI) as input data instead
of multi-spectral images and uses simultaneous phase such as monthly or season time-
series images over the years to effectively explore the time-series change information of
ground features. The method of combining multi-temporal remote sensing images with
time series analysis can effectively record and analyze the characteristics of land use cover
and changes in the spatio-temporal range [14]. The combined method has been applied
broadly to the detection of ground disturbance in the mining area. For instance, based
on typical disturbance trajectories of coal mining subsidence area derived from those
multi-temporal remote sensing imageries, Wang et al. (2019) applied the decision tree
algorithm to identify the process characteristics of coal mining and its disturbance on
surface vegetation in the past 34 years [15]. Li Jing et al. (2016) downloaded 22 items
of Landsat TM/ETM+ multispectral images of the Weizi County coalfield, Appalachian
region [16]. Through the remote sensing time series analysis method of combining forest
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characteristic index and normalized vegetation index, it was found that there were eco-
logical dynamic characteristics of land-use/cover change (LUCC) in this area in the past
27 years. At the same time, massive remote sensing data has promoted the development of
change detection algorithms, including VCT, BFAST, LandTrendr, CCDC etc., which are
widely used in the disaster, forestry, land and other research fields. Huang et al. (2010) use
the highly-automated vegetation change tracker (VCT) algorithm and Landsat time series
stack (LTSS) to reconstruct the recent history of forest disturbance [17]. The break detection
for additive and trend (BFAST) method based on breakpoint detection is commonly used
in the information detection of NDVI and EVI from remote-sensing imageries such as
MODIS and Landsat [18]. Kong et al. (2015) used the empirical mode decomposition
(EMD) method to extract trend terms and seasonal terms of NDVI time series for forest
fire detection [19]. The LandTrendr algorithm proposed by Kennedy takes the year as
the time interval, and collects the Landsat time-series data of similar time every year for
time segmentation to obtain the disturbance information of forest vegetation [20]. Zhu
and Woodcock proposed the CCDC model, which has been widely applied in the field of
remote sensing image time series change detection, such as land change monitoring and as-
sessment [21], urban expansion change information extraction [22], and forest disturbance
information extraction [23].

In recent years, Google Earth Engine (GEE) has collected commonly used remote-
sensing data sets such as MODIS, Landsat, and Sentinel [24] and can obtain and process
shared data by programming online or offline. Cloud computing analyzes and processes
remote-sensing data, which avoids the tedious process of data download and prerecession
compared to the traditional remote sensing analysis model. This also contributes to the
development of the time change detection algorithm significantly. LandTrendr, CCDC
and other algorithms are also integrated on the Google Earth Engine platform to quickly
access applications [25] which are widely used in the change detection such as disturbance
and restoration of woodland [26], wetland land cover type [27], urban expansion [28],
subsidence water in coalfield [29], and disturbances in the mining area [30]. Among
those algorithms, the CCDC algorithm has advantages such as automatic processing, high
universality, less data limitation, and avoiding the accumulation of classification errors
compared with other methods. At present, the CCDC algorithm, however, has not been
applied to disturbance detection in the mining area. Therefore, based on the GEE platform,
this study intends to select the largest copper mine in Asia as the research object, and apply
all available Landsat time series with the CCDC algorithm to detect the surface disturbance
process of the mining area.

The purpose of this study are as follows: (1) based on highly dense remote sensing
data, the CCDC algorithm is used to detect the disturbance time caused by mining in
Dexing Copper Mine, and to detect and analyze the spatio-temporal characteristics of
opencast mining; (2) then, we verify the accuracy of the CCDC algorithm in detecting
surface disturbances in the mining area; finally, (3) we validate the effectiveness of the
CCDC algorithm in detecting mining footprints through multiple case studies and mul-
tiple methods comparison. Two questions are considered in this study: (1) how many
the area of land damaged and reclamation in Dexing copper mine from 1986 to 2020;
(2) Can Landsat NDVI time series be combined with the CCDC algorithm for detection of
surface-mining footprint?

2. Materials and Methodology
2.1. Study Area

The Dexing Copper Mine is located in the middle and lower reaches of the Yangtze
River, located in Dexing country, Shangrao city, northeast of Jiangxi province (117◦43′40′′ E,
29◦01′26′′ N) (Figure 1). It belongs to the Huaiyu Mountains with the neighboring Damao
Mountain. The mining area includes industrial sites and living areas such as mining,
separating, and auxiliary facilities. The copper mine belongs to the middle and lower
hilly area, which is high in the southeast and low in the northwest, and its river system
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is well developed. The Lean River located in the north of the mining area is the main
source of domestic water in the mining region, while the Dexing River located in the
south is for Dexing City and its lower reaches. The rest of two rivers are Dawu River
to the west and Fujiawu River to the east. The average annual temperature in the study
area is 17.3 ◦C. The average temperature in January can reach 5.6 ◦C, and the minimum
temperature is as lower as −8.9 ◦C, while the average temperature in July is 29 ◦C and
the highest is 42 ◦C. The average annual precipitation is 1981 mm. Since the vegetation
will grow luxuriantly in which abundant rainfall has, consequently, the bedrock of the
study area is weathered seriously and the outcrop is very poor. Dexing Copper Orefield
is composed of those three ore deposits (i.e., copper factory, Fujiawu and cinnabar) and
is the largest open-pit copper mine in Asia with the first annual output in China. At
present, more than 20 kinds of mineral deposits such as gold, silver, copper, manganese,
zinc, phosphorus, dock, and iron have been proved, of which the reserves of Au and Cu
have reached 580 t and 5000 t, respectively. There are two main reasons why we chose
Dexing Copper Mine as the study area. One is the large scale of Dexing Copper Mine,
which has been exploited for hundreds of years and needs to be exploited continuously
in the future. This change and dynamic geographical environment provide a valuable
opportunity to test our method. Second, the climatic conditions in this area are beneficial
to the growth of vegetation and high vegetation coverage. However, surface stripping and
waste rock dumping in mining directly damage the original vegetation on the surface. The
detection of vegetation in mining areas is a direct method to test the effect of reclamation
and environmental governance.
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Figure 1. Study area (the geographic data from Yu et al. (2009) [31]).

2.2. Overview

Opencast mining has led to the direct damage of surface vegetation, so the min-
ing process can be characterized by the change of vegetation. The time series tracks of
vegetation index in the mining area include the following six types: (1) the vegetation
has not been damaged and the vegetation index has been at a high value (Figure 2a- 1©);
(2) the vegetation has been damaged before the study period and has not been reclaimed
in the later period (Figure 2a- 2©); (3) the vegetation has been damaged before the study
period and reclaimed in later stage (Figure 2b- 3©); (4) the vegetation is not reclaimed after
damage, and the vegetation index is finally at a low value (Figure 2b- 4©); (5) the vegetation
is reclaimed after damage, and the surface is finally covered with vegetation (Figure 2c- 5©);
and (6) the surface vegetation undergoes the process of multiple damage and restoration
(Figure 2d- 6©). It is obvious that there is an obvious sudden change signal in the process of
vegetation damage and reclamation, so the breakpoint information in the trajectory can
be found by time-series change detection. Finally, the footprint information of the mining
area is obtained, including disturbed time and times.
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Figure 2. Six types of NDVI trajectory. (a) Undamaged vegetation 1© and persistent bare land 2©; (b) damaged vegeta-
tion before the study period, reclaimed later 3© and damaged vegetation 4©; (c) reclamation vegetation after damage 5©;
(d) repeatedly disturbed mining areas 6©.

The technical process of this study is shown in Figure 3, which includes three parts:
(i) data preprocessing; (ii) damage and reclamation detection of vegetation in surface
mining areas; and (iii) accuracy verification. First, the Landsat surface reflection data
are preprocessed by masking snow and cloud cover, and the time-series remote sensing
data from 1986 to 2020 are obtained, which is used to calculate NDVI. Then, the CCDC
algorithm is used to detect the disturbance spatio-temporal information from the NDVI
trajectory. The disturbance information includes the damage time and the reclamation time,
and identifies type of disturbance base on the occurrence pattern of disturbance events.
Finally, combined with Google Earth, sample points are selected to verify the accuracy.
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2.3. Satellite Data and Image Preprocessing

The Google Earth Engine (GEE) platform is a cloud-based geospatial analysis platform
that provides access to USGS level 1 and level 2 Landsat data (https://espa.cr.usgs.gov/,
accessed on 23 October 2021) with enormous computing power [24]. Through GEE,
all available Landsat TM/ETM+/OLI imageries are obtained easily, which are Land-
sat/LT05/C01/T1_SR, Landsat/LE07/C01/T1_SR and Landsat/LC08/C01/T1_SR respec-
tively. Based on the study area and research time (1986–2020), we obtained geometrically
and atmospherically corrected (i.e., USGS Level 1T) Landsat 4 and 5 thematic mapper (TM),
Landsat 7 enhanced thematic mapper (ETM+) and Landsat 8 operational land imager (OLI)
data, including 685 imageries from the US Geological Survey-Earth Resources observation
and Science online Portal for all cloud cover areas with less than 80% cloud cover [24,32].

2.4. Surface Disturbed Processes and CCDC Algorithm

Mining activities include the removal of surface cover and the dumping of cover,
which may result in a sudden transformation of the natural environment into bare land
or buildings. This study is based on the premise that surface mining and reclamation will
cause sudden change of vegetation, and the track of vegetation index can be used to detect
the change. Karan et al. (2016) show that NDVI is the best index to detect the change of
coal mine vegetation [33]. The NDVI formula is as follows:

NDVI =
ρNIR − ρred
ρNIR + ρred

where ρNIR and ρred ρred represent the reflectivity of ground objects in near-infrared red
band and red band, respectively. The typical time series track of vegetation in the study
area includes three states, namely vegetation cover before damage, bare land formed
after damage, and vegetation cover after reclamation. Time series analysis is used to find
breakpoints in the trajectory to indicate sudden changes. As shown in Figure 4, in the
process of surface mining the soil and rock covering the deposit are removed and the
vegetation is damaged. In the process of removing the cover, stripping and dumping will
destroy a large amount of vegetation. The NDVI index decreased significantly in 1996, and
the damaged time was set to 2 February 1996. Subsequently, the dump in this area was
recycled and the vegetation was gradually restored. The NDVI index rose in 2016, and the
reclaimed time was set at 1 December 2016.

Continuous land cover change detection and classification algorithm (CCDC) is a time
series method proposed by Dr. Zhu of the University of Connecticut in 2014. This algorithm
is different from traditional methods and is mainly based on Landsat time series with less
noise. It is an “online” algorithm for each pixel, and clouds and cloud shadows can be
filtered through CFmask (from QA band) and multi-temporal mask (Tmask) algorithm.
When new satellite data are obtained, the CCDC algorithm combines all available Landsat
observations for each pixel to estimate time series models, which can be used to predict
future observations. If the new continuous observations exceed the expected range, a
breakpoint is marked and a new time series model is estimated (two time series segments
will be generated before and after the change, otherwise only one period will be generated
for stable pixels). Until the next breakpoint is detected or the observations are exhausted,
all breakpoint signals in the middle and inter-annual of the trajectory data are finally
identified. Breakpoints can be figured out in the time series of data, such as those mutations
caused by land cover changes. By calculating the number of breaks per pixel, we can get a
map of the total number of changes. On the other hand, by recording the spectral change
amplitude of the detected breakpoint, we can distinguish the conversion type of land use.
Besides, the happening time of those points which has been recorded, we can provide the
time of land cover change.

Mining activities, including surface stripping and waste rock disposal, directly lead
to the damage of surface vegetation. CCDC algorithm can be used to detect vegetation
damage and restoration caused by mining. We collected 200 sample sites by Google Earth

https://espa.cr.usgs.gov/
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TM, and proved that the CCDC algorithm and NDVI index can effectively distinguish and
identify vegetation and bare land. Figure 4 shows the difference between vegetation and
bare land in the NDVI fragment segment.
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Figure 4. Trajectory data and corresponding images false color composite image (SWIR2/NIR/Green). The cross shape is
the location of the sample point; the black point is the original NDVI value; the green line is the fitted vegetation track; the
blue line is the fitted bare ground track; the red point is the breakpoint of vegetation damaged; and the orange point is the
breakpoint of vegetation reclamation.

2.5. Identification of Damage and Reclamation Spatio-Temporal Processing

In the process of mining, the surface is stripped or covered by slag, resulting in a sharp
decline in vegetation coverage. First of all, we fit and segment the NDVI trajectory to get
the NDVI segmentation by the CCDC algorithm. Then the disturbance pixels of vegetation
are extracted by the change amplitude of NDVI fragments. Reference He et al. (2020) [29]
the method for determining the threshold, we choose 100 damage (60 reclamation) sample
points and the parameter in [0.2, 0.6] ([−0.2, −0.6]) by the interval of 0.05 to calculate the
accuracy of detecting damage (reclamation). Finally, we choose the decrease (increase)
of NDVI by 0.3 (0.25) as the optimal threshold to determine damage (reclamation). For
multiple-segmented pixels, the minimum of multiple damage time is set as the final damage
time, while the maximum of multiple reclamation time is set as the final reclamation time.
Importantly, the end of the trajectory must be an ascending segment. As a result, the
damaged and reclaimed time mapping of the area is completed. To reduce the noise in the
patches of damaged time, the damaged time of the adjacent pixels is mostly continuous.
Therefore, we smooth the damaged-time patches by mode algorithm. It is worth noting
that, for the pixels that have been damaged before 1986 and have not been reclaimed during
the study period, we set the damaged time of these to 1 January 1986.

2.6. Validation

Considering the difficulty to obtain public remote-sensing data with a high time-and-
spatial resolution, we verify the accuracy of abrupt change time per year. Fifty points per
year are randomly selected in the damaged area, while twenty points per year are selected
in the reclamation area. The detection time of damage year is from 1986 to 2020, and
that of reclamation year is from 1988 to 2020. 1750 damage samples and 660 reclamation
samples were detected. Then, the high-resolution image data on Google Earth are used
for interactive visual calibration to determine the damage year and recovery year of each
sampling point. By comparing the sample label with the recognition results of the algorithm,
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the user accuracy, producer accuracy, overall accuracy, and kappa coefficient of mining
damage and reclamation detection are calculated, and the change detection and accuracy
are verified.

3. Results
3.1. Accuracy

The overall accuracy of damage and recovery is 92% and 88% respectively, while
the kappa coefficients are 85% and 84% respectively (Figure 5). Although the overall
accuracy of a given year is high, the accuracy of producers and users in damage accuracy
detection is mainly between 82% and 95%, and that of producers and users in recovery
accuracy detection is mainly between 75% and 92%. In some specific years, the accuracy
of year recognition is relatively lower. For example, in the recovery accuracy test, both
user accuracy and producer accuracy were less than 75% in 2005, which may be due to the
incompetent quality of remote sensing data in these years.
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3.2. Spatio-Temporal Characteristics of Surface Disturbance

The damage detection in the mining area lasted for 35 years from 1986 to 2020
(Figure 6a,c), and the surface damage area in the region continued to increase, with a
cumulative damage area of 2865.96 ha and an average annual damage area of 81.88 ha.
Among this damages, there are 17 years wherein the intensity is higher than the average
level. The biggest damage in the area occurred in 1986, covering an area of 292.68 ha.
What causes the intensive degree is that Dexing copper mine was established in 1958,
Beishan Mine was built in 1965 for underground mining, and Nanshan Mine was built in
1971 for opencast mining. The result of 1986 identification is the cumulative value of the
damage area in 1986 and before. Additionally, the largest damage area was happened in
1992, reaching 147.06 ha. From the perspective of damage distribution, before 1986, the
damage area was mainly distributed in No. 1 tailings reservoir, No. 2 tailings reservoir and
Tongchang mining area; and after 1990, the damage area first moved north to the location
of No. 4 tailings reservoir, and then turned to Zhujia dump site in the southwest, which
caused by mining outward from the center with time. After 2004, the mining core area was
transferred to the Fujiawu mining area in the southeast.
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Natural restoration and reclamation detection in the mining area had been 34 years
from 1987 to 2020 (Figure 6b,d), and the total restoration area is 544.95 ha with an average
annual recovery of 16.03 ha. There are 12 years in which the vegetation restoration area
is higher than the average, and the maximum value is 51.66 ha in 2020. The total area of
natural or artificial restoration is gradually increasing, mainly from 1994 to 1997, 2001,
and 2017 to 2020. From the distribution of ecological restoration in Dexing mining area,
from 1994 to 1997 and 2001, it was mainly concentrated in No. 1 tailing reservoir, No. 2
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tailing reservoir, and scattered in Xiyuan dump site. From 2017 to 2020, the intensity
of vegetation restoration increased obviously, and the north of No. 4 tailing reservoir,
Zhujia dump site, Fujiawu mining area and the area scattered in Xiyuan dump site were
concentratedly restored.

We further investigated the year of damage and reclamation for each pixel and counted
the number of pixels in a three-year cycle. The results are shown in Table 1, in which the
horizontal row represents the year of reclamation and the vertical column represents the
year of destruction. The results show that the number of pixels of land damaged in the
1986–1988 period was 5075, of which 55.8% of pixels were reclaimed. The earlier the
land was damaged, the higher the probability of restoration. After 2004, the vegetation
reclamation rate of damaged land was less than 10%.

Table 1. Transfer matrix of damage years and reclamation years for pixels. Horizontal is the damage year, vertical is the
reclamation year.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Total RR

T1 = [1986, 1988] 50 142 364 612 293 375 91 137 80 91 357 243 5075 0.558

T2 = [1989, 1991] 3 105 153 42 112 17 52 22 38 45 189 2439 0.318

T3 = [1992, 1994] 4 7 107 91 72 21 62 86 127 186 129 3913 0.227

T4 = [1995, 1997] 2 2 5 14 7 17 9 18 57 67 1743 0.113

T5 = [1998, 2000] 3 5 19 8 27 47 50 37 16 2637 0.080

T6 = [2001, 2003] 1 1 1 1 3 17 117 68 26 29 1651 0.159

T7 = [2004, 2006] 4 8 1 7 8 17 16 71 36 93 3129 0.083

T8 = [2007, 2009] 2 1 2 40 28 78 98 3018 0.082

T9 = [2010, 2012] 8 6 6 65 67 74 2739 0.082

T10 = [2013, 2015] 1 8 6 1 29 56 2931 0.034

T11 = [2016, 2018] 5 1 1 3 17 1523 0.017

T12 = [2019, 2020] 1 1 2 0 1046 0.003

Note: RR indicates the ratio of pixels that reclaim in a period.

3.3. Months and Times of Surface Disturbance

The surface disturbance (damage and restoration) in the Dexing mining area will occur
throughout the year (Figure 7). The mining in each month is higher than 1500 detection
pixels, and the highest amount appears in July which is more than 3500 pixels, while the
followed highest amount months are March and September. The mining disturbance is less
in January, February, October, and December, mainly due to the cold that cause seasonally
freeze of some soil layers in winter. In terms of vegetation restoration, the restored number
of pixels in July is the highest, which is more than 500 pixels, and the lowest amount is in
January, which is less than 200 pixels. Most restoration occurs in the months with high
temperatures from March to September, which is beneficial to the growth of vegetation.
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The CCDC algorithm detects all the imageries in the mining area. It also identifies
four types that represented the number of pixel disturbances which are 0, 1, 2, and more
than 2 times (Figure 8), respectively. Type “0” was mined before 1986 and it accounts for
4.24% of the disturbed pixels. Type “1” are able to contribute that the first disturbance may
be mining, or it may be the case of recovery after disturbance before 1986. Type “1” has
the largest number of pixels in disturbance, accounting for 64.75% of the total. Type “2”
represents two disturbances, that is reclamation after mining, or mining after reclamation.
The pixels of this type account for 24.71%. Type “3” means that there had been happened
three times repeated disturbances, which accounts for 6.3% of the disturbed pixels. From
the perspective of geographical distribution, Type “0” is mainly distributed in the opencast
mine of the Tongchang mining area, indicating that the mining was carried out before 1986,
and the vegetation has not changed since then. The area of Type “1” is widely distributed.
It is worth noticing that most of the area of No. 1 and No. 2 tailings reservoirs had been
disturbed once, but it appears in the above results of surface vegetation restoration. The
reason is that a larger proportion of No. 1 and No. 2 tailings reservoirs had been mined
before 1986. Type “2” are distributed in the areas such as No. 2 tailing reservoir and No. 4
tailing reservoir, which is basically consistent with the results of vegetation restoration
mentioned above, indicating that these areas are mined and restored after 1986. The
disturbances of more than 2 times are concentrated in the Xiyuan dump site where it has
experienced repeated surface disturbances.
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4. Discussion
4.1. Continuous Change Detection Using Landsat Time-Series Datasets

The mining in Dexing mine involves the safety of resources and environment, which
is widely concerned by academia. Many scholars use EO-1, Hyperion, GeoEye-1, and
other remote sensing data to monitor the mining circumstance in the Dexing copper
mine [31,34,35]. However, the existing methods for the study of the location are based on
fewer images and long-time-interval, thus the downloading is such consuming of time and
labor. The continuous mining process of the Dexing copper mine cannot be detected by
those methods, which contributes to delays and limitations for the detection in subsequent



Remote Sens. 2021, 13, 4273 12 of 19

vegetation restoration. There are nearly 40 years of data archiving history for Landsat data,
which has a high spatial resolution, good consistency and free and open policy [36]. After
the change of vegetation coverage, it can be found that NDVI value changes obviously.
Landsat time series of NDVI has been successfully used in plenty of researches, including
forest degradation [37], urban expansion [28] and abandonment of cultivated land [38].
Those advantages make it play an important role in the earth observation system and
promote the development of efficient change detection algorithms based on time-series
trajectory data. In this paper, the change detection of surface damage and reclamation
in the opencast mining area is carried out based on Landsat TM/ETM+/OLI time-series
stacks data. The results show that the CCDC algorithm can detect the annual variation of
surface disturbance in the mining area. This continuous change detection is redounded
to improve the coarser time information extracted due to the insufficient time density of
the data.

4.2. Multi-Segment Segmentation and Sensitivity Analysis

The mining-disturbed detection based on GEE and CCDC algorithm has been proved
that it is higher sensitive than other methods. For example, some scholars detect land dam-
age and reclamation in surface coalfield based on the GEE and LandTrendr algorithms [26].
Based on annual data and Landsat sequence data, the algorithm constructs a long-term
track of annual pixels and then generates an annual NDVI index to represent the annual
change of pixels. In a different manner, the CCDC algorithm combines all of the available
time series of Landsat observation data in each pixel to identify the damaged or restored
pixels according to the trajectory of the vegetation index. This method avoids the error
caused by the superposed annual data. In this research, 685 imageries were detected by the
CCDC algorithm from 1986 to 2020, instead of 35 images detected by LandTrendr. CCDC
also has the advantage that its pixel disturbed detection can be accurate to months and
times, which can identify mining disturbance more accurately and sensitively. The method
is helpful to grasp the situation of mining and reclamation timely, which is conducive to
dealing with geological disasters and implementing ecological environment monitoring.

4.3. Adaptability Analysis of CCDC Algorithm in Mining Footprint

In order to analyze the universality of CCDC algorithm in detecting mining footprint
in open-pit mining area. We randomly select three counterpart areas in Ukraine, India, and
Australia, and detect the mining footprint of them using CCDC algorithm. Figure 9 (the
first row) shows the location of those three areas, and Figure 9 (the third row), respectively,
shows the result of inter-annual footprint of mining. The overall accuracy of the three
mining areas is 91% (Ukraine), 83% (India), and 87% (Australia), respectively, in addition
to the kappa coefficients corresponding to 90%, 82%, and 85%. The CCDC algorithm can
be easily available to the detection of mining footprints in different mining areas. The
reason is that mining activities have led to obvious changes in surface vegetation. Based
on the variation range of NDVI and CCDC algorithm, it has been successfully applied
to mangrove long time sequence mapping [39], grassland fire detection [40], and urban
greenness trend analysis [41].
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Figure 9. Open pit areas and corresponding mapping of damage year. The first row is the relative position of the mine site;
the second row is a high-resolution map of the mining area from google earth; the third row shows the damage year map of
the open pit areas from 1986 to 2020.

4.4. Comparison with Existing Methods

Yang et al. (2018) used LandTrendr algorithm and Landsat time series data to detect the
surface disturbance process of coal mine [26]. Barenblitt et al. (2021) have studied the gold
mining footprint, based on the trajectory of the annual maximum NDVI, and the maximum
derivative method [42]. LandTrendr is a set of spectral time segmentation algorithm, which
can be used to detect the change of time series of medium resolution satellite images [43].
The maximum derivative method (MaxSlope) uses the maximum change rate of NDVI to
identify the occurrence of the maximum NDVI loss, which representing the type change
from vegetation to mining [42]. We compare the results of this study with those data,
including the maximum NDVI time series, the detected mining footprint in the study area
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by the LandTrendr algorithm, and the maximum derivative method. Figure 10 shows the
accuracy comparison of LandTrendr, MaxSlope and CCDC algorithm. Among the user
accuracy (UA), the accuracy of LandTrendr algorithm fluctuates the most, and the user
accuracy and producer accuracy (PA) of LandTrendr are generally lower among those
algorithms. The reducing order of overall precision is CCDC, MaxSlope and LandTrendr.
The difference between CCDC algorithm and the rest of algorithms might be determined as
the model hypothesis. LandTrendr uses the inter-annual NDVI loss threshold to determine
the transition year, MaxSlope using the year with the highest inter-annual NDVI loss rate
as it. However, CCDC identifies the NDVI loss threshold in the vegetation growth cycle to
determine the conversed time [44].
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4.5. Comparison with Existing Products

Among the present global land cover products, GlobeLand30 products is full-factor
surface cover products in high spatial resolution (30 m), including the data of 2000, 2010,
and 2020. Due to the high quality, the products have been applied in many research
fields [45]. In this study, we select the rectangular of 3 km × 3 km, the southwest of Zhujia
dump site, and the data of 2010 and 2020, which are used to identify and compare the
mining-damaged results by GlobeLand30 products and CCDC algorithm, respectively. In
addition, we choose the national land cover dataset (NLCD, 30 m, available year: 2010, 2015,
2018) [46], annual China Land Cover Dataset (CLCD, 30 m, available year: 1990–2019) [47]
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and MODIS Land Cover (MLC, 500m, available year: 2001–2019) [48]. Considering the time
consistency of data products, we selected two periods of data in 2010 and 2018 to further
compare the differences between the product data and this study results. The results show
that the CCDC algorithm and CLCD products can accurately identify the surface damage
in the northwest (Figure 11 the black circle), but the GlobeLand30 products and NLCD
products are unable to identify it in the south (Figure 9 the yellow circle). The main reason
is that GlobeLand30 products classify land use based on the time nodes of remote sensing
data, wherein it is easy to lose inflection point information and form cumulative errors [49].
However, the CCDC algorithm is based on the change detection results of continuous
NDVI trajectories. What we detected based on it has contained the complete catastrophe
information from 2010 to 2018 and from 2010 to 2020. The CLCD products and MLC
products are annual continuous products. CLCD products combine the post-processing
methods of spatial-temporal filtering and logical reasoning, to improve the spatial-temporal
consistency of annual products, and the results of change detection are relatively consistent
with those of CCDC algorithm [47]. MLC products have a low resolution (500 m), which
is difficult to accurately detect the surface disturbance information in mine. Above all,
the vegetation-damaged boundary identified is closer to the surface soil mining stripping
boundary in the original image. Therefore, the vegetation disturbance detection method
proposed in this paper is better than the traditional comparison method.
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4.6. Defects of the Method and Future Work

In particular, the CCDC algorithm is suitable for surface mining disturbed identifica-
tion, since the surface and related vegetation are damaged, while underground mining may
have little impact on surface vegetation. The results may be affected by non-mining distur-
bances such as floods, and error sources need to be eliminated as much as possible [29].
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Additionally, this study is a pixel-scale remote-sensing technology, which is difficult to
avoid the phenomenon of “pepper and salt”, just as with previous studies [50,51]. In
future work, we will preview and analyze the characteristics of spectral index trajectory
changes on the GEE platform which can manage imageries and implement cloud com-
puting [52,53]. Therefore, the algorithm can realize large-scale real-time monitoring of
mining and reclamation. At present, China has issued laws and regulations such as The
Regulations on Land Reclamation, which requires that people should reclaim what they
destroyed, and mining while reclamation. This monitoring technology is urgently needed
in the examination of reclamation projects, in sustainable mining management, and in
regional eco-environmental impact assessment. In addition, this study also shows that
the proportion of natural restoration and reclamation in the Dexing field is low, and it
is necessary to further evaluate whether it can move towards sustainable mining. It just
roughly measures the circumstances of mining disturbance with vegetation index singly,
although it characterizes ground damage and vegetation restoration after mining. In the
future, other parameters (such as terrain stability, resilience, erosion rate, etc.) should
be integrated to ensure the environmental sustainability of mining production and the
post-mining ecosystem.

5. Conclusions

In this study, we propose a new method to detect the continuous variation of distur-
bance in the mining area by processing Landsat time-series based on the GEE platform.
Taking the largest copper mine in Asia as a research area, we firstly constructed a pixel-scale
NDVI full-time series. Secondly, the CCDC algorithm is used for time segmentation, and
the corresponding time segments of surface damage and reclamation in the mining field
are obtained. This method can monitor the change of surface vegetation in mines.

The study shows that from 1986 to 2020, the surface mining area of Dexing Copper
Mine continues to increase, with a cumulative damage area of 2865.96 ha and an average
annual damage area of 81.88 ha. The whole damaged area shows a continuous fluctuation
trend. Natural restoration and reclamation detection in the mining area had been 34 years
from 1987 to 2020, and the total restoration area is 544.95 ha with an average annual
recovery of 16.03 ha. The overall recovery area is less. From the perspective of the location
in mining and restoration, the No. 1 and No. 2 tailing reservoirs have been restored after
mining. The opencast field and No. 4 tailings reservoir in the mining area has continued
to expand since 1986, and gradually transferred to the Fujiawu mining area after 2005.
Vegetation restoration is concentrated in two phases: from 1994 to 1997, it centralized in
No. 1 and No. 2 tailing reservoir, and mainly in the north side of No. 4 tailings reservoir,
Xiyuan dump site and Tongchang mining area accompanied with the restoration efforts
intensified after 2017. In addition, the detection also includes the change information,
including the conversion year and month. After accuracy testing, the overall accuracy of
damage and recovery is 92% and 88% respectively, and the Kappa coefficients are 85%
and 84%, respectively. It can be found that the detection effect is ideal. Overall, the
probability of land restoration after vegetation damage in our study area is low (19%).
For the sustainable development of the mining area ecosystem, land managers should
strengthen land reclamation and environmental management in mining areas.

The CCDC method of detecting continuous disturbed variation in mines based on
Landsat time-series sequence and GEE platform has some characteristics including multi-
segment splitting and higher sensitivity. It accurately identifies the time and times of
surface disturbance in the mining area, and does well in efficiency and accuracy com-
pared with other methods. It reduces human and financial resources in the detection of
disturbance in mines. This method can be widely used in surface mining detection, so
as to provide scientific and effective data for government and enterprises in the develop-
ment and management, environmental governance, geological hazard monitoring, and
ecological environment assessment of mines.
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