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Abstract: The growing population and northward shifts in the center of grain production collectively
contribute to the arising farmland use intensity of the farming–pastoral ecotone of Northern China
(FPENC). Consequently, it poses a great threat to the vulnerable ecosystem of FPENC. Thus, farmland
use intensity monitoring is a top priority to practice sustainable farming. In this study, we establish
an indicator system designed to evaluate farmland use intensity in Ulanqab, located in the central
part of FPENC. This system includes three single-year indicators (the degree of coupling between
effective rainfall and crop water requirement (Dcrr), irrigation intensity (Iri) and crop duration (Cd))
and two multi-year indicators (the frequency of adopting the green-depressing cropping system (Gf )
and rotation frequency (Rf )). We mapped five farmland use intensity indicators in Ulanqab from
2010 to 2019 using satellite imagery and other ancillary data. Then, the farmland use patterns were
recognized by applying the self-organizing map algorithm. Our results suggest that the mapping
results of crop types, center pivot irrigation (CPI), and irrigated areas are reasonably accurate.
Iri, Cd, and Rf experienced an increase of 31 m3/hm2, 1 day, and 0.06 in Ulanqab from 2010 to
2019, respectively, while Dcrr and Gf witnessed a decrease of 0.002 and 0.004, respectively. That is,
farmers are progressively inclined to higher farmland use intensity. Moreover, spatial heterogeneity
analysis shows that Northern Ulanqab owned higher Dcrr, Iri, Cd, and Rf, and lower Gf than the
southern part. We conclude the paper by discussing the implications of the results for areas with
different farmland use intensity patterns.

Keywords: farmland use intensity; sustainable farmland use; remote sensing; self-organization map;
farming-pastoral ecotone of Northern China

1. Introduction

The food demand for agricultural products in China will increase over the coming
decades, driven by a growing population [1,2], which means that agricultural production
will increase. Rising farmland use intensity has contributed greatly to alleviating arable
land scarcity and improving food security [3]. However, there are concerns over the long-
term sustainability of excessive agricultural intensification [4,5]. A large and growing body
of literature has investigated the negative impacts of this phenomenon, e.g., soil erosion [6],
biodiversity loss [6–8], declining groundwater table [9,10] and desertification [11]. This is
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particularly the case in arid and semi-arid areas, such as in the farming–pastoral ecotone of
Northern China (FPENC), which has a highly sensitive and vulnerable ecosystem [12,13].
A crucial precondition for the development of strategies for sustainable intensification is
knowledge about the farmland use intensity patterns [14].

Farmland use intensity has been regarded as a measure for revealing the level of agri-
cultural development, however, there is a lack of a commonly shared practical definition
in practice [15]. This dilemma may partly be because of the measurement of farmland
use intensity for different purposes [16,17]. Brookfield (1972) described farmland use
intensity as the inputs of capital, labor, and skills for a given land in a traditional economic
view [18], whereas Dietrich (2012) used a formulation that agricultural land-use intensity
is “the degree of yield amplification caused by human activities” [19]. It follows that
farmland use intensity is traditionally defined from agricultural input or output perspec-
tives. Given this, scholars have further proposed to subdivide farmland use intensity
into input and output intensity [14,20]. Farmland use intensity can be evaluated either in
an output-oriented or input-oriented way by using inputs as surrogates for productivity
increases [19]. Meanwhile, from a geographical perspective, utilization degree -related
measures, including crop patterns, cropping frequency [3,21], crop rotation [22], fallow cy-
cle [23], and crop duration ratio [24], are also frequently reported to represent the intensity
of agricultural activities [25]. In general, metrics concerning the utilization degree have
been proven to be promising and reliable for the assessment of farmland use intensity [26].

Statistical data are commonly adopted to quantify farmland use intensity, using pa-
rameters such as fertilizer, pesticide, machinery and labor use, and the number of harvests
per year [27–30]. Normally, these data are recorded at aggregated spatial scales such as at
city-level or county-level. In general, averages at a regional scale are too coarse to capture
the great spatial heterogeneity of farmland use intensity within a single administrative
region [31] or to support field-level decision making. This applies to countries such as
China, where the government allocates farmlands to individual rural households using
a household responsibility system. The said system gives farmers the right to make in-
dependent decisions on small pieces of contracted land [32]. Consequently, farmland use
practices vary considerably between plots within a given statistical unit. In addition,
the different statistical standards and adjustments of administrative divisions can raise
many uncertainties in such contexts. Therefore, farmland use intensity maps with a higher
spatial resolution are required [33]. In this context, remote sensing technology has become
the most widely adopted method to acquire indicators of farmland use intensity [34,35].

Over the last several decades, many existing studies have highlighted the potential of
satellite imagery to identify single cropping practices at various spatial scales. For example,
Zhong et al. (2019) developed a deep learning method to classify various summer crops of
Yolo County, California, employing the Landsat Enhanced Vegetation index [36]. Based on
an extensive crop sequence dataset, Waldhoff et al. (2017) further derived the crop rotation
schemes of the Ruhr catchment in Germany [22]. Marshall et al. (2011) demonstrated
the ability of high-resolution satellite imagery for crop area monitoring in Niger [37].
Bolton and Friedl (2013) showed that remotely sensed vegetation indices perform well in
estimating crop yields in Central United States [38]. Ambika et al. (2016) developed high-
resolution irrigated area maps with satisfactory accuracy for Indian agroecological areas
by applying remote sensing data [39]. Importantly, the above-mentioned studies based
on remote sensing products conventionally involved evaluating farmland use intensity
using a single indicator only. Nonetheless, agricultural systems are highly heterogeneous
and complex [25], and one single indicator alone is not enough to describe all aspects of
farmland use intensity.

Based on statistical data, some scholars have attempted to apply multivariate statisti-
cal analyses, such as the principal component analysis [40], multi-objective comprehensive
evaluation method [41], hierarchical approach [42], and fuzzy cognitive mapping [43].
Such methods are highly expert knowledge-driven, which reduces the objectivity of the
evaluation of farmland use intensity. Considering the restrictions of the above meth-
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ods, we employed a self-organizing map (SOM), a neural network-based dimensionality
reduction algorithm [43–45], to convert a high-dimensional indicator system into a two-
dimensional cropping pattern.

In this study, we first establish an assessment index system that fully considers the
multiple aspects of farmland use intensity, including input intensity, utilization degree,
and agricultural systems resilience. Second, taking the Ulanqab region in FPENC as an
example and using remote sensing data as the main source, we produce maps of crop
types, center pivot irrigation (CPI), and irrigated land from 2010 to 2019 by employing
the methods proposed in our previous studies [46,47]. Third, we produce maps of the five
farmland use intensity indicators and reveal their spatio-temporal dynamics during the
study period. Finally, we apply SOM to recognize similar patterns in farmland use intensity.

2. Materials and Methods

2.1. Study Area

As shown in Figure 1, Ulanqab lies in the middle of the farming–pastoral ecotone
of Northern China, with latitude and longitude spanning from 39◦37′–43◦28′ N, 109◦16′–
114◦49′ E. Ulanqab includes eleven banners and counties, namely Fengzhen, Zhuozi,
Xinghe, Liangcheng, Jining, Chahar Right Front Banner, Siziwang Banner, Shangdu, Huade,
Chahar Right Back Banner, and Chahar Right Middle Banner, and comprises an area of
nearly 5.47 × 104 km2. Dominated by a semi-arid temperate continental monsoon climate
characterized by cold dry winters and warm wet summers, this area receives a mean
annual total precipitation of 150 to 450 mm, with more than 70% of the rainfall occurring in
August and September [48]. The mean annual temperature of the district ranges from 0 to
18 ◦C, and the frost-free period varies from more than 140 days in the south to less than
100 days in non-agricultural areas of Siziwang. The Daqing Mountains separate Ulanqab
into two parts, with the Qianshan area in the south and the Houshan area in the north,
which introduces huge differences in agroclimatology between these two areas. Farmers in
Ulanqab mainly grow potato, spring wheat, maize, sunflower, and naked oats, and their
planting area reaches approximately 75% of the total planting area [46].

2.2. Data and Processing

2.2.1. Satellite Imagery

For mapping GDCS fields and center pivot irrigation, Landsat TM/ETM+/OLI and
Sentinel-2 imagery were downloaded for the time period of 2010 to 2019 from the United
States Geological Survey (USGS; https://glovis.usgs.gov/, accessed on 15 July 2020).
MODIS/Terra Surface Reflectance 8-Day L3 Global 250m (MOD09Q1) from April to October
for 2010–2019 was used for crop classification. Then, the MODIS Reprojection Tool was
used to mosaic and reproject the obtained MOD09Q1 tiles. In addition, based on the
MODIS data, the Normalized Difference Vegetation Index (NDVI) was derived according
to the equation given by Braun and Herold (2004) [49]. Finally, the Savitzky-Golay (SG)
filter provided in the Timesat 3.3 software package (Lund University, Lund, Sweden) was
applied for noise reduction of the NDVI time-series data.

2.2.2. Meteorological Records

In this paper, daily meteorological variables, including precipitation, wind speed at
2 m height, air temperature at 2 m height, net radiation at the crop surface, soil heat flux den-
sity, saturation vapor pressure, actual vapor pressure, psychrometric constant, and slope
vapor pressure curve, were acquired to calculate the effective rainfall and crop water re-
quirement. The above in situ meteorological records across Ulanqab from 2000 to 2019 were
collected from three available meteorological stations: the Huade station, Siziwang station,
and Jining station. These data were downloaded from the China Meteorological Data
Sharing Service Systems (http://data.cma.cn/, accessed on 1 September 2020).

https://glovis.usgs.gov/
http://data.cma.cn/
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Figure 1. Location of Ulanqab. (a) Location of FPENC in China; (b) location of Ulanqab in FPENC;
(c) administrative units of Ulanqab, where the regions filled with diagonal gray lines belong to the
Qianshan area, and the solid gray regions are the Houshan area. The base layers in (a–c) denote the
newly released world ocean base map provided in ArcGIS 10.2.

2.2.3. Crop Phenology Data

Phenological data offer an effective way to measure the number of days required
by crops to mature from sowing to harvesting, namely the crop duration. In this paper
phenological data were obtained through two methods: (i) an in situ observation method
and (ii) a questionnaire survey. The in situ phenological records of Ulanqab were provided
from 1991 to 2013 by the China Meteorological Data Sharing Service System (http://data.
cma.cn/, accessed on 21 March 2020). These data contain the station name, crop type,
growth stage, and date. Furthermore, we calculated the average sowing and harvesting
date based on the time-series historical records [46]. However, the in situ phenological
records of sunflower in the Qianshan area and maize in the Houshan area are absent.
Therefore, we conducted a questionnaire survey from mid-July to late-August in 2018 to
ask the farmers about the timing of sowing and harvesting events of the two missing crops.
After removing survey responses with incomplete information, 304 valid questionnaires
remained for further data analysis.

http://data.cma.cn/
http://data.cma.cn/
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2.2.4. Ancillary Data

Annual statistical yearbooks of Ulanqab were used to evaluate the accuracy of crop
classification. These yearbooks provide detailed crop acreage data at a county level from
2010 to 2019. We evaluated the accuracy of the irrigation maps by incorporating ancillary
information, such as the second national land survey county-level database of Ulanqab,
Landsat images, and Google Earth imagery. Furthermore, we collected irrigation volumes
of different crops under different irrigation techniques from the industrial water use quota
information of Inner Mongolia in 2020 [50]. Our previous study conducted crop mapping
and irrigated area mapping in Ulanqab from 2015–2019, and these existing results are also
used in this study [46].

2.3. Methods

2.3.1. Mapping Methods of Crop Types, GDCS Fields, Irrigated Land, and CPI

The methods proposed in our previous studies [46,47] were used to map crop types,
GDCS fields, irrigated land, and center pivot irrigation.

The NDVI profiles of different crops types can vary greatly during the growing season.
We constructed NDVI profiles using ground truth crop samples and crop phenology data,
and the results indicate the NDVI values of cereal crops, potato, maize, and sunflower peak
at the day of year (DOY) 193, DOY 217, DOY 217 (or DOY 225), and DOY 217 (or DOY
225), respectively. Besides, the NDVI values of maize grow at a faster rate than those
of potato and sunflower before DOY 217. Compared to potato and maize, the NDVI
values of sunflower remained at a high level after DOY 217 (or DOY 225) [46]. Given these
differences, we selected training samples for these main crops and then employed a random
forest classifier to obtain the annual crop maps in Ulanqab from 2010–2019 (Figure 2c).
Then, the irrigated and rainfed crop samples were collected from Landsat images and
Google Earth imagery.

Figure 2. Overall technical workflow of this study. (a) Aspects that affect farmland use inten-
sity; (b) assessment index system of farmland use intensity; (c) mapping methods of crop types,
GDCS fields, irrigated land, and CPI; (d) mapping method of farmland use patterns.
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In this study, irrigated land mapping is based on the identification of irrigated crops
and rainfed crops. Our previous study suggested that the peak NDVI of the irrigated crop
is significantly higher than that of the rainfed crop [46]. Thus, we estimated the NDVI
thresholds (Table A1) and then applied a decision tree to distinguish irrigated crops from
rainfed crops. Taking maize of the Houshan area in 2012 as an example, all values less
than or equal to 0.661 were considered rainfed whereas all values greater than 0.661 were
considered irrigated. Finally, we obtained the irrigation map of Ulanqab by merging the
irrigated crops (Figure 2c).

According to the questionnaire survey and the crop calendar, farmers usually plowed
the inactive GDCS fields for the first time in mid-July, while the crops start to be harvested
from early September. Namely, during late July and late August, GDCS fields remain
unvegetated, while other fields are covered with vegetation. Hence, based on the differ-
ences in optical properties, the GDCS fields were distinguished from the other fields by
performing a visual interpretation (Figure 2c).

Center pivot irrigation (CPI) is a system of crop irrigation in which equipment revolves
around a central pivot point resulting in a circular pattern when viewed from the sky [47].
Because of the circular patterns, they can be detected through the visual interpretation
of remote sensing imagery. As for the accuracy assessment of the above observations,
two methods, namely a confusion matrix analysis [51] and a goodness-of-fit measure [52]
were used in this study.

2.3.2. Single-Year Indicators of Farmland Use Intensity (SIFIs)

(1) Degree of coupling between effective rainfall and crop water requirement

The degree of coupling between the effective rainfall and the crop water requirement
(Dcrr) refers to a ratio between the two during the growth period of crops. The formula for
Dcrr is as follows:

Dcrr = Pe/ETc (1)

where Pe is the effective rainfall, which represents useful or utilizable rainfall for crop
production for each growth period. Here, Pe was estimated by employing a fixed percentage
of rainfall method (see Equation (4)). ETc is the crop water requirement for each growth
period. Here, higher Dcrr signifies lower farmland use intensity. Given that no crops are
planted during the inactive period of the GDCS, the Dcrr of the GDCS fields is set to 1.
When calculating the Dcrr in the whole growth period of each crop, Pe and ETc are the
total effective rainfall and the total crop water requirement for the whole growth period,
respectively. A single crop coefficient approach is employed to estimate the ETc, which is
formulated as follows:

ETc = Kc × ET0 (2)

where Kc is the crop coefficient; ET0 is the reference crop evapotranspiration, which is
computed with the Penman-Monteith equation [53]. The formulae for the FAO-PM is
as follows:

ET0 = (0.408∆(Rn − G) + r(900/(T + 273))u2(es − ea))/(∆ + r(1 + 0.34u2)) (3)

where ∆ is the slope vapor pressure curve; Rn is the net radiation at the crop surface; G is
the soil heat flux density; r is the psychrometric constant; u2 is the wind speed at 2 m height;
T is the air temperature at 2 m height; es, ea, and es − ea are saturation vapor pressure,
actual vapor pressure and saturation vapor pressure deficit, respectively.

Kc is determined by the single (time-averaged) crop coefficient approach recom-
mended by FAO-56 [53]. Kc at the mid-season stage (Kcmid) and Kc at the end of the
late-season stage (Kcend) were acquired according to the guideline (Table A2). However,
Kcini is subject to the effects of large variations in wetting frequencies and, therefore,
refinements to the value used for Kcini should always be made. Considering the lack of
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parameters for refinements, we introduced the Kcini of main crops from relevant studies
conducted in or near Ulanqab.

Given the availability and applicability of the data, we measured Pe, employing a
fixed percentage of rainfall method, which is simplified by the following equation [54,55]:

Pe = a × P (4)

where P is the total rainfall over a certain period; a is a fixed percentage to be given by the
user to account for losses from runoff and deep percolation, typically ranging from 0.7 to
0.9. Considering there is little surface runoff and deep percolation in the traditional dry
farming area of Northern China, we here set a to a value of 0.9.

(2) Irrigation intensity

In this paper, we refer to irrigation intensity as the irrigation volumes of different
crops under different irrigation techniques. The formula for irrigation intensity (Iri) is
as follows:

Iri = gij (5)

where gij is the irrigation volume of the ith crop under the jth technique.
In Ulanqab, flood irrigation, an ancient method, is widely adopted by small farmers,

whereas advanced irrigation systems, including center pivot, sprinklers, and drip irrigation
are prevalently used by large farmers. However, compared with center pivot irrigation,
sprinklers and drip irrigation comprise a small proportion in this area, and it is difficult
to discriminate these two irrigation methods through remote sensing imagery. Therefore,
we only compared the irrigation quotas of flood irrigation and center pivot irrigation for
main crops, which were collected from the industrial water use quota of Inner Mongolia in
2020 (Table A3).

(3) Crop duration

Crop duration refers to the number of days required by crops from sowing to harvest-
ing. The formula for crop duration (Cd) is as follows:

Cd = DOYt − DOY0 (6)

where DOY0 and DOYt are sowing date and harvesting date in day-of-year (DOY),
respectively. The sowing and harvesting date for crops of the Qianshan and Houshan
areas were collectively obtained from the long-term in situ phenological records and
questionnaire (Table A4).

2.3.3. Multi-Year Indicators of Farmland Use Intensity (MIFIs)

(1) GDCS frequency

GDCS frequency refers to the ratio of the number of years during which the fields
experience GDCS practice, namely the inactive phase, to the number of years spanned by a
time interval. The GDCS farmers generally leave GDCS fields inactive within two to five
years [46], thus farming practices during a time interval of five years are enough to reveal
the periodical farmland use intensity. Accordingly, we calculated GDCS frequency (Gf )
according to the following formula:

Gf = tf/T (7)

where Gf is GDCS frequency, ranging from 0 to 1; tf is the amount of times that GDCS
fields are inactive within a time span of five years; T is the time interval (i.e., 5).
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(2) Rotation frequency

Rotation frequency refers to the ratio of the number of years during which the fields
experience crop rotation practice to the number of years spanned by a time interval.
Rotation frequency (Rf ) can be calculated as follows:

Rf = t’
f/T (8)

where Rf is rotation frequency, ranging from 0 to 1; t’
f is the number of years during which

the fields experience rotation practice; T is the time interval (i.e., 5).

2.3.4. Self-Organizing Map Algorithm

The above five indicators highlight different high-value areas. As such, estimation
of farmland use intensity is a multidimensional issue that relates to a range of individ-
ual processes and therefore cannot be fully represented by only one metric subject [56].
The self-organizing map, an effective clustering method [57,58], has been widely adopted
in visualizing and interpreting linear and nonlinear relationships in multi-dimensional
data for classification purposes [59]. As a result, we attempted to recognize similar patterns
of farmland use intensity using a SOM. More details of a SOM are described by Wehrens
and Kruisselbrink (2018) [58]. In this paper, all SOM calculations were performed with the
RStudio software with the free Kohonen package available at https://github.com/cran/
kohonen/blob/master/NEWS (accessed on 21 February 2021). Considering the number of
indicators, we chose a SOM with a neuron structure of 3 × 2 to explain the various patterns
of farmland use intensity that can occur across Ulanqab.

3. Results

3.1. Detection of the Crop Types, CPI, and Irrigated Lands in Ulanqab from 2010–2019

We obtained maps of the crop types, CPI, and irrigated land in Ulanqab from 2010 to
2019 (Figure 3) by employing the method mentioned. The scatter plots of the county-level
crop acreage observations versus predictions for 2010–2018 suggest that the R2 values
ranged from 0.75 to 0.86, and the root-mean-square deviation (RMSD) values ranged
from 0.42 to 0.52 (Figure 4a–i). The classification results for 2019 suggested an overall
classification accuracy of 78.1% (Table A5). In addition, the accuracy evaluation results by
crops (Figure 4j–m) show that the R2 values of potato, cereal crops, maize and sunflower
were 0.82, 0.80, 0.67, and 0.70, respectively, suggesting a generally good fit. The confusion
matrix analysis of irrigated land mapping also exhibits a reasonable accuracy, with overall
classification accuracies of 84.55% and 90.17% (Table 1), and Kappa coefficients of 0.69 and
0.79 for 2012 and 2017, respectively.

Table 1. Accuracy measurements of the irrigated land mapping for 2012 and 2017.

Year Type Producer’s
Accuracy (%)

User’s
Accuracy (%)

Overall
Accuracy (%)

Kappa
Coefficient

2012
Irrigated land 85.48% 85.03%

84.55% 0.69Rainfed land 83.53% 84.02%

2017
Irrigated land 91.12% 92.86%

90.17% 0.79Rainfed land 88.64% 86.03%

https://github.com/cran/kohonen/blob/master/NEWS
https://github.com/cran/kohonen/blob/master/NEWS
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Figure 3. (a) Distribution for crops and the inactive GDCS fields in Ulanqab for 2010–2019; (b) distribution for center pivot
irrigation in Ulanqab for 2010–2019; (c) distribution for irrigated land and rainfed land in Ulanqab for 2012 and 2017.

Figure 4. Scatter plots of predicted areas versus observed areas at the county level for 2010–2018 (a–i) and four crops (j–m).
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3.2. Evaluation of SIFIs from 2010–2019

3.2.1. Spatio-temporal Dynamics of Dcrr in Ulanqab from 2010–2019

(1) Estimation of Dcrr for main crops

Due to space limitations, we do not present here the estimation results of ETc and
Pe (see Appendix A for details, Figures A1 and A2). The monthly degree of coupling
between the effective rainfall and the crop water requirement (mDcrr) and Dcrr during the
whole growing season (tDcrr) of main crops showed that, in Ulanqab, the highest tDcrr
was observed for sunflower, followed by potato, wheat, and maize (Figure 5). Furthermore,
the tDcrr in the Qianshan area is about 20% higher than that in the Houshan area. The mDcrr
analysis shows that in June, wheat was the crop with the lowest mDcrr because wheat was
at the tillering stage and needed more water than other crops during this period, while the
precipitation was less at this time; in July, wheat at jointing and heading stages required the
largest ETc, and then the Pe in Ulanqab reached its highest level, and therefore an increasing
trend of mDcrr was observed.The mDcrr curve of potato is similar to that of wheat and
is thus not discussed. The mDcrr of maize was relatively low. The mean value mDcrr of
sunflower was higher than that of other crops owning to synchronous rainfall and less ETc.

Figure 5. The monthly Dcrr (a–d, e–i) and Dcrr during the whole growing season (e,j) of main crops in the Houshan area
(a–e) and the Qianshan area (f–j) from 2000–2019.

(2) Analysis of spatio-temporal patterns of Dcrr

Subsequently, based on the crop type map and the estimations of Dcrr for crops,
we generated pixel-wise Dcrr maps of Ulanqab for 2010–2019. To intuitively present the
spatio-temporal heterogeneity, we carried out statistics of Dcrr at different administrative
scales and analyzed their change trends during this period. In general, over the past ten
years, the Dcrr of Ulanqab experienced a statistically insignificant decline (R2 = 0.22, p = 0.17)
(Figure 6g). However, the value and change trend of Dcrr vary considerably temporally
and spatially. Of the counties, Xinghe had the highest Dcrr of 0.58 in 2019, while Chahar
RM (0.49), Siziwang (0.49), and Chahar RB (0.49) had a lower Dcrr. Furthermore, the Dcrrs
of Shangdu and Xinghe decreased significantly (Figure 6d), which was related to the potato
shrinkage and the wheat expansion in these two counties. A town-level analysis suggested
that 36.36% of the towns showed an upward trend in Dcrr, and these towns are mainly
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located at the junction area between Xinghe and Shangdu, and the northwest pastoral
area of Siziwang. Conversely, 63.64% of the towns showed a downward trend in Dcrr,
which was due to the increase in the planting area of wheat and maize in these towns.
Results of one-way ANOVA, with pairwise comparisons using the Tukey test (Figure 6e),
show that Dcrr in the Qianshan area was significantly higher than that in the Houshan
area. In addition, the Dcrr in the Qianshan and the Houshan areas in 2010–2019 witnessed
insignificant downward and insignificant upward trend, respectively (Figure 6f).

Figure 6. Spatio-temporal patterns of Dcrr for Ulanqab from 2010 to 2019. (a–c) Trends in Dcrr of the Ulanqab, the Houshan
area, and the Qianshan area from 2010–2019, respectively; (d,g) the trends in Dcrr at county level and town level from
2010–2019, respectively; (e) one-way ANOVA of Dcrr between the Qianshan group and Houshan group in 2019; (f) one-way
ANOVA of Dcrr change trend (slope) between the Qianshan and Houshan groups from 2010–2019. *** p < 0.01, n.s.,
not significant.
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To measure the degree of spatial clustering of Dcrr, we performed a hotspot analysis of
a 1km square grid using the optimized hotspot analysis tool of Esri ArcGIS 10.2 (Figure 7a).
The results show that high-value grids are mainly concentrated in the Qianshan area.
This is due to the following two reasons: there is more Pe in the Qianshan area (Figure A2);
according to the crop classification results, wheat planting is considerably more frequent in
the Houshan area than that in the Qianshan area.

Figure 7. Results of the hotspot analysis for the indicators. (a) Dcrr, (b) Iri, (c) Cd, (d) Gf, and (e) Rf.

3.2.2. Spatio-temporal Dynamics of Iri in Ulanqab from 2010–2019

The irrigation intensity (Iri) trend analysis highlights a statistically significant increase
(R2 = 0.80, p < 0.01) in Iri of Ulanqab in the past ten years, rising from 1014 m3/hm2 in 2010
to 1045 m3/hm2 in 2019 (Figure 8a). The county-level comparison shows that in 2019, Iris of
Zhuozi, Chahar RF, and Liangcheng were in the top three ranks. It was moreover found that
Iris of Liangcheng, Chahar RF, Siziwang, and Huade decreased, which was closely related
to the introduction of a policy to transfer irrigated lands into rainfed lands. Our results
report a large spatial heterogeneity in Iri at the town level (Figure 8g), indicating that
56.82% of towns experienced an increase in Iris, mainly for the CPI expansion, while 43.18%
of the towns around the Daihai lake experienced a decrease in the Iris. Although Iri in the
Qianshan area is significantly higher than that in the Houshan area (Figure 8e), the gap is
narrowing (Figure 8f).
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Figure 8. Spatio-temporal patterns of Iri for Ulanqab from 2010 to 2019. (a–c) Trends in Iri of the Ulanqab, the Houshan area,
and the Qianshan area from 2010–2019, respectively; (d,g) are the trends in Iri at county and town levels from 2010–2019,
respectively; (e) one-way ANOVA of Iri between the Qianshan and Houshan groups in 2019; (f) one-way ANOVA of the
rate of change (roc) in Iri between the Qianshan and Houshan groups from 2010–2019. * p < 0.1, n.s., not significant.

The high-value areas of Iri in Ulanqab are mainly distributed in the bordering area
between Xinghe and Shangdu, the bordering area between Chahar RM and Chahar RB,
the area around Daihai lake and Huangqihai lake, and the Tabu River basin of Siziwang
(Figure 7b). The average annual proportion of Iri hotspots at a 99% confident level increased
from 25.54% in 2010–2014 to 27.96% in 2015–2019 (Table A6). The newly emerging hotspot
area of Iri was mainly distributed in the northern Chahar RM and the junction area between
Xinghe and Shangdu, whereas the hotspot areas of Iri mostly disappear around the Daihai
lake due to the implementation of agricultural water conservation. For example, 667 wells
were abandoned in Liangcheng from 2016 to 2018 to reduce irrigation water usage [60].
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3.2.3. Spatio-Temporal Dynamics of Cd in Ulanqab from 2010–2019

Figure 9a shows that during these ten years, the crop duration (Cd) of Ulanqab had
slightly lengthened from 127 to 128 days. Of the counties (Figure 9d), the Cds were longer
in counties of the Houshan area with poorer heating and lower temperature. A town-level
analysis suggested that 62.50% of the towns showed an upward trend in Cd, while 37.50%
of towns showed a downward trend in Cd (Figure 9g). A regional-scale comparison
showed that the Qianshan area owned an insignificantly longer Cd than the Houshan area
(Figure 9e). Similarly, a significant difference was not observed between the slopes of the
two groups (Figure 9f); the main reason may be socioeconomic rather than natural factors.

Figure 9. Spatio-temporal patterns of Cd for Ulanqab from 2010 to 2019. (a–c) Trends in Cd of the Ulanqab, the Houshan
area, and the Qianshan area from 2010–2019, respectively; (d,g) trends in Cd at county and town levels from 2010–2019,
respectively; (e) one-way ANOVA of Cd between the Qianshan and Houshan groups in 2019; (f) is the one-way ANOVA of
Cd change trend (slope) between the Qianshan and Houshan groups from 2010–2019. n.s., not significant.
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Figure 7c shows that the high-value grids of Cd in Ulanqab were more likely clustered
around an irrigation area, which can guarantee the ETc of crops with long Cd. The average
annual proportion of Cd hotspots increased from 35.14% in 2010–2014 to 41.62% in 2015–
2019 at a 99% confidence level (Table A6). The newly emerged Cd hotspots were mainly
detected in the southern agricultural area of Siziwang.

3.3. Evaluation of MIFIs from 2010–2019

3.3.1. Spatio-Temporal Dynamics of Gf in Ulanqab from 2010–2019

Annual 30-m pixel size crop maps and raster calculator tool provided in Arcgis 10.2
were applied to obtain the pixel-wise GDCS frequency (Gf ) maps in Ulanqab during two
time intervals, namely 2010–2014 and 2015–2019 (Figure 10a,b). There was a clear down-
ward trend in Gf, declining from 0.029 in 2010–2014 to 0.025 in 2015–2019. Furthermore,
Figure 10f–h shows that the Gf in the Qianshan area was significantly lower than that in the
Houshan area, and the Qianshan area (−63.87%) experienced a higher decline in Gf than
the Houshan area (−13.02%). County-level results show (with the exception of an increase
in the Gf of Chahar RM of 21.06%) that the Gfs in other counties show downward trends.
Among them, Fengzhen, Liangcheng, and Xinghe had the larger decline, with a decrease
of 88.30%, 77.71%, and 64.38%, respectively. Of the towns (Figure 10c–e), 77.27% showed
a downward trend, whereas 22.73% of the townships, which are mainly located in the
Northern Houshan area, increased the Gf.

Figure 10. Spatio-temporal patterns of Gf for Ulanqab from 2010 to 2019. (a,b) Pixel-wise Gf maps of Ulanqab for 2010–2014
and 2015–2019, respectively; (c,d) Gf at town level for 2010–2014 and 2015–2019, respectively; (e) rate of change (roc) in
Gf at town level; (f,g) one-way ANOVA of Gf between the Qianshan and Houshan groups for 2010–2014 and 2015–2019,
respectively; (h) one-way ANOVA of Gf roc between the Qianshan and Houshan groups from 2010–2019. *** p < 0.01.
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Table A6 shows that the proportion of Gf hotspots decreased from 32.69% in 2010–2014
to 29.71% in 2015–2019, proving once again that farmers were increasingly inclined to adopt
successive planting.

3.3.2. Spatio-Temporal Dynamics of Rf in Ulanqab from 2010–2019

Pixel-scale rotation frequency (Rf ) maps of Ulanqab in 2010–2019 were created using
Equation (8) (Figure 11a,b). The results indicate that the Rf of Ulanqab increased from 0.49
in 2010–2014 to 0.55 in 2015–2019. The one-way ANOVA results (Figure 11f,g) indicate
that Rfs of the Qianshan group were significantly higher than those of the Houshan group.
Furthermore, the Rfs of the two groups show a general upward trend, and the growth
rate of the Houshan group (12.55%) was higher than that in the Qianshan group (10.60%).
A county-level comparison showed that, except for Huade, the Rfs of other counties had in-
creased, and Chahar RM and Siziwang had also increased by more than 20%. Furthermore,
our town level results (Figure 11c–e) also reported that 88.64% of the towns experienced an
increase in Rfs, whereas 11.36% of the towns experienced a decrease in the Rfs. Hot spots
of Rf increased in the towns of Western Chahar RM and the towns of Southern Siziwang
(Table A6).

Figure 11. Spatio-temporal patterns of Rf for Ulanqab from 2010 to 2019. (a,b) Pixel-wise Rf maps of Ulanqab for 2010–2014
and 2015–2019, respectively; (c,d) Rf at town level for 2010–2014 and 2015–2019, respectively; (e) rate of change (roc) in Rf at
town level; (f,g) are the one-way ANOVA of Rf between the Qianshan and Houshan groups for 2010–2014 and 2015–2019,
respectively; (h) one-way ANOVA of Rf roc between the Qianshan and Houshan groups from 2010–2019. ** p < 0.05,
*** p < 0.01, n.s., not significant.
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3.4. Mapping Typical Clusters of Farmland Use Intensity

The Kohonen package provided by R was used to train a SOM neural network for
five farmland use intensity indicators at the town scale. The training progress is shown in
Figure 12a, and finally, six similar farmland use intensity clusters are identified (Figure 12b).
We also plotted a heat map of the node counts (Figure 12c) and a mapping plot (Figure 12d).

Figure 12. (a) Training progress of a SOM neural network; (b) codes plot, which shows the classifica-
tion of each node; (c) the heat map of the node counts, which shows the number of training inputs
associated with each code; (d) mapping plot, which shows the values of each node.

To describe the magnitude and direction of the different farmland use intensity indica-
tors in each Cluster (C1–C6), we provided the deviation (±) from the mean z-score (=0) in
Figure 13a. Positive and negative numbers thus signify above and below-average values
respectively, whereas values close to zero represent that a specific indicator is close to the
overall mean of the study area. The obtained six clusters are shown in Figure 13b.

Cluster 1, which occurred mainly in the Northern Houshan area, was characterized
by low-intensive rain-fed cropping with a short Cd (−2.32), high Gf (+2.54), and low Iri
(−1.34). Due to complex topography and sparse rainfall, farmers in Cluster 1 tended to
have a higher willingness to adopt GDCS and grow drought-resistant crops such as wheat
and naked oats.

Cluster 2 was related to high-intensive irrigated cropping with high Iri (+1.05), long Cd
(+0.60), low Gf (−0.63), and high Dcrr (+0.76). This cluster contained 17 towns, mainly lo-
cated in Southern Ulanqab along Daihai Lake and Huangqihai Lake. Thus, the ideal irriga-
tion conditions provide a good foundation for planting long-duration crops. Despite that
maize with high ETc was popularly grown in these areas, there was more precipitation in
the Qianshan area, where a high Dcrr was observed.

Cluster 3 consists of 19 towns, mainly distributed in the Houshan areas. In regions
where topographic conditions permit, local government and farmers prefer to introduce
center pivot irrigation, sprinklers irrigation, and drip irrigation to grow potatoes. Notwith-
standing the extensive distribution of irrigated fields, the irrigation intensity of Cluster 3
was lower than that of Cluster 2.

Similar to Cluster 1, the remaining three clusters also belong to the traditional dry
farming area. The differences are as follows: there were dispersedly center-pivot irri-
gated fields in Cluster 4; Cluster 4, mainly occurring in Western Siziwang, contains six
towns; as for Cluster 5, despite a similar cropping pattern with Cluster 1, it owns a higher
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farmland use intensity; Cluster 6, characterized by high Dcrr (+1.07) and high Rf (+1.07),
occurs mainly in the Qianshan area; however, due to more favorable rainfall conditions,
Cluster 6 owns higher Dcrr than other clusters.

Figure 13. (a) Z-scores for each indicator describing each cluster; (b) SOM cluster of farmland use intensity indicators for
each township in Ulanqab. The numbers in parentheses show the number of towns included in each cluster.

4. Discussion

4.1. Implications

The changes in farmland use intensity over the past 10 years are mainly linked
to national policies. In 2009, China launched the “National Plan for Increasing 50 Mil-
lion Tons of Grain Production Capacity from 2009–2020”, and this plan pointed out that
local governments in FPENC should expand irrigated areas, make more water-saving
efforts, and improve the irrigation rate. With this background, advanced irrigation sys-
tems were introduced, and large areas of rainfed lands were converted to irrigated lands,
ultimately leading to a rise in regional Iri. In addition, this plan also recommends a vigor-
ous promotion of mulching technology in FPENC. Mulch provides favorable conditions
for sunflower and maize, with high light and temperature requirements, prolonging the
regional crop duration. China issued a document in 2016 asking for a crop rotation pi-
lot in FPENC, which resulted in a significantly higher Rf in this region from 2015–2019,
compared to 2010–2014. The decline in the Gf is mainly attributed to the tensing human–
land relationship in addition to the significant increase in rainfall in the last decade,
which has also reduced farmers’ willingness to adopt the GDCS practice.

4.2. Optimization of the Acreage for Main Crops

Table A3 suggests that potato has a relatively lower irrigation quota under different
techniques. Moreover, the Ulanqab government makes efforts to build China’s potato capital
and implement a potato staple-ization strategy. For the reasons above, local farmers should
take potato as a superior crop and expand their potato acreage. Conversely, potato planted
acreage in Ulanqab over the past decade has halved, dropping from 26.75 × 104 hm2 in 2010
to 13.02 × 104 hm2 in 2019 [61]. Besides, Ulanqab still has 2% of its farmland as irrigated
cereal crops, but spring wheat has the highest irrigation quota of 5000 m3/hm2. Therefore,
the planting of cereal crops on irrigated lands should be limited. Because rainfed cereal
crops own a higher drought tolerance than other crops, their cultivation is recommended



Remote Sens. 2021, 13, 4304 19 of 25

even if the yield can decrease under drought constraints. In addition, considering that
cereal crops require substantial water in the early growing period, and soil moisture is
high after the inactive period of the GDCS, we suggest that cereal crops are suitable as
the subsequent crop [46]. Maize and sunflower are thermophilic crops with a long crop
duration of about 140 days. As Ulanqab has an accumulated temperature of 1615–3033 ◦C
and a short frost-free period (95–145 days) [46], stable yields of maize and sunflower are
probably threatened by an early frost. Thus, farmers should reduce maize and sunflower
cultivation, especially in the Houshan area.

4.3. Promotion of the Crop Rotation

We found that in 22.68% of the farmlands, the same crop was grown continuously
for many years (Table A7). The reason can be attributed to the high economic benefits
of certain crops, strong demand for fodder crops for raising livestock, and severe land
scarcity. However, the risks of continuous cropping to sustainable agriculture have received
considerable concerns [62]. Continuous cropping will deplete nutrients and water of the
same soil layer, easily triggering soil drought and degradation. In addition, it can lead
to an imbalance of soil microbial communities and encourage the prevalence of diseases.
For example, orobanche coerulescens is a parasitic plant that has been reported to attack
sunflowers fields of continuous cropping in Inner Mongolia, causing a 10–50% loss in
yield [62,63]. Besides, continuous cropping obstacles are common with potato. Our study
suggests that 2.04% and 11.73% of fields have practiced continuous cropping of sunflower
and potato in Ulanqab from 2015–2019 (Table A7). To reduce the risk of diseases, it is
important to choose suitable crops for crop rotation of sunflower and potato. Rotating deep-
rooted crops with shallow-rooted ones can benefit the soil by recovering moisture and
nutrients in addition to improving the soil structure [64]. Given this, we recommend
cropping sequences such as cereal crops–potato, maize–potato, and cereal crops–sunflower
as the crop rotations in Ulanqab.

Moreover, Huang et al. (1987) and Jiang (1989) emphasized that a reasonable annual
proportion of fields practicing GDCS in FPENC should be 33.33% [65,66], but in 2019,
only a small proportion (2.40%) of fields adopted the GDCS practice in Ulanqab. Thus,
the government should introduce subsidies to stimulate farmers to take this practice [46],
especially in the dry farming areas (e.g., clusters 1, 4, 5, and 6).

4.4. Management Improvement of Irrigated Land

Our statistics also show that the total area of irrigated land has experienced a rapid
expansion, with the share rising from 26.55% to 29.55%. The conversion from rainfed
farmland to irrigated farmland mainly occurred in Cluster 3, due to the introduction of
CPI. However, irrigation expansion threatens the scarce water resources of the region.
An example is Chahar Right MB in Cluster 3 which has experienced a significant agricul-
tural transformation over the last two decades, resulting in a groundwater decline from
−553 mm in 2005 to −701 mm in 2018 according to the in situ records. This unprecedented
challenge has forced the local government to initiate policies to prevent the continuous
decline in the groundwater table. The local government has required the elimination of
CPI in the Chahannaoer basin [67] and the conversion from irrigated land to rainfed land
in the Daihai lake basin [60]. Besides, the switch from a sprinkler or flood irrigation to drip
irrigation is also recommendable to prevent and mitigate the decline of water resources.

5. Conclusions

In this study, we established an indicator system, which included three single-year
indicators and two multi-year indicators, for evaluating farmland use intensity in Ulanqab.
Long-term satellite imagery, meteorology records, crop phenology data, and other ancillary
data were combined to obtain maps of crop types, the prevalence of the CPI, and irrigated
land in Ulanqab, Inner Mongolia, China, in 2010–2019, and the classification results evi-
denced reasonable accuracies. Moreover, we revealed the spatio-temporal dynamics of the
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five single farmland use intensity indicators during the study period by depicting their
pixel-wise maps. Significant increases in Iri, Cd, and Rf of Ulanqab from 2010 to 2019 were
found, whereas insignificant decreases were observed in Dcrr and Gf. We confirmed that
farmers in this area were progressively inclined to higher farmland use intensity. Moreover,
there was obvious spatial heterogeneity in the change trends, with the Dcrr, Iri, Cd, and Rf
in the Qianshan area being higher than those in the Houshan area, and the Gf in the
Houshan area being higher than that in the Qianshan area. Finally, we recognized six
similar patterns of farmland use intensity over Ulanqab by applying the SOM algorithm
and discussed the optimizing direction for future farmland use in areas with different
farmland use intensity patterns.
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Appendix A

Table A1. Thresholds in decision treens for distinguishing irrigated crops from rainfed crops in the
Houshan and the Qianshan areas.

Regions Crops Thresholds in 2012 Thresholds in 2017

Houshan area

Potato 0.677 0.687
Cereal crops 0.577 0.622

Maize 0.661 0.670
Sunflower 0.746 0.705

Qianshan area

Potato 0.732 0.741
Cereal crops 0.592 0.620

Maize 0.695 0.758
Sunflower 0.705 0.719

Table A2. Single (time-averaged) crop coefficients for main crops in Ulanqab.

Crops Kcini Kcmid Kcend

Potato 0.24 1.15 0.75
Spring wheat 0.23 1.15 0.4
Maize 0.45 1.2 0.35
Sunflower 0.45 1 0.35
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Table A3. Irrigation quotas of main crops under different irrigation techniques in Ulanqab (m3/hm2).
Considering the completeness of data, we collected the gij under 75% probability of irrigation.

Irrigation Technique Potato Spring Wheat Maize Sunflower

Irrigated land Center pivot irrigation 2970 3160 2770 2090
Flood irrigation 3310 5000 4300 2790

Rainfed 0 0 0 0

Table A4. The sowing and harvesting dates, and crop duration for crops of the Qianshan and the
Houshan areas.

Regions Main Crops Sowing
Date DOY0

Harvesting
Date DOYt

Crop
Duration

Houshan area

Potato 5.5 126 9.10 254 128
Spring wheat 4.30 121 8.30 243 122
Naked oats 5.1 122 9.1 245 123

Maize 5.5 126 10.1 275 149
Sunflower 5.10 131 9.30 274 143

Qianshan area

Potato 5.10 131 9.15 259 128
Spring wheat 5.10 131 9.5 249 118
Naked oats 5.25 146 9.5 249 103

Maize 5.10 131 9.25 269 138
Sunflower 5.20 141 10.8 282 141

Table A5. Accuracy measurements of crop classification for 2019.

Potato Cereal Crops Maize Sunflower Other Crops

Producer’s accuracy (%) 86.8 68.9 84.4 69.4 77.2
User’s accuracy (%) 63 90 86 86 56
Overall accuracy (%) 78.1
Kappa coefficient 0.71

Table A6. Percentage of different hotspot types of five farmland use intensity indicators for 2010–2014 and 2015–2019.

Indicators Dcrr Iri Cd Gf Rf

Hotspot Type 2010–
2014

2015–
2019

2010–
2014

2015–
2019

2010–
2014

2015–
2019

2010–
2014

2015–
2019

2010–
2014

2015–
2019

Cold Spot 62.63% 62.52% 43.27% 40.61% 35.56% 32.47% 50.15% 53.71% 35.47% 29.66%
Cold Spot—99%

Confidence 59.52% 58.96% 35.57% 34.32% 28.53% 27.59% 43.72% 42.32% 28.96% 22.79%

Cold Spot—95%
Confidence 2.34% 2.52% 5.11% 4.10% 4.66% 3.09% 4.60% 8.46% 4.21% 4.40%

Cold Spot—90%
Confidence 0.77% 1.04% 2.59% 2.19% 2.37% 1.79% 1.83% 2.94% 2.30% 2.47%

Hot Spot 34.42% 34.61% 31.29% 33.74% 35.14% 41.62% 32.69% 29.71% 36.52% 32.45%
Hot Spot—90%

Confidence 0.11% 0.05% 2.07% 2.14% 2.48% 2.69% 1.28% 1.35% 2.89% 3.39%

Hot Spot—95%
Confidence 0.30% 0.20% 3.68% 3.64% 4.84% 5.34% 2.37% 2.66% 5.33% 6.21%

Hot Spot—99%
Confidence 34.01% 34.36% 25.54% 27.96% 27.82% 33.59% 29.05% 25.70% 28.31% 22.85%

Not Significant 2.96% 2.87% 25.43% 25.65% 29.31% 25.91% 17.16% 16.58% 28.01% 37.90%

We acquired monthly ETc and total ETc during the whole growing season of main
crops in the Houshan area (Figure A1a–e) and the Qianshan area (Figure A1f–j) by employ-
ing Equations (2) and (3). The ETc results suggest that for each crop, its ETc is larger in the
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Houshan area than in the Qianshan area. Taking the Houshan area as an example, a com-
parison of total ETc during the whole growing season among crops (Figure A1e) shows
that maize owns the largest ETc (570 mm), followed by wheat (532 mm), potato (493 mm),
and sunflower (450 mm). Specifically, the monthly ETc potato peaks at 179 mm in July
(Figure A1a), which was 1.25–6.37 times that of other months. Furthermore, the sum of
ETc in July and August accounted for 65.37% of the total ETc. The monthly ETc of wheat
ranged from 33 to 180 mm (Figure A1b), and wheat needed more rainfall at the beginning
of the growing season, especially in June. Furthermore, the monthly ETc curve of sunflower
during the whole growing season was similar to that of potato (Figure A1c). As the crop
with the largest ETc in the whole growing season (Figure A1d), although the ETc of maize
at the sowing stage (May) was low (only 53 mm), the ETc in August and September stayed
at a high level after the peak ETc in July (173 mm).

Table A7. The area shares of each crop rotation pattern. G, GDCS; P, Potato; CC, Cereal crops; M, Maize; S, Sunflower; OC,
Other crops.

Rotation Share Ranking Rotation Share Ranking Rotation Share RankingRotation Share Ranking

P→P 11.729% 1 C→M/O 0.306% 37 S→C/G 0.0032% 73 G→C/S 0.0012% 77
P→S/O 1.984% 13 C→M/G 0.040% 57 S→C/M 0.0204% 61 G→C/O 0.0691% 50
P→S/G 0.093% 49 M→M 3.629% 8 S→M/O 0.2003% 42 G→C/M 0.0019% 74
P→O/G 0.239% 41 M→S/O 0.264% 39 S→M/G 0.0041% 71 G→M/S 0.0001% 80
P→C/S 0.637% 29 M→S/G 0.003% 72 O→O 11.3907% 2 G→M/O 0.0015% 76
P→C/O 1.626% 14 M→P /S 0.358% 35 O→S/G 0.0581% 54 P→S 4.6617% 6
P→C/G 0.114% 47 M→P /O 0.793% 23 O→P/S 0.7475% 25 P→O 9.0725% 4
P→C/M 0.524% 31 M→P /C 0.246% 40 O→P/C 2.1998% 10 P→C 2.0486% 11
P→M/S 1.165% 17 M→P /G 0.009% 67 O→P/G 0.3149% 36 P→G 0.1117% 48
P→M/O 1.558% 15 M→O/G 0.011% 64 O→P/M 0.7505% 24 P→M 4.0442% 7
P→M/G 0.045% 55 M→C/S 0.067% 52 O→C/S 0.4332% 32 C→S 0.1277% 45
C→C 5.280% 5 M→C/O 0.362% 34 O→C/G 0.7000% 27 C→O 9.3306% 3
C→S /O 0.146% 44 M→C/G 0.010% 66 O→C/M 0.7062% 26 C→G 0.8662% 20
C→S /G 0.036% 58 S→S 2.042% 12 O→M/S 0.2895% 38 C→M 0.8148% 22
C→P /S 0.060% 53 S→P/O 0.688% 28 O→M/G 0.0213% 60 M→S 0.8455% 21
C→P /O 1.007% 19 S→P/C 0.069% 51 G→S/O 0.0017% 75 M→O 2.7057% 9
C→P /G 0.193% 43 S→P/G 0.015% 62 G→P/S 0.0003% 79 M→G 0.0071% 70
C→P /M 0.116% 46 S→P/M 0.393% 33 G→P/O 0.0105% 65 S→O 1.3200% 16
C→O/G 1.079% 18 S→O/G 0.009% 69 G→P/C 0.0111% 63 S→G 0.0085% 68
C→M /S 0.023% 59 S→C/O 0.043% 56 G→P/M 0.0006% 78 O→G 0.5557% 30

Figure A1. The monthly ETc (a–j) and total ETc (e,j) during the whole growing season of main crops in the Houshan area
(a–e) and the Qianshan area (f–j) from 2000–2019.
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The results of monthly Pe in the Houshan area (Siziwang Banner and Huade) and
the Qianshan area (Jining) indicate that the average annual Pe of Jining, Siziwang Ban-
ner, and Huade from 2000 to 2019 was 324, 299, and 297 mm, respectively (Figure A2),
suggesting that Pe in the Qianshan area was greater than that in the Houshan area. Besides,
Pe was largely concentrated to the months of June through August in Ulanqab.

Figure A2. The monthly Pe in the Houshan area (Siziwang Banner and Huade stations) and the Qianshan area (Jining station)
during the whole growing season from 2000–2019.
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